首页 函数与数列的极限的强化练习题答案

函数与数列的极限的强化练习题答案

举报
开通vip

函数与数列的极限的强化练习题答案3232yxxfxxfxyx,,,,,,, ,,,,,,,,,, 第一讲:函数与数列的极限的?选C 4(下列函数在,,,,,内无界的是( ) ,,强化练习题答案 1一、单项选择题 Byx.arctan, Ay.,21,x1(下面函数与为同一函数的是( ) yx, 2Cyxx.sincos,,Dyxx.sin, 2Byx., Ayx.,,, xx1lnxx Dye.ln,Cye.,解: 排除法:A 有界,,,2122,xx x解:,且定义域yexex,,,lnln,sincos2xx,,B有界,C arctan...

函数与数列的极限的强化练习题答案
3232yxxfxxfxyx,,,,,,, ,,,,,,,,,, 第一讲:函数与数列的极限的?选C 4(下列函数在,,,,,内无界的是( ) ,,强化 练习 飞向蓝天的恐龙练习非连续性文本练习把字句和被字句的转换练习呼风唤雨的世纪练习呼风唤雨的世纪课后练习 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 答案 1一、单项选择题 Byx.arctan, Ay.,21,x1(下面函数与为同一函数的是( ) yx, 2Cyxx.sincos,,Dyxx.sin, 2Byx., Ayx.,,, xx1lnxx Dye.ln,Cye.,解: 排除法:A 有界,,,2122,xx x解:,且定义域yexex,,,lnln,sincos2xx,,B有界,C arctanx,2,,,,,, ?选D ,, 故选D limx5(数列x有界是存在的( ) ,,nnf2(已知是的反函数,则fx2的反函,n,,,, A 必要条件 B 充分条件 数是( ) C 充分必要条件 D 无关条件 1Byx.2,, ,,Ayx.,,,,2解:x收敛时,数列有界(即x,,nn1Dyx.22,, ,,Cyx.2,,,,n,12x,M),反之不成立,(如有界,,1,,,,n 1yfx,2,解:令反解出:互xy,,,x,,,,但不收敛, 2 选A 1换,位置得反函数,选A yyx,,x,,11226(当时,与为等价无穷小,n,,sinknnfx,,,,,3(设在有定义,则下列函数,,,,则= ( ) k 1为奇函数的是( ) A B 1 C 2 D -2 2 Ayfxfx.,,,,,,,112sin2nnlimlim1,,k,2解:, 选C Byxfxfx.,,,,, ,,,,nn,,,,11,, kknn32Cyxfx., ,,二、填空题(每小题4分,共24分) 1ffx,,7(设,则的定义域fx,,,,,,,Dyfxfx.,,, ,,,,1,x 为 32yxfx,,,,,,解:的定义域且,,,, 1 211352n,ffx,,解: ? ,,,,12(= limsin,,1n,,1,fx,,53nn,1,1,x x,,11,x ,22 解:当时,, ?原式sinn,,2,xnnffx,,?定义域为 ,,,, 2(,2)(2,1)(1,),,,,,,,,,, 32n,56=lim= ,n,,,53nn528(设 fxx(2)1,,,,三、计算题(每小题8分,共64分) 21x,fx(1),,则 arcsin713(求函数的定义域 y,2xtfttt,,,,,2,45x,1解:(1)令 ,, 2,fxxx,,,45 21x,,,,,,11,,,,34x7解:, ,,或xx,,,11x,,1022,fxxxxx,,,,,,,,,1(1)4(1)5610(2) ,,, yx,,loglog29(函数的反函数是 44 21y, x,4yx,log(2)解:(1),反解出: x4 ,,,3,1)1,4?函数的定义域为 ,,, 21x,xy,(2)互换位置,得反函数 y,4 x,,fxsin1cos,,fx14(设 求 ,,,,10( lim12nnn,,,,2,,,,n,, 有理化xxx,,,,33n22,,,fsin2cos21sin解: 解:原式 ,lim,,,,n,,222,,,,2,,,nn12 2,kn,, ?,,f21,,,,5,,10,,,11(若e lim1,,,,,n,,n,,2fxx,,21 故 ,,,,k,则 5,knlim()fxgx,lnx15(设,的反函数,,,,,,k510n,,n解:左式= 故eee,, k,2 2 1fxgx()(), 解: 已知21x,,?,,,,,,1,求fgx gx,,,,,x,1,,x,11即有 fxgx()(),,,,22x,,,x1解: (1) 求 ?反gxy():,,1x,1 ?2fxgx()(),,,,y,2x,1xyyx,,,22解出: xx,11y,2得 ?,,22fx,,,,,,,,x,2xx,,11互换位置得 xy,gx(),1x,2故 fx(),2x,2x,1 (2) fgxgx,,lnln,,,,,,,,11x,2,,2得 2gx,,,,,,,,2xx,,11,,,ln1xx16(判别fx的奇偶性。 ,,,,x故 gx(),2x,1fx,,,,,解法(1):的定义域,关于,,,,n3na,2,,原点对称 lim8,18(设,求的值。 a,,,,nna,,,2f,,,,,xxxln1 ,,,,3n n3naa,23,,,, 1limlim1,,解: ,ln,,,,,,,,nn2nana,,,,,,,xx,1,1na2lim2aa ,,,,,,ln1ln()xxx1,xn,,,na,,?,e8,,ee, 故a,,ln83ln2,,fx ,,n,,11119(求 lim,,?,,,2,,,,n为奇函数 ?,,,fxxxln(1),,nn12231,,,,,,, 11kk,,fxfx,,解法(2): ,,,,,解:(1)拆项, kkkk(1)(1),,22,,,,,,,ln(1)ln1xxxx ,,11 ,,,?kn1,2,,22kk,1,, ,,,,,,,ln(1)1ln10xxxx,,,,,,111,,?, ?,,,fxfxfx12231,,,nn 故为奇函数 ,,,,,,,, fxgx17(已知为偶函数,为奇函数,11111,,,,,,,,,,,,,,,?,1 ,,,,,,2231nn,,,,,,,1fxgx且,求及 fxgx,,,,,,,,,,x,11,,1 ,n1 3 n,n,xlim1,,1,n,,1,nfxfx,,,, ,,,,(2)原式= limee1,,,33,,2n,,13,xn,1,, x20(设fxaaa,,,0,1, ?fx为奇函数 ,,,,,,3 1(3)讨论fx的有界性 求 ,,fffn,?,,limln12,,,,,,32,,n,,n xx1112n fx,,,,,解: 原式= lnaaa,?lim3,,22n,,33xn13,x ?fx有界 ,,13 ,,,?,ln2lnlnaanalim,,2n,,n22(从一块半径为R的圆铁片上挖去一个扇 形,把留下的中心角为的扇形做成一个漏,12,,?,n斗(如图),试将漏斗的容积V表示成中心角 lna,,lim2n,,n的函数。 , (1)nn,解:(1)列出函数关系式,设漏斗高为,底h lim,,lna2n,,1n,22半径为,依题意:漏斗容积V= ,rrh31 ,,,ln0,1aaa,,22hRrrR,,,,,2, 2 、综合题(每小题10分,共20分) 四22,,RR,,22rhR ?,,,22x44,,fxfx21(设=,求= ,,,,321,x 2,2,4,,,,R,故 VR,,fx并讨论的奇偶性与有2fffx,,,,,,,,3,,324,,界性。 3,,R,2,4,,, ,3fx解:(1)求 ,,324, (2)函数的定义域 fx,,xx fxfx,?,,,,,,222222221112,,,xfxx,,40,2,,,,,,, ,, fxx,,?,,,,0, 2,, fxffx,,,,,,,,,32,,22113,,fxx,,23,R,2,V40,,,,,,,,,故 ,,2fx(2)讨论的奇偶性 ,,324, 五、证明题(每小题9分,共18分) 4 23(设为定义在的任意函数,fx,,,,,1,,,,,,?,,??22ffxx ,,,,,,x,,证明fx可表示为一个偶函数与一个奇函,,1,,(2)消去,求出 fx,,f,,数之和。 x,, 2 221:4,,,,,fxfxxfxfx,,fxfx,,,,,,,,,,,,,,,,,,fx,,证:(1) x,,2222xx,,22 ,,,3,fxfx,,,,fxfx,,,,,,xx3 (2)令 gxx,,,,,,,,,,,2 (3)的定义域,,,,,,00, fx,,,,,, fxfx,,,,,,gxgx,,, ,,,,22,x2又fxfx,,,, ,,,,,3x?gx为偶函数 ,, ?fx为奇函数 ,, fxfx,,,,,,,选做题 ,,,,,,,,xx(3)令 ,,,,2nnn(1)(21),,2221已知,12,,?,,n6fxfx,,,,,,,,,,,,xx ,,,,222,,12n2求 lim,,?,,,333n,,nnnn,,,12,,?,x为奇函数 ,, 22212,,?,n解: 3fx,gx,x(4)综上所述:偶函数+,,,,,,nn,奇函数 22222112nn,,?,,,?,, 3331,,nnnn,,,11ffxfx24 设满足函数方程2+ ,,,,,,x,,22212,,?,n1lim且 3fx=,证明为奇函数。 n,,,,nn,x nnn,,1(21),,111,,,,lim 21fxf,,??证:(1) ,,,,,,3n,,36nn,xx,,,, 22211,,12,,?,n,,,tfftt,2令 函数与自变量,,lim,,3n,,xt,,n,1的记号无关 5 secxC( lim(1cos),,xennn(1)(21)1,,,x0,,lim 3n,,6(1)3n,1xD( lim(1),,xe1,,x ?由夹逼定理知,原式,311,,x2 若对于任意的,函数满足:xy,ee,,,解: 选A lim0?,,x,0e fxyfxfy,,,,证明fy为奇,,,,,,,, BCD:,:2,:1,,注: 函数。 3( 若,,则limfx,,limgx,,,,,,解 (1)求f0:令 ,,xx,xx,00 下列正确的是 ( ) xyfff,,,,,0,0,02000 ,,,,,, A( lim,,fxgx,,,,,,,,,xx,0xyffyfyfyfy,,,,,,,,,:0 (2)令 ,,,,,,,,,, B( lim,,fxgx,,,,,,,,,xx,0?fy为奇函数 ,, 1lim0,C( xx,0fxgx,,,,,第二讲:函数的极限与洛必达 D( lim0kfxk,,,,,,,法则的强化 练习题 用券下载整式乘法计算练习题幼小衔接专项练习题下载拼音练习题下载凑十法练习题下载幼升小练习题下载免费 答案 xx,0一、单项选择题(每小题4分,共24分) k,01( 下列极限正确的( ) 解:limlimkfxkfxk,,,,, ,,,,xxxx,,00sinxxx,sinA( B( 不存,limlim1x,,x,,选D ?xx,sinx 在 fx2,,1,,lim24(若, C( D( limarctanx,x,x,0limsin1xx,,x,,2x x1lim,则 ( ) ,tx,0fx3,,xt1sin解: 选C ?xlimsinlimxt,,,0xt11A(3 B( C(2 D( sinx231,sin10x,xABlim0;lim1,,,2注: xx,,,,tsinxx10,,xxt321,3解: limlimxxt,,00fxft32,,,,2( 下列极限正确的是( ) 11xxA( B( lim0e,lim0e,,,,,xx00 6 ,,,,,21211x12,, ,,,,lim 解:原式limt,0x,1ft23323,,xx11,,,,,, t11 ,,limx,1选B ?x,12 31,213297xx,,,,,,sin(0)xx,9( lim,,100xx,,31x,,,,0(0)x,,fx,5(设且limfx,,,,,,,,x,01,xaxsin(0),,,,397,,,,2132xx,,x,,,,limlim解:原式, ,,,,,xx,,,,3131xx,,,,,,, 存在,则= ( ) a328,,A(-1 B(0 C(1 D(2 ,,,,327,,sinx: 解,,lim1,x,0x2xax,,6lim10(已知存在, ,,11x,,,1,x xaoalimsin,,,,,,,,x,0x,,,,则= a 选C ?,a1解: lim10,,x,,x,1,ax,06(当时,是比fxx,,,11x,,2 ?,,,lim60xax,,x,1高阶无穷小,则 ( ) A(a,1 B(a,0 160,7,,,,,aa C(为任意实数 D( a,1a 11a,,1arcsinxxax111,,,xa11( limsine,,,,22,limlim01a,?,解: ,x0xx,,,,xx,,00xx 故选A 1111xxsin1,lim0limsin0,,?,ee解:二 、填空题(每小题4分,共24分) 22,0x,0x,xxxx,,arcsinxx7(lim ,,,又 故 原式=1 ,,,,limlim1x1,x,,xx,,00xx x22,x,limxxln1,11,,,,1,x,,1,x解:原式ee lim1,,,12(若 lim0,,,n,,x,xx,10,,sinx n12,,sinxlim,,8( ,lim0且,则正整数= n,,2x,1,0xxx,,11,,,1cosx 7 12222,当时, 解:令t,0,tx,,xxln1,,,xx,x解: limlim,nn,,xx001sinxxt原式 ,,limcossin2tt,,,t0nnxn,,421?,,nn2,4, 故0,lim02,0xt ,,,,lim1cos1sin2ttx,,,t0 2 ,cos1sin2tt,,,, n,3lim2t,0tee,三、计算题(每小题8分,共64分) sin32xx,13(求 limx,,lncos2xsin23xx,16(求 limx,0sin3xlncos3x,2xln1cos21,,x变形,,解: 原式=lim x,,sin2x解:原式 limx,03,ln1cos31,,x,,x sin31x等价,,cos21x,lim0sin31,lim0,,,x lim ,,xx,,,,x,0xx,,cos31x, 12sin21x,,,2x,,lim0sin21,lim0,,,x等价 4,,2xx,,,, lim,xx,,0x,129,x3,,022,2原式 ?,,,033,,,, ,,1tan1sin,,,xx,,,2sin2cos3xx,14(求 lim注:原式 lim,x,0x,0xx1cos,,,cos23sin3xx, 4 有理化,??,解:原式 9 xx,eex,,2lim(求 17tansinxx,0x,xx,sinlim x,0xxxx(1cos)(1tan1sin),,,, 0 xx,tan(1cos)1xx,ee,,20,,lim lim 解: 原式 x,0x,0xx(1cos)2,,x1costan111xx00 ,,,,limlimxx,,,0xx222xxxx,,eeee,,00,limlim2 x00xx,,21xxsincos,,15(求 limsincos,,,,,xxx,, 8 10,,,,1x,,eax,,,01,,,0,,t1,18(设且fx,limfx,,,,, limx,01cos,xt,0t2,,,0x,x, 1111,,t,,,limlim 存在,求的值。 att,,002112ttt,,,,1,,,,,x解: lim0eaeaaa,,,,,,四、证明题(共18分) ,,,x,0,,21(当时且 x,, 2, lim0,limuxvx,,,,,,,xxx,,,, 1cos,x2limuxvx,,,,vx,,limlim,x,,,,证明lim1,,uxe ,,,,xx,,00xx,,,,x vx,,证: lim1,ux,,1,,,,,,x,x,,221,,,lim ,,uxvx,,,,,ux,,x,0 ,,lim1,,uxx2,,,,x,, limuxvx,,,,,x,,2 ,e?,,a 2证毕 122(当时,证明以下四个差函数的等x,0,x13ln19( limsin3x,,,价无穷小。 x,0 解: 原式 3xtansin0xxx,,等价于(1) ,,3cosxlim2,sin3xx0,0ln(sin3)x换底法30,,lim,,13lnxx0,x ee,3xtan0xxx,,等价于(2) ,,33xx1limlim,,3sin3xxxx00,,3 ,,,eee3xxx,sin等价于x,03) (,,,,1,,2620(求 xxlimln1,,,,,,x,,x,,,,3xarcsin0xxx,,等价于(4) ,,16,t,t,,ln1,,1x解: 原式, lim,,2t,0tansinxx,tt,,1lim证: ,,3x,0x tt,,ln1通分,,2lim 2t,0t 9 01,,,1,,220xxtan1cos,,,,,x,,11x,1 ,,limlimlim3xx,,00x,011x222xxx,1222 122xx,x2 ,,lim120x, lim1,,123x,0,x1x2213当时, x,0arcsinxxx,等价于63x五、综合题(每小题10分,共20分) tansinxx,当时, x,022lim39121xxx,,,23(求 ,,x,,2tansec1xxx,,22 2limlim,,,29921xxx,,,,,xx,,有理化001x3lim解: 原式 x2x,,33921xxx,,, 22,,21xtanxx,lim ,,,limlim1 2x,,22xx,,003921xxx,,,xx 21x,,2tanxx,当x,0时, ,21x3 ,,,,limx,,,33321,,,392xx,sin1cos,xxx3lim ,lim,,x,0x,01132xx2xmx,,816224( 已知,求常lim,2x,2xnxn,,,225,,12x数mn,的值。 2lim1,, 0x,1解:(1)?原极限存在且 2x22,, lim220xnxn,,,,,,,,x,213x,0当时, xxx,sin26 ?,,,,,,lim80,4280xmxm,,x,2arcsinxx,4lim ,,x,0212,6mm,, 13x62xx,,68(2) lim2x,2xnxn,,,22,, 10 0,,, 且ff01,10,,,,,,,,0,,x2646,, ,lim1x,2,,xnn2242,,,,,,,,fxlimsin,则( ) ,,x,,x,,,21 ,,A( -1 B(0 25,n C(1 D( 不存在 mn,,6,12 答 ?,,,102nn,12解: 原式 选做题 1,,1sinf连续,,1x,,1x,,fxf,limsinlim1xx,,求 ,,,xx,,,,,,,,1xlim,,,,,x,,e0x,,,,,,1x1,,,,f10,选B ,,,1xe,,x解:原式 1,,,,lim1,,,,xem0,,x,,2( 要使fxkx,,ln1在点处连x,0,,,,1,,x,,,1x,,,,1f0续,应给补充定义的数值是( ) ,,,,,,1xex,,,,limlim00xx,,,xee,,ee kA( km B( 11m,xxln1,,x令 yxe,,,1,,kmeC( lnkm D( 11xx,,ln1,,xm,x1,,,yx,, 1,,x2解: limlnlim(1)fxkx,,,,x,,,,00xx,,1xxxx,,,1ln1,,,,m ,,1x,,2lim,kxkmx,0xx1,x,, ,,,lnlneekm xxx,,,1ln1,,,,0ln1,,x,,limlim2?,fkm0 选A x,0,,2xx1,,,x,023xx,,,ee原式 ,x1lim,3(若,则下列正确的是 lim()fxA,2x,023xx,2xa, ,,ee ( ) 第三讲:函数的连续性与导 A( limfxA,,,xa,数、微分的概念的强化练习题 B( limfxA,,,xa,答案 C( limfxA,,,,xa,一、单项选择题(每小题4分,共24 分) D( lim()fxA,fx1(若为是连续函数, ,,xa, 11 ab,,,2,2ab,,0,2 B( A( u连续fxfxAlimlim,解: ,,,,xaxa,, ab,,2,0ab,,1,1C( D( 选B fx,,,解:(1)在连续, fxx,1,,,0x,,4(设 Fx,,,x,2, ?,,,,,lim12,limxaxbab,,,,fx0,0,,,,,,xx,,11 ,且fx在处可导,f00,, 故ab,,?21 x,0,,,,,, 2f00,,则是Fx的 ( ) x,0,,,,x,1,,(2)ff1lim2,1,, ,,,,,,,x,1x,1A( 可去间断点 B( 跳跃间断点 C( 无穷间断点 D( 连续点 1,,ax,1,,axb,,2 ,,alimlim,,fxf,0,,,,xx,,11xx,,11,limlim0,Fxf,,解: ,,,,xx,,00x,0 ,代入1得,选C ?,a2b,0,,,ff00,,?,,FfF00lim0,,,,,,,,,,x,0二、 填空题(每小题4分,共24分) fx()Fxf0故是的第一类可去间断点。选A 7(设为连续奇函数,则= x,0,,,, 1,xsin,5(fxx,,,0在x,0处 ( ) ?,,,fxfxfx解:(1)为奇函数, ,,,,,,x,,, ,0,0x,, (2) limlimfxfx,,,,,,,,,,,xx,,00A( 极限不存在 B(极限存在但不连续 C (连续但不可导 D(可导但不连续 fx又在x,0连续 ,,1f00,解:,且 limlimsin0fxx,,,,,,,xx,,00x?,,ff00f00, 故 ,,,,,, ,f0?fx在x,0连续,又 ,,,, ,fxf0,8(若为可导的偶函数,则 ,,,,1x,sin0x?fxx,0不存在,在,,?,,fxfxlimfx解:(1)为偶函数, ,,,,,,,,x,0x,0 不可导 选C ,,?,,,fxfxfx(2)可导, 故,,,,,,2,xx,,1,1x,16(设在可导,则fx,,,,,,,,ff00 ,,,,axbx,,,1, ,,ab,200f,f00,为 ( ) 即 ,,,, 12 三 、计算题(每小题8分,共64分) 2yxk,,69(设是曲线的 yxx,,,36132ax,sin21xe,,,0x,一条切线,则 k,, 13( 已知fx(),x, ,,,yyxxx,,,?,,,6,66,666,2解: (1) ax,0,, 62346213,12121213,,,,,,,,?,,,,kk(2)在,,,,,上连续,求的值 a,,故 k,1解:在连续 fxx,0,, yfx,()10( 若满足:fxf()0, ,x,, 2axsin21xe,,?,limlimfx,,,x,,xx00,,xlim0,,,x,且 ,,x,0x2axsin21xe,,,,,limlim22a ,f0则= ,,,,xx00xx faaa0,22,?,,且 fxf,0,,,,,,,f0lim,解: ,,x,0x,0故 a,,2 1,xx,,,,xlim101,,,, ,ex,0,x,0x,xx,,0,114( 讨论在fxx()0,01,,,, ,fx()f(2)11( 设在x,2连续,且=4, lnx,,1x,x,1, 14,,fxlim(),,则 连续性 ,,2x,2xx,,24,,1xlim00,解:(1)在x,0处, lim0,e,,,x,,24x,0,x0解: 原式= f(2)lim2x,2x,4f00,且 ,,11 ,,,,4lim41x,2x,24?fx在x,0处连续 ,, sin1xx,,,,fx(),12(的间断点个数为 5lim00,,x,1(2)在处, ,xx,x,1 52xxxxxx,,,,,,0,1110解: 令 ,,,,ln1,t,,,,ln1xxt,,limlim1,, ,,xx,,10xt,1xxx,,,,0,1,1为间断点, ?fxx,1在不连续 ,,fx故有三个间断点 ,, fx()15( 设有连续的导函数,且 13 11,fxax,sin,,,答 ?,kkb,,,1,0x,,22,Fx,ffb00,0,,若,,,,,,x, ,ln(1),ax,Ax,0,,,0x,,17(设在可fx(),x,0x,在连续,求常数A。 x,0,,,1,0x, fxfax,,0sin,,,,limlimFx,: 解,,,导,求与f0 a,,xx,,00x 解:(1)在连续, fxx,0fxf,0,,,,,,axsin,,limlimxx,,00xx,0 ln1,ax,,ax ?,limlimfx,,lima,,,,,fa0 x,0,,x,0x,0xx FA0,f01,,且, 答 且,故有 ?,,abAAab,,a,,1,,,, x,(2)fx在可导 x,0e,1,,,0x,,fx()16( 设在可导,,x,0x,ln(1),x,,1kxbx,,,0,x, f0lim,,,x,0xkb,求的值。 0,,1,,,1x0xxe,1ln1,,,,,,x,1fx解:(1)在x,0连续, ?,lim1,, ,limlim,2x,0xx,,00xxx2 lim()kxbb,, 故有b,1 111,,x,x,0,,,lim x,0212xx,,, fx(2)在x,0可导 ,,1,答: af,,,,1,0,,2xe,1,1fx(),,,xax18( 讨论在是否可xa,,,x,f0lim, ,,,,,0xx,0 ,x导,其中在连续。 xa,,, 0,, ,,xxxax,,,00,,,,,,exe,,,111,fa,lim解:(1) ,, ,,limlim,,2,xa,,,00xxxa,xx22 kx,,11, ,,xax,fk0lim,,,,,,,,,,x0,lim, x,xa,xa, 14 11,,xx,,11连续, lim0,limeee,,,,,,,,,limxa ,,,,,,xx,,11,xa, 是fx的第二类无穷间断点 ?,x1,, xax,,,0,,,,(3)在处: x,0,fa,lim(2) ,,,,xa,xa,1,1x,1 lim,limln10eex,,,,,,,xx,,00,连续xax,,,,,,limlim,,xa,,,,,,,,是fx的第一类跳跃间断点 ?,x0,,xaxa,,xa, 四、 综合题(每小题10分,共20分) 答: 当,a,0时,fx在连续, xa,,,,,11,xx,1当,a,0时,fx在不连续 21( 求fx(),的间断点,并判别xa,,,,,11,xx,11fx(),19( 求的间断点,并指出间断间断点的类型。 lnx xxx,,,,01,1,解: (1)间断点: 点类型 (2)在处: x,0xxx,,,,0,1,1解:(1) 间断点: xx,1,,11x,fx,,, ,,1xxx(1)11,,lim0,(2) 在处: x,0x,0xlnx,1 limlim1fx,,,,,xx,,00x,1fx?,x0是的第一类间断点。 ,, fx?,x0是的第一类可去间断点 ,, 1,,lim(3) 在处: x,,1x,1x,,1xlnx,1(3)在处: limlim0fx,,,,xx,,11x,1 fxfx?,,x1为的第二类无穷间断点。 ?,x1是的第一类可去间断点 ,,,, x,11x,,1(4)在处: lim,,,x,1x,,1,ex,0,x,1fx(),20( 设指出, ,ln1,10,,,,xx,,fx?,,x1是的第二类无穷间断点 ,,, 2,xxx,,,0fx()的间断点,并判断间断点的类型。 ,3222(已知,fxaxbxcxdx(),01,,,,,,,x,1x,0解:(1)为间断点,可能是间断,2xxx,,,1点。 , x,1(2)在处: abcd,,,,,,,,在可导,求之值 ,, 15 解:(1)在连续, 故有3204ab,,?fxx,0,,,, 32 ?,,,,limaxbxcxddab,,,2,3由(3)(4)解得 ,,,x,0 2 lim0,00xxf,,,abcd,,,,,2,3,1,0答: ,,,,,x,0 五、证明题(每小题9分,共18分) 故d,?01 ,,4xx,,,24023( 证明在区间,2,2内至,, (2)在可导 fxx,0,,少有两个实根。 2fx()证:(1)在,2,0连续, ,,xx,,0lim1,f,, ,,,,x,0x ff040,2160,,,,,,且 ,,,, 32axbxcx,,,由零点定理知, ?0limfc,, ,,,x,0x fx(),2,0=0在上至少有一个实根。 ,, c,?12故有 ,, fx()(2)在0,2连续,且 ,,(3)fx在连续, x,1,, ff040,216480,,,,,,, ,,,,32 lim1axbxxf,,,,,,,,x,1由零点定理知, ? fx()abf,,,,1100,2即 =0在上至少有一个实根 ,,,, fx()?,,,?ab103,2,2 (3)综上所述,=0在上至少有,,,, 两个实根 fx(4)在x,0可导: ,, 1,uxx,sin,0,224( 设,证明(1)fx,,,xxx,,,1lim1?,,f ,,,,,x,0,0x,11x,, 32fxu,0x,0u,1当时在连续,当时,,,axbxx,,,1limf, ,,,,x,11x, fxx,0在可导 ,,0,, ,,u,0时10,,u2解:(1) limsin0xaxbx lim321,,,,,,0xx,1x,,,321ab 16 ,,,10uu第四讲:导数与微分的计算方 sin1,lim0,x,,,0xx,, 法的强化练习题答案 当时,fx在连续 u,0x,0?,,一、单项选择题(每小题4分,共24分) 1242u,fxxx,,,1,1(设则f1,( ) ,,sinx,,1u,时1u,1xlimlimsin0,x(2) ,,xx00A (1 B (3 C( -1 D( -3 xx1, 2222,,,11u解:(1) fxxx,,,1u,1,,,, sin1,lim0,x,,x,0x,,2?,,,fxxx1 ,, 当时,fx在可导 u,1x,0,, ,,fxxf,,,,,,,,21,1211(2) ,,,, fx总之,当时,在连续 u,0x,0,,选C 2222fxxxx,,,12fx当时,在可导 u,1x,02(设 ,,,,,,,,选做题 22,?,xnf0, ,则 ( ) ,,,, ,fx1,设对于任意的,函数满足 x,,n22,1(!)nA ( B( (!)n,, ,,afxfb0,,fab1,,且证明 ,,,,,,n,1!nC( n! D( ,, ,af0f10,证:(1)令x,0, ,即,,,,222222gxxxxn,,,?,12解: 令 ,,,,,,,,faf10, ,,,, fxxgx,,() ,, fxf11,,,,,,,f1lim,(2) ,,,,fxgxxgx,, ,,,,,,x,0x 22,afxaf,0fg00012,,,,, ,,,,,,,,,,,,,,,,,lim0afab ,,x,0x22n??,,,nn1! ,,,,,,证毕 选B 注:本题用导数定义计算更方便~ 5,,fxfxx,,ln13(设,则= ( ) ,,,,,, 4!,4!A ( B ( 551,x1,x,,,, 17 5!,5! (2)fxfx,,,,,,,C( D( 551,x1,x,,,, ,,?,,,,fxfx1 ,,,,,,,1,fxx,,1,解: ,,,, ,,,,,ff00得f00, ,,,,,,,2,,fxx,,,11, ,,,, ,,,,gf00,,,(3) 选A ,,,3,,,,,fxx,,,,121 2,,,,,,,,,, ,44,,,6(设fx在有连续导数,且f12,,x,1,,,,fxx,,,,,1231, ,,,,,,,,,, d,5(5) ( ) 则limcos,fxfxx,,,,,,12341,,,,,,,,,,,,,,,x,0dx A( 1 B( -1 ,5 选A ,,4!(1)xC( 2 D (-2 d2xy,exye,,,cos1yfx,4(设由方程解: fxcos,,,,,,dx 1yfx,所确定,则曲线在点(0,1)的切,,,,,,,fxxcossin ,,,,2x,f(0)线斜率= ( ) ,sinx,A (2 B( -2 (2)原式 ,limcosfx,,,x,02x11C ( D( - ,122, ,,,f11,,2xy,2,,eyxyyxy2sin0,,,,,解: ,,,,,,选B 二、填空题(每小题4分,共24分) ,,,,yf002,,,ey2000,,,, ,,,,,,,,t,xet,sin,7(若, 选B ,,tyet,cos,, gxfx,cosfx5( 设为可导偶函数,且,,,,,,, 2dy,则 2,,,dxg',则 ( ) ,,2,,,,ttdyetet,,cossin2,t A( 0 B (1 ,,,e(1)解:(1) ttdxetetsincos, C (-1 D( 2 23,t,,,dydye,2dydx,,gxfxx,,coscos解:(1) ,,,,,,,,,(2) 2dtdtdxdxttsincos, ,,,,fxxcossin ,,,, 18 n,,2f0= 则 ,,8(设, fxx,,1ln,, nn,,12,,则fe= 解:fxnaxnax(1) ,,,,,,,01 ,?~?a11n,12lnlnxx,xx,fx,,解:(1) ,,n,,,nn22fxnnax,,?,1 ,,,,21ln1ln,,xx0 n,,,,nafna!,0! 112,,00,(2) fe,,,,ee22三、计算题(每小题8分,共64分) x9( 直线与轴平行,且与曲线相lyxe,,x11,,xdy,求。 13 (设y,ln 11,,x切,则切点坐标是 xx,,yeye,,,?,,1,010解: 解: (1) yxx,,,,,,ln(11)ln11,,e曲 11故有切点坐标0,1, ,,,(2)y, 1121,,,xx33yfx,10(由方程xyxy,,,,sin60,, 111,, dy,,确定,则 11211,,,,xxxxx,0 31y,0解:当x,0时,得 yy,,60dydx,(3) xx1,22,, 33cos60xyyxy,,,,,x2,,,yy14(设,求及。 yxx,,,arcsin4112,,, dyydxdx,,,y0,0,,,,x,0661 xx2,1,e解:(1) yx,,arcsin 211(设, y,ln2xx,,1,e1,,,2,, dy,则 ,2xxx,,,arcsin 11xx222解: yee,,,,ln1ln1,,,,24,x4,x22 1xxxexx,,arcsin ,ee122,2 y,,,4,x2xxx,,,eee2111 nn,1fxaxaxaxa,,,?,,12(设,,,0110n, 19 1dy,x,1,,2dy,,(2)arcsiny, ,1t,,dt 解:(1),,,t2t12,,dxdx22,t1dt,x,,,dy22,,,t,,,dydyt1,12,,dt(2) ,,,,,, 2dx22tdxdxt4,xx,,21,dt1,t,,2,,1,xn,,18( 设,求 yy,1,xx,1yyx,15(方程确定,sinln1xy,,,,,,,,,122x解:(1)变形, yy,,,,111,,xxdy,2,求 ,yx,,,211(2) ,,,,x,0dx ,311,,yx,,,,2121 ,,,,,,,,cos()xyyxyy,,,,,解:(1)=0 ,,xy,1,4,,,yx,,,,??2121 ,,,,,, 0ln1,,,,yye(2) 当时, x,0nn,,1n,,,,,21!1nx y,,,,1,(3) cos0(0)1(0)0,,,,,,eey,,eyyx,19( 设 ,,1,,yee(0)(1),, , ey,,1(0)22eFxyFxyy,,,,,0由方程所确,,,,cosx,yxx,siny16(设 ,求 ,,定,其中F可导,且 1dylnlncoslnsinyxxx,,解:(1) ,,,求 ,FFy2,(4)1,02,,,,,,,x,0dx2 22,,11cosxFxyxyy,,,22解:(1) ,,,,,yxxx,,,,sinlnsincos(2) yxxsin ,,,,,,,,Fxyyy10 ,,,,2,,1cosxxcos,yxxxx,,,sinsinlnsin,,,,,,y,2x,0(2)当时, xxsin,, 2,,,,,FyFy44(0)(2)1(0),,,(3) ,,,,,,,xt,,ln1yyx,17 (设,确定,,,,ytt,,arctan,,,,,y(0)0 2dy1求。 2,,, 4(0)1(0)(0)0yyy,,,,,,dx2 20 1, xxxy,,, 解得y(0),,0007 11x,dyyyxy,,令, x,0,,000,fxyf,,,20(已知,求 ,,,,xx,1dx,, yyxy,,解得 000xx,,,11,,,,x,1,,,,解:(1)yf,, (3)证明两截距之和为(即) xya,,a,,2x,1,,x,1,, 2xy+ xyxy,,,0000,,21x,,, ,f,,222x,1,,x,1,,,, ,,,xyxy2,,,,0000,,,,1, (2)fx,,,22x,,,,xyaa ,,,,00 xx,,11,,,?,f 证毕 ,,xx,,11,,五、综合题(每小题10分,共30分) 23dyx,,,21222(若曲线与yxaxb,,,21yxy,,, ,,22dxxx,,11x,1,, ab,1,1,在点相切,求常数。 ,,四、证明题(本题8分) 解:(1)求两曲线的斜率 xya,,21(证明抛物线任一点处的切2,,yxaya,,,,2,12在上, yxaxb,,,,,线所截两坐标轴的截距之和等于。 a 323,,,xy,证:(1)求切线方程:设切点坐标为 23,11yyxyyy,,,在上, yxy,,,1,,,,00 ab,1,1,2)求之值:依题意,两曲线在点y11,,,,y,,,,y0, x22xy相切, 21,1,,,,,aa y?0, ?,,yx,,0x021,1,又点在曲线上 yxxb,,,,,故有切线方程: 2y ?,,,,,,111,1bb0 yyxx,,,,,,00x0 dxyfx,23(设单调,且二阶可导,求及,,(2)求截距: dy y0y,0令, ,,,,yxx,,200dxx0,fx,0 ,,,,2dy 21 dx11(2)?fff00cos01,sin00,?,,解:(1) ,,,,,,,,dy,dyfx,, dx,,,yffff0cos00cos00,,,,(3) ,,,,,,,,,,2,,dxdxd1,(2)= 2222,,,dyfxdydy ,,,cos000fff,,,,,,,,,,,,,,,,,,,, ,,0,fx,,1ddx12(设fx有任意阶导数,且 ,,,,,= 2,,dxfxdyfx,,,,,,,fx,,,,2()n,,求fx fxfx,,,,,,,,,,,,,,fx,,, 32,解:?fxfx, ,,,,,fx,,,,,, 1,x3,,,,,fxfxfxfx,,22? y(设,求 24,,,,,,,,y,arctan1,x 24,,,,,fxfxfxfx,,,,,,,2323, ,,,,,,,,dxx11,,,解:(1), ,,2dyx1,,,1,x,,n,,,1n1,,,fxnfx,! ,,,,1,x,, 2,,,,(1)1xx,,(1),xfxfx,03(设可导且, ,,,,,,222(1),x(1)1,,,xx,, ,fxd,,证明 lnfx,,,,,21dxfx,,,, 222(1)(1),,xx fx()0,解:(1)当时 ,,12,,,,(2)11yx,,, ,,dd1,,,,,lnlnfxfxfx,, ,,,,,,dxdxfx,, ,22x2,,,, 12xx ,,22fx,0(2)当时: ,,,1x,, dd选做题 lnlnfxfx,,,,,,,,,,dxdxf1(设可导,且yfx,sinsin,,,,,,,,,,,fxfx,,,, ,,,,f(0)0,y(0),求 fxfx,,,, ,fx,d,,解:(1) yffx,cossin,,,,,,,,(3)综上所述: lnfx,,,dxfx,, ,,,,,ffxfxfxsincos,, ,,,,,,,, 22 23
本文档为【函数与数列的极限的强化练习题答案】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_841159
暂无简介~
格式:doc
大小:169KB
软件:Word
页数:0
分类:企业经营
上传时间:2017-09-05
浏览量:32