首页 LNG运输船和浮式转接驳间吸附力数值模拟分析

LNG运输船和浮式转接驳间吸附力数值模拟分析

举报
开通vip

LNG运输船和浮式转接驳间吸附力数值模拟分析 &nbsh1;   LNG运输船和浮式转接驳间吸附力数值模拟分析     蒙学昊,李萌,周毅,罗文忠,斯园园 (中海油能源发展股份有限公司 采油服务分公司,天津 300452) LNG浮式转接驳设施是一个模块化的LNG传输系统,使用浮式软管与模块化的岸上设施相连接,以实现船舶与储存设施之间的LNG传输。LNG浮式转接驳在作业时采用真空吸附装置与LNG船连接。连接后,LNG浮式转接...

LNG运输船和浮式转接驳间吸附力数值模拟分析

&nbsh1;

 

LNG运输船和浮式转接驳间吸附力数值模拟 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析

 

 

蒙学昊,李萌,周毅,罗文忠,斯园园

(中海油能源发展股份有限公司 采油服务分公司,天津 300452)

LNG浮式转接驳设施是一个模块化的LNG传输系统,使用浮式软管与模块化的岸上设施相连接,以实现船舶与储存设施之间的LNG传输。LNG浮式转接驳在作业时采用真空吸附装置与LNG船连接。连接后,LNG浮式转接驳可牢固地连接于LNG船舷侧,与LNG船同步运动。对真空吸附装置的选型关键在于吸附力是否能承受LNG浮式转接驳与LNG船之间的拉力,但是直接计算两者的吸附力过程较为复杂,容易出现误差。为了准确地进行真空吸附装置的选型,考虑在数值模拟中使用缆绳模拟LNG浮式转接驳与LNG船之间的连接力,分析在典型作业海况下LNG浮式转接驳与LNG船之间的连接力,为真空吸附装置的选型提供参考依据。

1 船体主要参数以及系泊工况

1.1 船舶主尺度和坐标系的确定

数值模拟选用的LNG船型主尺度见 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 1,浮式转接驳主尺度见表2。

表1 船型主尺度 m

表2 转接驳主尺度 m

见图1,在LNG船上建立坐标系,风、浪和流环境载荷方向为船尾指向船首,初始为0°顺时针方向依次增加30°。在图中驳船靠LNG船右舷,中间与橡胶护舷相接触。为了简化计算,真空吸附装置用缆绳代替,通过计算缆绳张力得到系泊过程中两船间的相互作用力。

图1 坐标系与环境载荷方向

1.2 模型构建及网格划分

首先建立 LNG船-浮式转接驳的模型,利用三维建模软件CATIA对模型进行构建。初步生成船体模型,对模型进行曲率分析、曲面缝合等技术操作。在这过程中,适度的对船体型线进行微调,实现船体型线光滑过渡等要求,并最终对船体曲面曲率进行分析,得到最终的模型见图2和图3。

图2 LNG船-浮式转接驳模型(等轴测视)

图3 LNG船-浮式转接驳模型(正视)

船体模型建立完毕后,导入到ANSYS中的DM模块对双体船模型进行水线划分,见图4,水线划分完毕后导入至MESH模块。

图4 LNG船-浮式转接驳网格模型

计算在网格划分过程中,利用ANSYS中的MESH单元对双体船模型进行网格划分。主要是对网格的光滑过渡、粗糙度以及局部网格进行细化等实现对双体船模型板网格质量进行控制,以达到减小误差的作用。

低质量的网格单元会直接影响计算结果,在网格划分前,需判断网格划分的 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 是否会产生低质量的网格。根据船舶的特点,符合下列任何一项的网格即被定义为不良网格。

1)细长比大于10。

2)网格内角小于15°。

3)锥比度小于0.1。

4)拉伸值小于0.1。

网格划分完毕后分析船体的静水力,得到LNG船的重心、浮心,具体数值见表3。浮式转接驳的具体数值见表4。

表3 LNG船重心浮心位置 m

表4 浮式转接驳重心浮心位置 m

2 海上环境数据的设置

2.1 工作水域环境

假设工作水域作业水深15 m,风速20 m/s,风向为0°,波浪谱为JONSWAP谱,谱峰因子3.3,有义波高=2.5 m,浪向-45°,流速1.5 m/s。

2.2 风流力系数的定义及计算

基于Star CCM+软件,使用有限体积法,数值计算模型为LNG浮式转接驳全船模型,缩尺比为1∶5,具体模型见图5。

图5 船体计算模型

以坐标原点为中心,水平面内张成一个-8≤≤5,-5≤≤5,-2≤≤的长方体区域作为计算域,数值模型使用含棱柱层多边形的体网格,并对近船区域的局部网格进行了细化处理,见图6。

图6 网格划分,上层建筑和下船壳

而后设定边界条件。数值模型中,船舶沿,,各方向的力和力矩均可不经换算而直接计算获得。同时,由部分算例可以观察流场作用下船体、上层建筑等的受力或风压分布情况,见图7。

图7 正迎风工况下浮式转接驳风压分布

使用模块法计算风载荷,根据双体船的结构形式,对其主甲板、排气管、驾驶室等水面以上结构建立三维模型,分别计算各模块的受力和力矩,最后叠加各模块的载荷,进而得到平台的风载荷系数。通过数值计算,对得到的数据进行统计分析,得到不同风向角下的风载荷系数,其中0°、45°、60°、90°、135°、150°、180°方向的风载荷系数为数值计算求得,见表5。

表5 浮式转接驳风力系数数据表

对得到的结果可根据后期实验数值进行对比修正,验证其准确性。

流载荷系数的计算结果见表6。

表6 浮式转接驳流力系数数据表

其中0°、45°、60°、90°、135°、150°、180°方向的风载荷系数为数值计算求得。在计算过程中,由于双体船系泊流载荷系数的计算缺乏相关的规范依据,没有相关规范数据与Star CCM+数值计算结果的数据对比验证。因此,流载荷系数的数值计算结果需要与后期的实验数据进行对比验证,才可判断数值计算结果是否可靠。

LNG船风流力系数根据OCIMF规范取值,见表7、8。

表7 LNG船风力系数数据表

2.3 船舶阻尼修正

根据对船体模型水动力计算结果显示横摇RAO峰值太大,峰值在15°左右,需要对横摇方向阻尼进行修正,刚体单自由度运动时的临界阻尼为

表8 LNG船流力系数数据表

(1)

式中:为质量;为相匹配的自由度刚度。

对于横摇运动,该公式为

(2)

式中:为横摇方向惯性质量;Δ为附加的惯性质量,为横摇方向刚度系数。

为使船舶RAO响应曲线更接近实际值,依据频域计算结果修正船舶阻尼,修正值见表9。

表9 LNG-浮式转接驳阻尼修正值

LNG船横摇阻尼修正数据=55 751.0 N·m/((°)/s),此时横摇峰值为4.027 m,较为接近实际情况。

3 系泊方案规划

此次系泊计算采用悬链式系泊,见图8。

图8 系泊方案示意

3.1 导缆孔及系泊点坐标

LNG船导缆孔位置以及系泊点位置见表10和表11,使用的坐标系为AQWA模块默认坐标系,系泊点dolphin c与船中对应,根据导缆孔及系泊点的坐标设置锚链,护舷位置见表12。

表10 LNG导缆孔坐标 m

表11 锚泊点坐标 m

表12 护舷坐标 m

3.2 锚链及缆绳规格选择

目前,常用船用系泊缆绳主要钢丝缆绳和合成纤维缆绳两种。当直径相同时,钢缆的最小断裂载荷大于合成缆,两者的弹性也有很大

本文档为【LNG运输船和浮式转接驳间吸附力数值模拟分析】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
资教之佳
暂无简介~
格式:doc
大小:26KB
软件:Word
页数:11
分类:互联网
上传时间:2023-11-27
浏览量:3