首页 塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译

塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译

举报
开通vip

塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译 A CAD/CAE-integrated injection mold design system for plastic products Abstract Mold design is a knowledge-intensive process. This paper describes a knowledge-based oriented, parametric, modular and feature-base...

塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译
塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译 A CAD/CAE-integrated injection mold design system for plastic products Abstract Mold design is a knowledge-intensive process. This paper describes a knowledge-based oriented, parametric, modular and feature-based integrated computer-aided design/computer-aided engineering (CAD/CAE) system for mold design. Development of CAx systems for numerical simulation of plastic injection molding and mold design has opened new possibilities of product analysis during the mold design. The proposed system integrates Pro/ENGINEER system with the specially developed module for the calculation of injection molding parameters, mold design, and selection of mold elements. The system interface uses parametric and CAD/CAE feature-based database to streamline the process of design, editing, and reviewing. Also presented are general structure and part of output results from the proposed CAD/ CAE-integrated injection mold design system. Keywords Mold design . Numerical simulation . CAD . CAE 1 Introduction Injection molding process is the most common molding process for making plastic parts. Generally, plastic injection molding design includes plastic product design, mold design, and injection molding process design, all of which contribute to the quality of the molded product as well as production efficiency [1]. This is process involving many design parameters that need to be considered in a concurrent manner. Mold design for plastic injection molding aided by computers has been focused by a number of authors worldwide for a long period. Various authors have developed program systems which help engineers to design part, mold, and selection parameters of injection molding. During the last decade, many authors have developed computer-aided design/computer-aided engineering (CAD/CAE) mold design systems for plastic injection molding. Jong et al. [2] developed a collaborative integrated design system for concurrent mold design within the CAD mold base on the web, using Pro/E. Low et al. [3] developed an application for standardization of initial design of plastic injection molds. The system enables choice and management of mold base of standard mold plates, but does not provide mold and injection molding calculations. The authors proposed a methodology of standardizing the cavity layout design system for plastic injection mold such that only standard cavity layouts are used. When standard layouts are used, their layout configurations can be easily 1 stored in a database. Lin at al. [4, 5] describe a structural design system for 3D drawing mold based on functional features using a minimum set of initial information. In addition, it is also applicable to assign the functional features flexibly before accomplishing the design of a solid model for the main parts of a drawing mold. This design system includes modules for selection and calculation of mold components. It uses Pro/E modules Pro/Program and Pro/Toolkit, and consists of modules for mold selection, modification and design. Deng et al. [6, 7] analyzed development of the CAD/CAE integration. The authors also analyzed systems and problems of integration between CAD and CAE systems for numerical simulation of injection molding and mold design. Authors propose a feature ontology consisting of a number of CAD/CAE features. This feature represents not only the geometric information of plastic part, but also the design intent is oriented towards analysis. Part features contain the overall product information of a plastic part, wall features, development features (such as chamfer, ribs, boss, hole, etc.), treatment features which contain analysis-related design information and sub wall developed features. Wall and development features are so called ―component features‖. God ec et al. [8, 9] developed a CAE system for mold design and injection molding parameters calculations. The system is based on morphology matrix and decision diagrams. The system is used for thermal, rheological and mechanical calculation, and material base management, 2 Fig. 1 General structure of integrated injection mold design system for plastic products but no integration with commercial CAx software is provided. Huang et al. [10] developed a mold-base design system for injection molding. The database they used was parametric and feature-based oriented. The system used Pro/E for modeling database components. Kong et al. [11] 3 developed a parametric 3D plastic injection mold design system integrated with solid works. Other knowledge-based systems, such as IMOLD, ESMOLD, IKMOULD, and IKBMOULD, have been developed for injection mold design. IMOLD divides mold design into four major steps; parting surface design, impression design, runner system design, and mold-base design. The software uses a knowledge-based CAD system to provide an interactive environment, assist designers in the rapid completion of mold design, and promote the standardization of the mold design process. IKB-MOULD application consists of databases and knowledge bases for mold manufacturing. Lou et al. [12] developed an integrated knowledge-based system for mold base design. The system has module for impression calculation, dimension calculation, calculation of the number of mold plates and selection of injection machine. The system uses Pro/ Mold Base library. This paper describes KBS and key technologies, such as product modeling, the frame-rule method, CBS, and the neural networks. A multilayer neural network has been trained by back propagation BP. This neural network adopts length, width, height and the number of parts in the mold as input and nine parameters (length, width, and height of up and down set-in, mold bases side thickness, bottom thickness of the core, and cavity plates) as output. Mok et al. [13, 14] developed an intelligent collaborative KBS for injection molds. Mok at el. [15] has developed an effective reuse and retrieval system that can register modeled standard parts using a simple graphical user interface even though designers may not know the rules of registration for a database. The mold design system was developed using an Open API and commercial CAD/computer aided manufacturing (CAM)/CAE solution. The system was applied to standardize mold bases and mold parts in Hyundai Heavy Industry. This system adopted the method of design editing, which implements the master model using features. The developed system provides methods whereby designers can register the master model, which is defined as a function of 3D CAD, as standard parts and effectively reuse standard parts even though they do not recognize the rules of the database. Todic et al. [16] developed a software solution for automated process planning for manufacturing of plastic injection molds. This CAD/CAPP/CAM system does not provide CAE calculation of parameters of injection molding and mold design. Maican et al. [17] used CAE for mechanical, thermal, and rheological calculations. They analyzed physical, mechanical, and thermal properties of plastic materials. They defined the critical parameters of loaded part. Nardin 4 et al. [18] tried to develop the system which would suit all the needs of the injection molding for selection of the part–mold–technology system. The simulation results consist of geometrical and manufacturing data. On the basis of the simulation results, part designers can optimize part geometry, while mold designers can optimize the running and the cooling system of the mold. The authors developed a program which helps the programmers of the injection molding machine to transfer simulation data directly to the machine. Zhou et al. [1] developed a virtual injection molding system based on numerical simulation. Ma et al. [19] developed standard component library for plastic injection mold design using an object-oriented approach. This is an objector iented, library model for defining mechanical components parametrically. They developed an object-oriented mold component library model for incorporating different geometric topologies and non-geometric information. Over the years, many researchers have attempted to automate a whole 5 Fig. 2 Structure of module for numerical simulation of injection molding process 6 Fig. 3 Forms to define the mold geometry mold design process using various knowledge-based engineering (KBE) approaches, such as rule-based reasoning (RBR), and case base (CBR) and parametric design template (PDT). Chan at al. [20] developed a 3D CAD knowledge-based assisted injection mold design system (IKB mold). In their research, design rules and expert knowledge of mold design were obtained from experienced mold designers and handbooks through various traditional knowledge acquisition processes. The traditional KBE approaches, such as RBR, CBR, and simple PDT have been successfully applied to mold cavity and runner layout design automation of the one product mold. Ye et al. [21] proposed a feature-based and object-oriented hierarchical representation and simplified symbolic geometry approach for automation mold assembly modeling. The previously mentioned analysis of various systems shows that authors used different ways to solve the problems of mold design by reducing it to mold configureator (selector). They used CAD/CAE integration for creating precision rules for mold-base selection. Many authors used CAE system for numerical simulation of injection molding to define parameters of injection molding. Several also developed original CAE modules for mold and injection molding process calculation. However, common to all previously mentioned systems is the lack of module for calculation of mold and injection molding parameters which would allow integration with the results of numerical simulation. This leads to conclusion that there is a need to create a software system which integrates parameters of injection molding with the result obtained by numerical 7 Fig. 4 Forms to determine the distance between the cooling channels and mold cavity Fig. 5 Mold-base selector forms simulation of injection molding, mold calculation, and selection. All this would be integrated into CAD/CAE-integrated injection mold design system for plastic products. 2 Structure of integrated CAD/CAE system As is well known, various computational approaches for supporting mold design systems of various authors use design automation techniques such as KBE (RBR, CBR, PDT) or design optimisation techniques such as traditional (NLP,LP, BB, GBA, IR, HR) or meta heuristic search such as (TS, SA, GA) and other special techniques such as (SPA, AR, ED). The developed interactive software system makes possible to perform: 3D modeling of the parts, analysis of part design and simulation model design, numerical simulation of injection molding, and mold design with required calculations. The system consists of four basic modules: 8 & Module for CAD modeling of the part & Module for numerical simulation of injection molding process Fig. 6 Form for mechanical mold calculation & Module for calculation of parameters of injection molding and mold design calculation and selection & Module for mold modeling (core and cavity design and design all residual mold components) The general structure of integrated injection mold design system for plastic products is shown in Fig. 1. 2.1 Module for CAD modeling of the part (module I) The module for CAD modeling of the part is the first module within the integrated CAD/CAE system. This module is used for generating CAD model of the plastic product and appropriate simulation model. The result of this module is solid model of plastic part with all necessary geometrical and precision specifications. Precision specifications are: project name, number, feature ID, feature name, position of base point, code number of simulation annealing, trade material name, material grade, part tolerance, machine specification (name, clamping force, maximal pressure, dimensions of work piece), and number of cavity. If geometrical and precision specification is specified (given) with product model, the same are used as input to the next 9 module, while this module is used only to generate the simulation model. 2.2 Module for numerical simulation of injection molding process (module II) Module II is used for numerical simulation of injection molding process. User implements an iterative simulation process for determining the mold ability parameters of injection molding and simulation model specification. The structure of this module is shown in Fig. 2. After a product model is imported and a polymer is selected from the plastic material database, user selects the best location for gating subsystem. The database contains rheological, thermal, and mechanical properties of plastic materials. User defines parameters of injection molding and picks the location for the gating subsystem. Further analyses are carried out: the plastic flow, fill time, injection pressure, pressure drop, flow front temperature, presence of weld line, presence of air traps, cooling quality, etc. The module offers four different types of mold flow analysis. Each analysis is aimed at solving specific problems: & Part analysis—This analysis is used to test a known gate location, material, and part geometry to verify that a part will have acceptable processing conditions. & Gate analysis—This analysis tests multiple gate locations and compares the analysis outputs to determine the optimal gate location. & Sink mark analysis—This analysis detects sink mark locations and depths to resolve cosmetic problems before the mold is built eliminating quality disputes that could arise between the molder and the customer. The most important parameters are the following: [22] & Part thickness & Flow length & Radius and drafts, & Thickness transitions & Part material & Location of gates & Number of gates & Mold temperature 10 & Melt temperature & Injection pressure & Maximal injection molding machine pressure In addition to the previously mentioned parameters of injection molding, the module shows following simulation results: welding line position, distribution of air traps, the distribution of injection molding pressure, shear stress Fig. 7 Segment of the mechanical calculation algorithm distribution, temperature distribution on the surface of the simulation model, the quality of filling of a simulation model, the quality of a simulation model from the standpoint of cooling, and time of injection molding [22, 23]. A part of output results from this module are the input data for the 11 next module. These output results are: material grade and material supplier, modulus of elasticity in the flow direction, modulus of elasticity transverse direction, injection pressure, ejection temperature, mold temperature, melting temperature, highest melting temperature thermoplastic, thermoplastic density in liquid and solid state, and maximum pressure of injection molding machine. During implementation of iterative SA procedure, user defines the moldability simulation model and the parameters of injection molding. All results are represented by different colors in the regions of the simulation model. 2.3 Module for calculation of parameters of injection molding and mold design calculation and selection (module III) This module is used for analytical calculations, mold sizing, and its selection. Two of the more forms for determining the dimensions of core and cavity mold plates are shown in Fig. 3. Based on the dimensions of the simulation model and clamping force (Fig. 3) user selects the mold material and system calculates the width and length of core and cavity plates. Wall thickness between the mold cavity to the cooling channel can be calculated with the following three criteria: criterion allowable shear stress, allowable bending stress criterion, and the criterion of allowable angle isotherms are shown in Fig. 4 [22, 24]. The system adopts the maximum value of comparing the values of wall thickness calculated by previously mentioned criteria. 12 Fig. 8 Forms for standard mold plates selection Fig. 9 Forms for mold plate model generation Based on the geometry of the simulation model, user select shape and mold type. Forms for the selection mold shape, type, and subsystems are shown in Fig. 5. Once these steps are completed, user implements the thermal, rheological, and mechanical calculation of mold specifications. An example of one of the several forms for mechanical mold calculation is shown in Fig. 6. Segment of the algorithm of mechanical calculations is shown in Fig. 7. 13 Where, f maximal flexure of cavity plate max f allowed displacement of cavity plate dop ε elastic deformation α minimal value of shrinkage factor min E modulus of elasticity of cavity plate k G shear modulus S wall thickness distance measuring between cavity and waterline k dcooling channel diameter KT After the thermal, rheological, and mechanical calculations, user selects mold plates from the mold base. Form for the selection of standard mold plates is shown in Fig. 8. The system calculates the value of thickness of risers, fixed, and movable mold plates (Fig. 8). Based on the calculated dimensions, the system automatically adopts the first major standard value for the thickness of risers, movable, and fixed mold plate. Calculation of the thickness and the adoption of standard values are presented in the form as shown in Fig. 8. The interactive system recommends the required mold plates. The module loads dimensions from the database and generates a solid model of the plate. After the plate selection, the plate is automatically dimensioned, material plate is Fig. 10 Structure of module IV assigned, and 3D model and 2D technical drawing are generated on demand. Dimensions of mold component (e.g., fixed plate) are shown in the form for mold plate mode generation, as shown in 14 Fig. 9. The system loads the plate size required from the mold base. In this way, load up any other necessary standard mold plates that make up the mold subassembly. Subassembly mold model made up of instance plates are shown in Fig. 10 Then get loaded other components of subsystems as shown in Fig. 5. Subsystem for selection other components include bolts and washers. The way of components selection are based on a production rules by authors and by company ―D-M-E‖ [25, 26]. 2.4 Module for mold modeling (core and cavity design and design all residual mold components; module IV) This module is used for CAD modeling of the mold (core and cavity design). This module uses additional software tools for automation creating core and cavity from simulation (reference) model including shrinkage factor of plastics material and automation splitting mold volumes of the fixed and movable plates. The structure of this module is shown in Fig. 11. Additional capability of this module consists of software tools for: & Applying a shrinkage that corresponds to design plastic part, geometry, and molding conditions, which are computed in module for numerical simulation & Make conceptual CAD model for nonstandard plates and mold components & Design impression, inserts, sand cores, sliders and other components that define a shape of molded part & Populate a mold assembly with standard components such as new developed mold base which consists of DME mold base and mold base of enterprises which use this system, and CAD modeling ejector pins, screws, and other components creating corresponding clearance holes & Create runners and waterlines, which dimensions was calculated in module for calculating of parameters of injection molding and mold design calculation and selection & Check interference of components during mold opening, and check the draft surfaces After applied dimensions and selection mold components, user loads 3D model of the fixed (core) and movable (cavity) plate. Geometry mold specifications, calculated in the previous module, are automatically integrated into this module, allowing it to generate the final mold assembly. Output from this module receives the complete mold model of the assembly as shown in Fig. 15. This 15 module allows 16 Fig. 11 Subassembly model of mold Fig. 12 CAD model of the test Product modeling of nonstandard and standard mold components that are not contained in the mold base. 3 Case study The complete theoretical framework of the CAD/CAE-integrated injection mold design system for plastic products was presented in the previous sections. In order to complete this review, the system was entirely tested on a real case study. The system was tested on few examples of similar plastic parts. Based on the general structure of the model of integrated CAD/CAE design system shown in Fig. 1, the authors tested the system on some concrete examples. One of the examples used for verification of the test model of the plastic part is shown in Fig. 12. The module for the numerical simulation of injection molding process defines the optimal location for setting gating subsystem. Dark blue regions indicate the optimal position for setting gating subsystem as shown in Fig. 13. Based on dimensions, shape, material of the case study product (Fig. 11), optimal gating subsystem location (Fig. 13), and injection molding parameters (Table 1), the simulation model shown in Fig. 14 was generated. One of the rules for defining simulation model gate for numerical simulation: 17 IF (tunnel, plastic material, mass) THEN prediction dimension (upper tunnel, length, diameter1, diameter2, radius, angle, etc.) Part of the output results from module II, which are used in module III are shown in Table 1. Fig. 13 Optimal gating subsystem location in the part Table 1 Part of the output results from the module for the numerical simulation of injection molding process Material grade and material supplier Acrylonitrile butadiene styrene 780 (ABS 780),Kumho Chemicals Inc. Max injection pressure 100 MPa Mold temperature 60?C ili 40 Melt Temperature 230?C Injection Time 0,39 s 0,2 s Injection Pressure 27,93 MPa Recommended ejection temperature 79?C Modulus of elasticity, flow direction for ABS 780 2,600 MPa Modulus of elasticity, transverse direction for ABS 780 2,600 MPa Poision ratio in all directions for ABS 780 0.38 Shear modulus for ABS 780 942 MPa Density in liquid state 0.94032 g/cm3 Density in solid state 1.047 g/cm3 18 In module III, the system calculates clamping force F=27.9 kN (Fig. 3), cooling channel diameter d=6 mm, cooling channel length lKT090 mm (Fig. 4). Given the shape and dimensions KT of the simulation model, square shape of mold with normal performance was selected as shown in Fig. 5. Selected mold assembly standard series: 1,616, length and width of mold housing 156×156 mm as shown in Fig. 8. In the segment of calculation shown in Fig. 8, mold design system panel recommends the following mold plates: & Top clamping plate N03-1616-20 & Bottom clamping plate N04-1616-20 & Fixed mold plate (core plate) N10A-1616-36 & Movable plate (cavity plate) N10B-1616-36 & Support plate N20-1616-26 & Risers N30-1616-46 & Ejector retainer plate N40-1616-10 & Ejector plate N50-1616-12 After finishing the fixed and movable mold plates from the standpoint of CAD modeling core and cavity plates, cooling channel, followed by manual selection of other mold standard components such as sprue bush, locating ring, guide pins, guide bush, leading bushing guide, spacer plates, screws (M4×10, M10×100, M10×30, M6×16, M10×30, etc.) and modeling nonstandard mold components (if any) ejector pins, ejector holes, inserts etc. A complete model of the mold assembly with tested simulation model is shown in Fig. 15. 19 Fig. 14 Simulation model of plastic part 20 Fig. 15 Model of the mold assembly with tested simulation model 4 Conclusion The objective of this research was to develop a CAD/CAE integrated system for mold design which is based on Pro/ ENGINEER system and uses specially designed and developed modules for mold design. This paper presents a software solution for multiple cavity mold of identical molding parts, the so-called one product mold. The system is dedicated to design of normal types of molds for products whose length and width are substantially greater than product height, i.e., the system is customized for special requirements of mold manufacturers. The proposed system allows full control over CAD/CAE feature parameters which enables convenient and rapid mold modification. The described CAD/CAE modules are feature-based, parametric, based on solid models, and object oriented. The module for numerical simulation of injection molding allows the determination selection of injection molding parameters. The module for calculation of parameters of injection molding process and mold design calculation and selection improves design Fig. 15 Model of the mold assembly with tested simulation model faster, reduces mold design errors, and provides geometric and precision information necessary for complete mold design. The knowledge base of the system can be accessed by mold designers through interactive modules so that their own intelligence and experience can also be incorporated into the total mold design. Manufacture of the part confirms that the developed CAD/CAE system provides correct results and proves to be a confident software tool. Future research will be directed towards three main goals. The first is to develop a system for automation of family mold design. Another line of research is the integration with CAPP system for plastic injection molds manufacturing developed at the Faculty of Technical Sciences. Finally, following current trends in this area, a collaborative system using web technologies and blackboard architecture shall be designed and implemented. 21 塑料制品的CAD / CAE集成的注塑模具设计系统 摘要:模具设计是一个知识密集的过程。本文介绍了一个知识为导向,参数化,模块化和基于特征的集成计算机辅助设计/计算机辅助工程(CAD / CAE)的模具设计系统。在模具设计的产品分析中,CAx系统的发展为注塑成型的数值模拟和模具设计开辟了新的可能性,。该系统集成了Pro/ ENGINEER系统专门开发的计算注射成型工艺参数,模具设计,选择模具元件的模块。本系统界面使用的参数和CAD / CAE基于数据库来简化过程的设计、编辑和审查。此外,还提出的总体结构和输出结果的一部分建议的CAD /CAE集成的注塑模具设计系统。 关键词:模具设计、数值模拟、CAD、CAE。 1引言 注塑成型过程中是最常见的用于制造塑料部件的成型过程。一般情况下,塑料注塑模具设计包括塑料制品设计,模具设计,注塑成型工艺设计,所有这些都有助于提高成型产品的质量和生产效率[1]。这些过程涉及许多设计参数,需要考虑一个并发的方式。由电脑辅助的注塑模的模具设计已经由全球多个作者集中相当长的一段时间。不同的作者开发的程序系统,帮助工程师设计零件、模具、选择注塑参数。在过去的十年中,许多作者已经开发出计算机辅助设计/计算机辅助工程(CAD / CAE)塑料注塑成型的模具设计系统。 Jong等人[2] 利用Pro / E开发了一个协同集成设计系统和模具设计基于web的CAD模具。Low等人[3]开发了初步设计注塑模具 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 化的应用程序。该系统能够基于标准模板来选择和管理模具,但不提供模具和注塑计算。作者提出了一种 规范 编程规范下载gsp规范下载钢格栅规范下载警徽规范下载建设厅规范下载 塑料注塑模具的模腔布局设计系统的方法,这样就只有标准腔布局可以使用。当使用标准的布局,它们的布局配置可以容易地存储在一个数据库中。林等人[4,5]描述了一种功能特性,使用最少的一组初始信息的基础上的3D绘图模具结构设计系统。此外,它也适用于灵活分配在功能特征之前完成绘图模具的主要部分的固体模型的设计。本设计系统包括模具零件的选择和模块的计算,使用Pro / E模块、Pro / 程序的和Pro / 工具包,并由模具选择,修改和设计的模块组成。邓等人[6,7]分析了CAD / CAE一体化的发展,分析了系统和数值模拟的注塑成型和模具设计的CAD和CAE系统之间的整合问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 。并提出了由大量CAD / CAE功能组成的功能本体。此功能不仅代表着塑料零件的几何信息,而且还代表这设计意图是面向分析。部分功能包含塑料部件产品的整体信息,表面特性,开发性能(如倒角,筋,板,孔等),其中包含分析相关的设计信息和子功能的处理功能。表面和发展的特性是所谓的“组件功能”。God等[8,9]人开发了用于 22 模具设计及注塑成型工艺参数的计算的CAE系统。该系统是基于形态学矩阵和决策图。该系统用于热,流变学和机械计算,和物质基础管理, 图1塑料产品的集成注塑模具设计系统的一般结构 但没有与商业CAx软件整合。黄等人[10]开发了注塑成型的模架设计系统。他们所使用的数据库为特定的参数和基本特征。该系统采用Pro / E为数据库组件建模。孔等人[11]开发的 23 了一个参数化三维塑料注射模具设计系统集成在可靠的作品中。其他以此知识为基础的系统,如,IMOLD,ESMOLD,IKMOULD,和IKBMOULD,已经用于注塑模具的设计。 IMOLD模具设 计划 项目进度计划表范例计划下载计划下载计划下载课程教学计划下载 分成四个主要步骤,分型面的设计,效果设计,流道系统的设计和模架设计。该软件使用了以CAD系统为基础知识,提供一个互动的环境,帮助设计师快速完成模具设计,提高模具设计过程中的标准化。IKB-MOULD应用程序由数据库和模具制造基础知识组成。 Lou等人[12]开发了一个设计模架的基于集成技术为基础的系统。该系统具有印象计算,尺寸计算,计算模具板数和注塑机的选择的模块。该系统使用Pro /模架库。本文介绍了KBS和关键技术,如产品造型,帧规则方法,CBS,和智能网络。一个经过训练的多功能智能网络可以反向传播BP。该神经网络采用的长度,宽度,高度和模具零件数作为输入和九个参数(长度,宽度,和设定的最高和最低高度,模架侧壁厚,底部板芯的厚度,和腔板)作为输出。莫等人[13,14]开发了一种用于注射模具的智能协同KBS。莫等人[15]开发了一种有效的再用和检索系统,可以使用一个简单的图形用户界面注册为蓝本的标准件,即使设计人员可能不知道登记的数据库的规则。模具设计系统的开发利用开放的API和商业CAD /计算机辅助 / CAE解决 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 。该系统应用于现代重工的模架和模具零件的标准化。本系统制造(CAM) 采用的设计编辑的方法,它实现了主模型使用的功能。所开发的系统方法,使设计人员可以注册主模型,它被定义为一个3D 的功能CAD,标准件,有效地使用标准件,即使他们没有意识到数据库的规则。 Todic等人[16]开发了一个解决自动规划制造注塑模具方案的软件。这CAD / CAPP / CAM 系统不提供CAE计算的注塑成型和模具设计的参数。 maican等人[17]利用CAE计算力学,热学和流变。他们分析了塑料材料的物理,机械和热性能。他们定义的负载零件的关键参数。 Nardin等人[18]试图开发满足注塑成型选择所有需求的模具零件的技术系统。仿真结果包括几何和制造业数据。在模拟结果的基础上,零件设计师可以优化零件的几何形状,而模具设计师可以优化模具的流道和冷却系统。作者开发了一个程序,它可以帮助程序员的注塑机模拟数据直接传输到机器。 Zhou等人[1]开发了一个基于数值模拟的虚拟的注塑成型系统。 Ma等人[19] 采用面向对象的方法制定了塑料注塑模具设计的标准组件库。这是面向制定模具库定义机械部件的参数。他们开发了一个面向对象的模具组件库模型,将不同的几何拓扑结构和非几何信息结合。多年来,许多研究人员都试图全自动化 24 图2注射模数值模拟成型工艺结构模块 25 图3种形式来定义模具的几何形状 模具设计过程通过使用各种工程基础知识(KBE)的方法,如基于规则的推理(RBR)和案例库(CBR)和参数化设计模板(PDT)。陈等人[20]研制了三维CAD知识为基础的辅助注塑模具设计系统(IKB模具)。在他们的研究中,设计规则和模具设计得到了经验丰富的模具设计师和手册的专业知识,这些知识是各种传统的知识获取过程。传统的KBE的方法,如CBR,RBR,和简单的PDT已成功地应用到一个产品模具的模腔和流道布局的自动化设计中。 叶等人[21]提出了一种基于特征和面向对象的分层表示和简化的模具的自动化装配成型的象征几何法。前面提到的各种系统的分析表明,用不同的方式来解决模具设计的问题,通过减少模具问题来使模具成型(选择器)。他们使用CAD / CAE集成创建选择模架的精确的规则。许多作者采用CAE系统的注塑成型的数值模拟来定义注塑成型参数。还开发了原来的CAE模块,模具及注塑成型工艺计算。然而,所有前面提到的系统是共同的缺少模具和注塑参数计算,这将允许的数值模拟的结果整合模块。这导致的结论是,有必要建立一个软件系统,整合集成注射成型的参数和注塑模的数字模拟计算得到的结果,模具的计算,和选择。所有这一切都将被集成到CAD / CAE集成的塑料制品的注塑模具设计系统。 26 图 4 以确定表格中的冷却通道与模腔之间的距离 图5 模架的选择形式 2 CAD / CAE集成系统的结构 众所周知,不同的计算方法支持不同模具设计系统,各种创始人使用设计自动化技术,如KBE(RBR,CBR,PDT)的优化设计技术,如传统的(NLP,LP,BB,GBA,IR,HR)元启发式搜索(TS,SA,GA)等特殊技术(如SPA,AR,ED)。 所开发的交互式软件系统使分析零件的设计和仿真模型设计3D建模,数值模拟的注塑,模具设计与所需的计算成为可以执行的部分。 该系统由四个基本模块: ?CAD创建零件模块 ?注塑成型的数值模拟过程模块 27 图6机械模具计算表 ?注塑成型参数的计算和模具的设计计算和选择模块 ?模具造型(型芯和型腔设计和所剩余的模具组件设计)模块 塑料制品的注塑模具集成设计系统的一般结构于图1所示。 2.1 CAD零件造型模块(模块I) 该CAD零件造型模块是第一个内集成的CAD / CAE系统模块。此模块用于塑料件的CAD造型和适当的仿真模型。该塑料零件的实体模型模块的结果提供所有必要的几何形状和精度指标。精度指标有:项目名称,数量,特征识别,特征名称,基准点的位置,模拟退火码数,贸易材料名称,材料牌号,零件公差,机械规范(名称,锁模力,最大的压力,工作尺寸件),和模腔的数目。如果产品几何形状和精度规范是给定的,同样用作输入到下一个模块,而这个模块仅用于生成仿真模型。 2.2数值模拟的注塑成型工艺模块(模块II) 模块二是用于数值模拟的注塑成型过程。用户实现了一个用于迭代模拟程序来确定模具的注射成型能力参数和仿真模型规范。这个模块的结构见图2。 在一个产品模型导入和聚合物选自塑料材料数据库后,用户选择最佳位置控制子系统。该数 28 据库包含塑料材料的流变性能,热性能和机械性能。用户定义的注射成型的参数和挑选控制子系统的位置。进一步的分析塑性流动,填充时间,注射压力,压力降,流动前沿温度,焊接线的存在与否,透气性,冷却质量等 该模块提供了四个不同类型的模流分析。每个分析旨在解决特定的问题: ?零件分析——该分析用测试已知的浇口位置,材料,和零件的几何形状,来查证零件具有的可接受的加工条件。 ?浇口分析——此分析测试多个浇口位置和比较分析输出,以确定最佳的浇口位置。 ?缩痕分析——此分析发现缩痕的位置和深度,以解决美观问题。从而在模具检测前消除模塑商和客户之间可能出现的质量纠纷的问题。 最重要的参数如下所示:[22] ?零件厚度 ?流动长度 ?半径和草图, ?厚度的转换 ?零件材料 ?浇口位置 ?浇口数量 ?模具温度 ?熔体温度 ?注射压力 ?注塑机最大压力 除了前面提到的注射成型参数,该模块还显示以下的仿真结果:焊接线的位置,排气,注塑压力的分布,剪切应力 29 图7 部分力学计算算法 分布,仿真模型的表面上的温度分布,填充一个仿真模型,一个从冷却的观点来看的仿真模型的质量,和注塑成型时间[22,23]。该模块的输出结果是下一个模块的输入数据。这些输出结果是:材料等级和材料供应商,在流动方向上的弹性模量,横向方向上的弹性模量,注射压力,喷射温度,模具温度,熔融温度,热塑性塑料的最高熔融温度,热塑性在液体和固体状态下的密度,和注塑机的最大压力。在实施过程中的迭代SA过程,用户定义的成形性仿真模型和参数的注塑成型。所有的结果都由仿真模型的区域中的不同颜色表示。 2.3注塑成型参数计算和模具的设计计算和选择模块(模块III) 该模块用于分析计算,模具大小,及其选择。用于确定的型芯和型腔模板的两个尺寸的更多的形式见图3。 基于仿真模型尺寸和夹紧力(图3)用户选择模具材料和系统计算的型芯和型腔模板的 30 宽度和长度。模具型腔与冷却通道之间的壁厚可以计算出以下三个标准:允许的剪切应力标准,许用弯曲应力的标准,和允许的角度等温线的标准见图4 [22,24]。该系统采用的与前面提到的标准计算出的壁厚值比较中的最大值。 图8标准模板选择 图9模板模型生成表 基于仿真模型的几何形状,用户选择的形状和模具类型。模具形状,类型,和子系统的选择见图5。一旦这些步骤完成后,使用者完成了规范的模具热,流变和力学计算。图6为计算机械模具的几种形式之一。 31 力学计算的部分算法见图中7。 其中, ?FMAX模腔板最大弯曲 ?fdop模腔板允许位移 ?ε弹性变形 ?αmin最小收缩率 ?Ek模腔板的弹性模量 ?G剪切模量 ?SK模腔和分模线之间的距离测量 ?DKT冷却通道直径 在热学,流变学,力学计算后,用户从模架选择模板。选择标准模板的形式见图8。该系统计算出竖板的,固定的和可动的模板厚度的值(图8)。基于所计算出的尺寸的,系统会自动采用的第一个主要的竖板的,可动和固定模板的厚度的标准值。厚度计算和标准值的 。 采用见图8 互动系统推荐所需的模板。该模块尺寸从数据库加载并生成一个实体模型板。模板选择后,该板自动标准尺寸,分配材料板, 图10结构模块IV 并按需要生成的3D模型和2D技术图纸。模具组件的尺寸(例如,固定板)显示在模板模式生成的表单中,见图9。 模架决定系统加载模板尺寸。通过这种方式,加载任何其他组成模具子组件的必要的标准模板。模具模型的子组件的实例模板见图10 接下来加载其他组件子系统,如图5所示。选择其他组件子系统包括螺栓和垫圈。组件 32 选择的方式是根据设计者和公司“DME”[25,26]制定的生产规则。 2.4模具造型(型芯和型腔设计和所有剩余的模具组件设计,模块IV)模块 该模块用于模具(型芯和型腔设计)的CAD造型。此模块使用额外的软件工具自动制造型芯和型腔,从仿真模型(参考)包括塑料材料和自动化分裂模具体积的固定和可动板的收缩因子。这个模块的结构如图11所示。 这个模块的其他功能的软件工具包括: ?应用于塑料零件设计相应的收缩,几何形状,和成形条件,用于数值模拟的计算模块。 ?使概念上的CAD模型用于非标准模板和模具组件 ?设计印象,嵌入,型芯,滑块和其他组件,定义成型零件的形状 ?用标准组件装配模具,如新开发的模架,由DME模架和使用这个系统的企业的模架组成,CAD建模顶针,螺丝,和其他组件创建相应的通孔 ?创建流道和水纹,尺寸计算模块,用于注塑成型和模具的设计计算和选择参数的计算 ?检查在开模时组件的干扰和检查拔模曲面 经过尺寸和模具组件的选择,用户加载(型芯)固定和可移动板(型腔)的三维模型。在前面模块计算的几何模具的说明,自动集成到此模块中,以允许它生成最终的模具组件。此模块的输出接收到的完整的模具装配模型,如图15所示。 33 图11模具的子装配模型 34 图12 测试产品的CAD模型 这个模块允许不标准模具和标准的模具组件,不包含在模架在内。。 3案例研究 用于塑料产品的CAD / CAE集成注塑模具设计系统的的完整理论框架,在前面的章节中已经提到。为了完成这项检讨,该系统用一个真实的案例研究进行完全测试。该系统用类似的塑料零件的几个例子进行了测试。基于模型的一般结构的CAD / CAE集成设计系统如图上1所示,设计者用一些具体的例子测试了该系统。用于验证塑料零件的测试模型的实例之一如图12所示。 此模块为注塑成型过程中进行数值模拟定义设浇口子系统的最佳位置。深蓝色区域表示作为在图13所示的为设置浇口子系统的最佳位置。 在此案例中产品的尺寸,形状,材料(图11),最优浇口子系统的位置(图13),和注塑参数(表1)的基础上,生成的仿真模型如图14所示。 用于定义数值模拟的浇口仿真模型的规则之一: 如果(通道流道,塑料材料,质量)那么预测尺寸(上部的通道,长度,直径1,直径2,半径,角度等) 用于在模块III的部分来自模块II的输出结果如表1所示。 35 图13零件中浇口子系统的最佳位置 表1注射数值模拟成型工艺模块输出的零件结果 材料等级和材料供应商 丙烯腈-丁二烯-苯乙烯780(ABS 780) 锦湖化工股份有限公司 最大注射压力 100兆帕 模具温度 60?C ili40 熔体温度 230?C 注射时间 0, 39 S,0,2 S 注射压力 27,93兆帕 建议的脱模温度 79?C ABS 780的弹性模量的弹性在流动方向 2600兆帕 ABS 780的弹性模量在横向方向上 2600兆帕 ABS 780在所有方向比率 0.38 ABS 780的剪切模量 942兆帕 在液体状态下的密度 0.94032 G/CM3 在固体状态下的密度 1.047 G/CM3 在模块III,系统将计算夹紧力F = 27.9千牛顿(图3),冷却通道直径DKT = 6毫米,冷却通道长度lKT090毫米(图4)。被选定为给定的形状和尺寸的仿真模型,正方形的形状的模具与正常的性能如图5所示。选择模具装配标准系列:1,616,模具外形长度和宽度为156×156毫米如图8所示。在计算部分如图8所示,模具设计系统小组建议采取如下的模 36 板: ?顶部夹紧板N03-1616-20 ?底部夹紧板N04-1616-20 ?固定模板(核心板)N10A-1616年至1636年 1616年至1636年 ?活动板(腔板)N10B- ?支撑板N20-1616-26 ?竖板N30-1616年至1646年 ?顶出固定板N40-1616-10 ?推板N50-1616-12 完成固定和可移动的模具板的CAD建模芯和模腔板,冷却通道后,然后通过手动选择其他模具的标准元件,如浇口套,定位环,导向销,导筒,导柱导套,垫片,螺钉(M4×10,M10×100,M10×30,M6×16,M10×30,等)和非标准模具建模组件(如果有的话)顶针,顶出孔,插销等。一个完整的模具组件与测试仿真模型如图15所示。 图14塑料零件的仿真模型 37 图15模型的模具组件与测试仿真模型 4总结 本研究的目的是开发一个模具设计的CAD / CAE集成系统,它是基于Pro / ENGINEER系统,并使用专门设计和开发的模具设计模块。本文提出了一种软件解决成型多个型腔成型相同的零件的方案,即所谓的一个产品模具的多型腔模具。该系统是专门用来设计正常类型模具的产品,其长度和宽度基本上大于产品的高度,即,该系统用来满足模具制造商定制的特殊要求。所提出的系统可以完全方便,快速的控制CAD / CAE功能参数模具修改。所描述的CAD / CAE模块基于特征,参数化,实体模型的基础上,面向对象。注塑成型数值模拟的模块可以准确的选择注射成型工艺参数。该模块提高了注射成型工艺与模具设计计算和选择参数的计算更快,减少了模具的设计错误,并提供所需的完整的模具设计的几何和精度信息。模具设计师通过互动模块可以访问系统的知识基础,使自己的智慧和经验的也可纳入完整的模具设计。零件制造确认开发的CAD / CAE系统提供了正确的结果,并证明是这一个自信的 38 软件工具。 未来的研究将针对三个主要目标。首先是开发一个自动化模具设计的系统。研究的另一个方向是与CAPP系统集成研究塑料注射模具制造科学技术。最后,在这方面目前的趋势,一个利用网络技术和黑箱结构的协作系统应该设计和实施。 39
本文档为【塑料模具毕业外文文献翻译、塑料制品的CADCAE集成的注塑模具设计系统外文翻译、中英文翻译】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_751406
暂无简介~
格式:doc
大小:598KB
软件:Word
页数:47
分类:生产制造
上传时间:2017-09-28
浏览量:216