首页 半导体制冷器

半导体制冷器

举报
开通vip

半导体制冷器半导体制冷器 工作原理 半导体致冷器是利用半导体材料的珀尔帖效应制成的。所谓珀尔帖效应,是指当直流电流通过两种半导体材料组成的电偶时,其一端吸热,一端放热的现象。重掺杂的,型和,型的碲化铋主要用作,,,的半导体材料,碲化铋元件采用电串联,并且是并行发热。,,,包括一些,型和,型对(组),它们通过电极连在一起,并且夹在两个陶瓷电极之间;,,,组件每一侧的陶瓷电极的作用是防止由,,,电路引起的激光器管芯的短路;,,,的控制温度可达,,?,,,?,当有电流从,,,流过时,电流产生的热量会从,,,的一侧传到另一侧,在,...

半导体制冷器
半导体制冷器 工作原理 半导体致冷器是利用半导体材料的珀尔帖效应制成的。所谓珀尔帖效应,是指当直流电流通过两种半导体材料组成的电偶时,其一端吸热,一端放热的现象。重掺杂的,型和,型的碲化铋主要用作,,,的半导体材料,碲化铋元件采用电串联,并且是并行发热。,,,包括一些,型和,型对(组),它们通过电极连在一起,并且夹在两个陶瓷电极之间;,,,组件每一侧的陶瓷电极的作用是防止由,,,电路引起的激光器管芯的短路;,,,的控制温度可达,,?,,,?,当有电流从,,,流过时,电流产生的热量会从,,,的一侧传到另一侧,在,,,上产生″热″侧和″冷″侧,这就是,,,的加热与致冷原理。是致冷还是加热,以及致冷、加热的速率,由通过它的电流方向和大小来决定。在实际应用中,,,,通常安装在热沉和组件外壳之间。其冷侧与激光器芯接触,起到致冷作用,它的热侧与散热片接触,把热量散到外部去,这也只是一种最普遍的情况。在对激光器工作温度的稳定性要求较高的场所,一般都采用双向温控,即在常温和高温时对激光器制冷,在低温环境中则制热;半导体致冷器在电流方向逆转时,原来的冷端和热端的位置就互换;则贴近激光器芯的一则就变成了热端,对激光器芯加热。 性能计算 在应用致冷器前,要进一步的了解它的性能,实际上致冷器的冷端从周围吸收的热Qл外,还有两个:一个是焦耳热Qj;另一个是传导热Qk。电流从元件内部通过就产生焦耳热,焦耳热的一半传到冷端,另一半传到热端,传导热从热端传到冷端。 热端散产冷=Qπ-Qj-Qk 掉的热=Qπ+Qj-Qk 量Qh Qc = (2p-2n).Tc. =(2p-2n).Th.I+1/2I?R-K(Th-Tc) I-1/2j?R-K (Th-Tc) 式中,R 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示一对电偶的总电阻,K是总热导。 从上面两公式中可以看出,输入的电功率恰好就是热端散掉的热与冷端吸收的热之差,这就是“热泵”的一种: Qh-Qc=I?R=P 由上式得出一个电偶在热端放出的热量Qh等于输入电功率与冷端产冷量之和,相反得出冷端产冷量Qc等于热端放出的热量与输入电功率之差。 Qh=P+Qc ? Qc=Qh-P 最大致冷功率的计算方法: A.1 在热端温度Th为27??1?, 温差为?T=0 , I=Imax 时, 最大致冷功率Qcmax(W)按公式(1)计算:Qcmax=0.07NI (1)式中:N ---器件对数, I ---器件的最大温差电流(A)。 A.2 若热面温度为3~40?时,最大致冷功率Qcmax(W)应按公式(2)加以修正, Qcmax?Th= Qcmax×[1+0.0042(Th--27)] (2)式中:Qcmax ---热面温度Th=27??1?的最大致冷功率(W), Qcmax?Th --热面温度Th --3~40?时的实测温度下的最大致冷功率(W) 应用选择 半导体致冷应用产品的心脏部分是半导体致冷器,根据半导体温差电堆的特点,弱点及应用范围,选用电堆时首先应确定以下几个问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 : 1、确定电堆的工作状态。根据工作电流的方向和大小,就可以决定电堆的致冷,加热和恒温性能,尽管最常用的是致冷方式,但也不应忽视它的致热和恒温性 2、确定致冷时热端实际温度。因为电堆是温差器件,要达到最佳的致冷效果,电堆须安装在一个良好的散热器上,根据散热条件的好坏,决定致冷时电堆热端的实际温度,要注意,由于温度梯度的影响,电堆热端实际温度总是要比散热器表面温度高,通常少则零点几度,多则高几度、十几度。同样,除了热端存在散热梯度以外,被冷却的空间与电堆冷端之间也存在温度梯度。 3、确定电堆的工作环境和气氛。这包括是工作在真空状况还是在普通大气,干燥氮气,静止或流动空气及周围的环境温度,由此来考虑保温(绝热)措施,并决定漏热的影响。 4、确定电堆工作对象及热负载的大小。除了受热端温度影响以外,电堆所能达到的最低温度或最大温差是在空载和绝热两个条件下确定的,实际上工作的,电堆既不可能真正绝热,也必须有热负载,否则无意义。 5、确定致冷器的级数。电堆级数的选定必须满足实际温差的要求,即电堆标称的温差必须高于实际要求的温差,否则达不到要求,但是级数也不能太多,因电堆的价格随着级数的增加而大大提高。 6、电堆的规格。选定电堆的级数以后,就可以选定电堆的规格,特别是电堆的工作电流。因为同时能满足温差及产冷的电堆有好几种,但是由于工作条件不同,通常选用工作电流最小的电堆,因为这时配套电源费用较小,然而电堆的总功率是决定因素,同样的输入电功率减少工作电流就得增加电压(每对元件0.1v),因而元件对数就得增加。 7、确定电堆的数量。这是根据能满足温差要求的电堆产冷总功率来决定的,它必须保证在工作温度时电堆产冷量的总和大于工作对象热负载的总功率,否则无法达到要求。电堆的热惯性非常小,空载下不大于一分钟,但是由于负载的惯性(主要是由于负载的热容量造成的),因此实际要达到设定温度时的工作速度要远远大于一分钟,多时达几小时。如工作速度要求愈大,电堆的数量也就愈多,热负载的总功率是由总热容量加上漏热量(温度愈低、漏热量愈大)。 上述七个方面是选用电堆时考虑的一般原则,根据上述原用户首先应根据需要提出要求来选择致冷器件。一般的要求: ?、给定使用的环境温度Th ? ?、被冷却的空间或物体达到的低温度Tc ? ?、已知热负载Q(热功率Qp 、漏热Qt)W 已知Th、Tc和Q,再根据温差致冷器的特性曲线就可估算所需的电堆及电堆数量。 1、确定致冷器的型号规格 2、选定型号后,查阅该型号的温差电致冷特性曲线图。 3、由使用环境温度和散热方式确定致冷器的热端温度Th,得出相近的Tc。 4、在相应的特性曲线图中查出冷端Qc的产冷量。 5、由所需的产冷量Q除以每个电堆的产冷量Qc就得到所需的电堆数量N=Q/Qc散热方式 半导体致冷器件的散热是一门专业技术,也是半导体致冷器件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体致冷器的几种散热方式: 1、自然散热。 采用导热较好的材料,紫铜铝材料做成各种散热器,在静止的空气中自由的 散发热量,使用方便,缺点是体积太大。 2、充液散热。 用较好的散热材料做成水箱,用通液体或通水的方法降温。缺点是用水不方便,浪废太大,优点是体积小,散热效果最好。 3、强迫风冷散热。 工作气氛为流动空气,散热器所用的材料和自然散热器相同,使用方便,体积比自然冷却的小,缺点是增加一个风机出现噪音。 4、真空潜热散热。 最常用的就是“热管”散热器,它是利用蒸发潜热快速传递热容量。 安装方式 致冷器的安装方法一般有三种:焊接、粘合、螺栓压缩固定。 在生产上具体用哪一种方法安装,要根据产品的要求来定,总的来说对于这三种的安装时,首先都要用无水酒精棉将致冷器件的两端面擦洗干净,储冷板和散热板的安装表面应加工,表面平面度不大于0.03mm,并清洗干净,以下就是三种安装的操作过程。 1、焊接。 焊接的安装方法要求致冷器件外表面必须是金属化,储冷板和散热板也必须能够上焊料(如:铜材的储冷板或散热板)安装时先将储冷板、散热板、致冷器进行加温,(温度和焊料的熔点差不多)在各安装表面都熔上约70?——110?之间的低温焊料0.1mm。然后将致冷器件的热面和散热板的安装面,致冷器件的冷面和储冷板的安装面平行接触并且旋转挤压,确保工作面的接触良好后冷却。该安装方法较复杂,不易维修,一般应用在较特殊的场合。 2、粘合。 粘合的安装方法是用一种具有导热性能较好的粘合剂,均匀的涂在致冷器件、储冷板、散热板的安装面上。粘合剂的厚度在0.03mm,将致冷器的冷热面和储冷板、散热板的安装面平行的挤压,并且轻轻的来回旋转确保各接触面的良好接触,通风放置24小时自然固化。该安装方法一般应用在想永久的把致冷器 固定在散热板或储冷板的地方。 3、螺柱压缩固定。 螺柱压缩固定的安装方法是将致冷器件、储冷板、散热板各安装面均匀的涂上很薄的一层导热硅脂,厚度大约在0.03mm。然后将致冷器件的热面和散热板的安装面、致冷器件的冷面和储冷板的安装面平行接触,并且轻轻的来回旋转致冷器,挤压过量的导热硅脂,一定要确保各工作面的接触良好,再用螺丝将散热板、致冷器、储冷板三者之间紧固,紧固时用力应均匀,切勿过量或太轻,重了易压坏致冷器件,轻了容易造成工作面不接触。该安装简单、快速,维修方便,可靠性较高,是目前产品应用中最多的一种安装方法。 以上三种安装方法为了能够达到最佳的致冷效果,储冷板和散热板之间应用隔热材料填充,固定螺丝应用隔热垫圈,为减少冷热交替,储冷板和散热板的尺寸大小取决于冷却方法及冷却功率大小,根据应用情况决定。 珀尔帖效应 百科名片 两种不同的金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差。这就是珀尔帖效应(PeltierEffect)。帕尔帖效应可以视为塞贝克效应的反效应。通常将塞贝克效应称为热电第一效应,帕尔帖效应称作热电第二效应,汤姆逊效应则称作热电第三效应。帕尔帖效应是法国科学家珀尔帖于1834年发现的。 概述 [1] 珀尔帖效应就是电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量。这就是珀尔帖效应。由珀尔帖效应产生的热流量称作珀尔帖热。对珀尔帖效应 半导体致冷器 的物理解释是:电荷载体在导体中运动形成电流。由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量。能量在两材料的交界面处以热的形式吸收或放出。 1834年法国科学家珀尔贴发现了热电致冷和致热现象,即温差电效应。由N、P型材料组成一对热电偶, 当热电偶通入直流电流后,因直流电通入的方向不同, 将在电偶结点处产生吸热和放热现象,称这种现象为珀尔帖效应。 半导体致冷器, 也叫热电致冷器或温差致冷器, 它采用了珀尔贴效应. 发现 珀尔帖现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家珀尔帖,才发现背后真正的原因,珀尔帖发现这样一种现 致冷器原理 象:用两块不同的导体联接成电偶,并接上直流电源,当电偶上流过电流时,会发生能量转移现象,一个接头处吸收热量变热,另一个接头处放出热量变冷,这种现象称作珀尔帖效应。这个现象直到近代随著半导体的发展才有了实际的应用,也就是[致冷器]的发明(注意,这种叫致冷器,还不叫半导体致冷器)。 发现者 帕尔帖效应是法国科学家珀尔帖于1834年发现的,所以,一提到帕尔帖的名字,人们很容易将他与帕尔帖效应联系起来,并误以为他是一个物理学家,实际上他至多算个业余的物理学家。 帕尔帖生于法国索姆,他本来是一个钟表匠,30岁那年放弃了这个职业,转而投身到实验与科学观测领域之中。在他撰写的大量论文中,绝大部分都是关于自然现象的观测,譬如天电、龙卷风、天空蓝度测量与光偏振、球体水温、极地沸点等, 帕尔帖 也有少量博物学方面的论文。 1837年,俄国物理学家愣次(Lenz,1804,1865) 发现,电流的方向决定了吸收还是产生热量,发热(制冷)量的多少与电流的大小成正比,比例系数称为“帕尔帖系数”。 Q=л?I=a?Tc?I,其中л=a?Tc 式中:Q——放热或吸热功率 π——比例系数,称为珀尔帖系数 I——工作电流 a——温差电动势率 Tc——冷接点温度 实验仪 实用新型属于物理学用的教学仪器。它选用N型半导体和P型半导体组成多个电偶对。当直流电流进N—P型电偶对时,电偶对右端吸热,形成冷端,连接一透明冷室;左端放热,形成热端,连接一散热水箱。配以温度计、毫伏表、可演示珀尔帖效应、赛贝克效应,具有方便、直观、效果明显的优点。作为冷源演示热学现象,是一种不需冷媒的,方便、直观、清洁、无毒害的教学冷源。 其特征是选用N型半导体和P型半导体形成多个电偶对,组成冷板,当直流电流进N—P型电偶对时,电偶对右端吸热,形成冷端,连接一透明冷室,电偶对左端放热,形成热端,连接一散热水箱。 致冷器采用了珀尔帖效应 物理原理 电流流过两种不同导体的界面时,将从外界吸收 物理原理 热量,或向外界放出热量。这就是帕尔帖效应。由帕尔帖效应产生的热流量称作帕尔帖热,用符号珀尔帖效应表示。 对帕尔帖效应的物理解释是:电荷载体在导体中运动形成电流。由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量。能量在两材料的交界面处以热的形式吸收或放出。 材料的帕尔贴效应强弱用它相对于某参考材料的帕尔贴系数π表示 式中I-----流经导体的电流,A。 式中I 珀尔帖效应 类似的,对于P型半导体和N型半导体组成的电偶,其帕尔贴系数π。有与西伯克效应都是温差电效应,二者有密切联系。事实上,它们互为反效应,一个是说电偶中有温差存在时会产生电动势;一个是说电偶中有电流通过时会产生温差。温差电动 势率与帕尔贴系数之间存在下述关系 式中T-----结点处的温度,K。 式中T 生活应用 帕尔帖效应发现100多年来并未获得实际应用,因为金属半 TEC套件 导体的珀尔帖效应很弱。直到上世纪90年代,原苏联科学家约飞的研究表明,以碲化铋为基的化合物是最好的热电半导体材料,从而出现了实用的半导体电子致冷元件——热电致冷器(ThermoElectriccooling,简称TEC)。 与风冷和水冷相比,半导体致冷片具有以下优势:(1)可以把温度降至室温以下;(2)精确温控(使用闭环温控电路,精度可达?0.1?);(3)高可靠性(致冷组件为固体器件,无运动部件,寿命超过20万小时,失效率低);(4)没有工作噪音。 TEC原理 TEC基本工作过程:当一块N型半导体和一块P型半导体结成电偶时,只要在这个电偶回路中接入一个直流电源,电偶上就会流过电流,发生能量转移,在一个接点上放热(或吸热),在另一个接点上相反地吸热(或放热)。 对帕尔帖效应的物理解释是:电荷载体在导体中 珀尔帖效应 运动形成电流。由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量。能量在两材料的交界面处以热的形式吸收或放出。在TEC制冷片中,半导体通过金属导流片连接构成回路,当电流由N通过P时,电场使N中的电子和P中的空穴反 向流动,他们产生的能量来自晶格的热能,于是在导流片上吸热,而在另一端放热,产生温差。 帕尔帖模块也称作热泵(heatpumps),它既可以用于致热,也可以致冷。半导体致冷片就是一个热传递工具,只要热端(被冷却物体)的温度高于某温度,半导体制冷器便开始发挥作用,使得冷热两端的温度逐渐均衡,从而起到致冷作用。
本文档为【半导体制冷器】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_833902
暂无简介~
格式:doc
大小:56KB
软件:Word
页数:11
分类:互联网
上传时间:2017-09-26
浏览量:59