首页 普通化学知识点总结全

普通化学知识点总结全

举报
开通vip

普通化学知识点总结全普通化学复习资料3.1物质的结构与物质的状态1.核外电子的运动特性核外电子运动具有能量量子化、波粒二象性和统计性的特征,不能用经典的牛顿力学来描述核外电子的运动状态。2.核外电子的运动规律的描述由于微观粒子具有波的特性,所以在量子力学中用波函数Ψ来描述核外电子的运动状态,以代替经典力学中的原子轨道概念。(1)波函数Ψ(原子轨道):用空间坐标来描写波的数学函数式,以表征原子中电子的运动状态。一个确定的波函数Ψ,称为一个原子轨道。(2)概率密度(几率密度):Ψ2表示微观粒子在空间某位置单...

普通化学知识点总结全
普通化学复习资料3.1物质的结构与物质的状态1.核外电子的运动特性核外电子运动具有能量量子化、波粒二象性和统计性的特征,不能用经典的牛顿力学来描述核外电子的运动状态。2.核外电子的运动规律的描述由于微观粒子具有波的特性,所以在量子力学中用波函数Ψ来描述核外电子的运动状态,以代替经典力学中的原子轨道概念。(1)波函数Ψ(原子轨道):用空间坐标来描写波的数学函数式,以表征原子中电子的运动状态。一个确定的波函数Ψ,称为一个原子轨道。(2)概率密度(几率密度):Ψ2表示微观粒子在空间某位置单位体积内出现的概率即概率密度。(3)电子云:用黑点疏密的程度描述原子核外电子出现的概率密度(Ψ2)分布规律的图形。黑点较密的地方,表示电子出现的概率密度较大,单位体积内电子出现的机会较多。(4)四个量子数:波函数Ψ三个量子数取值相互制约:1)主量子数n的物理意义:n的取值:n=1,2,3,4……∞,意义:表示核外的电子层数并确定电子到核的平均距离;确定单电子原子的电子运动的能量。n=1,2,3,4,……∞,对应于电子层K,L,M,N,···具有相同n值的原子轨道称为处于同一电子层。2)角量子数ι:ι的取值:受n的限制,ι=0,1,2……n-1(n个)。意义:表示亚层,确定原子轨道的形状;对于多电子原子,与n共同确定原子轨道的能量。…ι的取值:1,2,3,4电子亚层:s,p,d,f……轨道形状:球形纺锤形梅花形复杂图3-13)磁量子数m:m的取值:受ι的限制,m=0,±1,±2……±ι(2ι+1个)。意义:确定原子轨道的空间取向。ι=0,m=0,s轨道空间取向为1;ι=1,m=0,±1,p轨道空间取向为3;ι=2,m=0,±1,±2,d轨道空间取向为5;……n,ι相同的轨道称为等价轨道。s轨道有1个等价轨道,表示为:p轨道有3个等价轨道,表示为:d轨道有5个等价轨道,表示为:……一个原子轨道是指n、ι、m三种量子数都具有一定数值时的一个波函数Ψ(n,ι,m),例如Ψ(1,0,0)代表基态氢原子的波函数。n、ι、m取值合理才能确定一个存在的波函数,亦即确定电子运动的一个轨道。n、ι、m的取值与波函数:n=1(1个),ι=0,m=0,Ψ(1,0,0)n=2(4个),ι={n=3(9个),ι={n=4(16个)……波函数Ψ数目=n2在一个确定的原子轨道下,电子自身还有两种不同的运动状态,这由mS确定.4)自旋量子数ms:ms的取值:ms={意义:代表电子自身两种不同的运动状态(习惯以顺、逆自旋两个方向形容这两种不同的运动状态,可用↑↑表示自旋平行,↑↓表示自旋反平行。这样n、ι、m、mS四个量子数确定电子的一个完整的运动状态,以Ψ(n,ι,m,mS)表示。例:Ψ(1,0,0,+),Ψ(1,0,0,-),Ψ(2,1,1,+),Ψ(2,1,1,-)等等。3.原子核外电子分布三原则(1)泡利不相容原理:一个原子中不可能有四个量子数完全相同的两个电子.因为同一个轨道的电子,n、ι、m三个量子数已相同,第四个量子数ms={必不相同由此可得出:一个原子轨道中最多能容纳自旋方向相反的两个电子。表示为: ↑↓根据每层有n2个轨道,每个轨道最多能容纳两个电子,由此可得出每一层电子的最大容量为2n2。(2)最低能量原理:电子总是尽先占据能量最低的轨道。电子依据轨道近似能级图由低到高依次排布。轨道近似能级图为:7s……6s4f5d6p5s4d5p4s3d4p3s3p2s2p1s↑↑↑↑(3)洪特规则:在n和ι值都相同的等价轨道中,电子总是尽可能分占各个轨道且自旋平行。如2p3:洪特规则特例:当电子的分布处于全充满、半充满或全空时,比较稳定。全充满:p6或d10或f14半充满:p3或d5或f7全空:p0或d0或f0例如,24Cr1S22S22P63S23P63d54S1,半充满比较稳定。29Cu1S22S22P63S23P63d104S1,全充满比较稳定。(4)核外电子分布式:原子的核外原子的离子的核外离子的电子分布式外层电子分布式电子分布式外层电子分布式(价电子构型)1s22s22p63s13s1Na+:1s22s22p62s22p61s22s22p63s23p43s23p4S2-:1s22s22p63s23p63s23p61s22s22p63s23p63d64S23d64s2Fe3+:1s22s22p63s23p63d53s23p63d524Cr1S22S22P63S23P63d54S13d54S124Cr3+:1S22S22P63S23P63d33S23P63d329Cu1S22S22P63S23P63d104S13d104S129Cu2+:1S22S22P63S23P63d93S23P63d9根据电子的排布,还可判断出轨道中未成对电子的数目。例:根据Fe原子的价电子构型3d64s2,判断其轨道图中,未配对的电子数。↑↓↑↑↑↑↑↓3d64s2可见未成对电子数为4。(3)原子、离子的电子式及分子结构式电子式:在元素符号周围用小黑点(或×)来表示原子或离子的最外层电子的式子。例如:H.Na..Mg..Ca.:C:分子结构式:用“—”代表一对共用电子对的分子式。例如:N≡N,O=C=O,Cl-Cl,H—Cl1.理想气体状态方程PV=nRT式中P:压力,Pa;(1atm=1.01×105Pa;1atm=760毫米汞柱)V:体积,m3;(1m3=103L)T:绝对温度,K;n:摩尔数,mol;R:气体常数,R=8.314JK-1mol-1注意:若压力单位为“kPa”,体积单位对应使用升“L”.⑴当n一定时,P、V、T变则有⑵n,T一定时,P1V1=P2V2⑶n,P一定时,⑷T,P一定时,⑸PV=,ρ=,P=,M=式中m:质量,克;M:摩尔质量,g/mol;ρ:气体密度,g/m3;实际气体在高温低压下,接近理想气体。例1:已知在1.0×105Pa,27OC时,0.6克的某气体占0.5升,试求此气体的分子量.解:m=0.6g,T=273+27=300K,V=0.5升=0.5×10-3m3,据理想气体状态方程M=例2.已知10OC时,水的蒸汽压为1.227kPa,在10OC、101。3kPa下,于水面上收集到1.5L某气体,则该气体的物质量为多少mol?解:2.分压定律⑴分压:气体混合物中每一种气体的压力,等于该气体单独占有与混合气体相同体积时所产生的压力。⑵道尔顿分压定律:适于各组分互不反应的理想气体。1)气体混合物总压力等于混合物中各组分气体分压的总和。P总=PA+PB+……2)混合气体中某组分气体的分压,等于总压力乘以该组分气体的摩尔分数。Pi==χiP总PA=分压定律可用来计算混合气体中组份气体的分压、摩尔数或在给定条件下的体积。例:有一混合气体(N2、CO2、O2)其总压力为101.325kPa,此气体的组成为:N225%、CO215%、O260%(体积百分比),试计算混合气体中各组分的分压。解:PN2=P总×摩尔分数=P总×体积分数=101.325×25%=25.33kPa;PCO2=101.325×15%=15.20kPa;PO2=101.325×60%=60.80kPa;1.质量分数(%)=%2.物质的量浓度(C)=,mol.dm-33.质量摩尔浓度(m)=,mol.kg-14.摩尔分数(x)=1.溶液的蒸汽压下降(1)蒸汽压(饱和蒸汽压)P0:在一定温度下,液体和它的蒸汽处于平衡时,蒸汽所具有的压力。试验现象:一封闭钟罩中放一杯纯水A和一杯糖水B,静止足够长时间发现,A杯变成空杯,B杯中水满后溢出。此试验证明:溶液的蒸汽压总是低于纯溶剂的蒸汽压,其差值称为溶液的蒸汽压下降(ΔP)。2)拉乌尔定律:在一定温度下,难挥发的非电解质稀溶液的蒸汽压下降(ΔP)和溶质(B)的摩尔分数成正比。ΔP=(2)溶液的的沸点上升和凝固点下降1)沸点:液相的蒸汽压等于外界压力时的温度。2)凝固点:液向蒸汽压和固相蒸汽压相等时的温度。3)汽化热:恒温恒压下,液态物质吸热汽化成气态,所吸收的热量称为汽化热。试验证明:溶液的沸点总是高于纯溶剂的沸点;溶液的凝固点总是低于纯溶剂的凝固点。利用凝固点下降的原理,冬天可在水箱中加入乙二醇作为防冻剂。4)拉乌尔定律:难挥发非电解质稀溶液的沸点上升(ΔTb)和凝固点下降(ΔTf)与溶液的质量摩尔浓度(m)成正比。ΔTb=kbmΔTf=kfmkb:溶剂的摩尔沸点上升常数;kf:溶剂的摩尔凝固点下降常数.拉乌尔定律可用来计算溶液的沸点、凝固点或溶质的摩尔质量。例:将18.0g葡萄糖C6H12O6溶于100.0g水中,计算此溶液的凝固点和沸点。解:葡萄糖的摩尔质量为180.0g,其质量摩尔数浓度为:;水的摩尔沸点上升常数kb=0.52ΔTb=kbm=0.52×1.000=0.52OC;因此溶液的沸点为:100+0.52=100.52OC;水的凝固点下降常数kf=1.85,ΔTf=kfm=1.85×1.000=1.85OC;因此溶液的凝固点为:0-1.85=-1.85OC;(3)渗透压1)半透膜:动物的肠衣、细胞膜、膀胱膜等只允许溶剂分子透过,而不允许溶质分子(或离子)透过的膜称半透膜.2)渗透现象:溶剂透过半透膜而浸入溶液的现象.若在溶液的液面上施加一定的压力,则可阻止溶剂的渗透.为了使渗透停止必须向溶液液面施加一定的压力.3)渗透压(π):为维持被半透膜所隔开的溶液与纯溶剂之间的渗透平衡而需要的额外压力。4)渗透压的规律:当温度一定时,稀溶液的渗透压和溶液的摩尔浓度c成正比;当浓度一定时,稀溶液的渗透压π和温度T成正比。πv=nRTπ=cRT渗透压的规律可用来计算溶液的渗透压和溶质的摩尔质量。溶液的蒸汽压下降、沸点上升、凝固点下降和渗透压这些性质,与溶质的本性无关,只与溶液中溶质的粒子数有关,称为溶液的依数性。(4)说明:电解质溶液,或者浓度较大的溶液也与非电解质稀溶液一样具有溶液蒸汽压下降、沸点上升、凝固点下降和渗透压等依数性.但是,稀溶液定律所表达的这些依数性与溶液浓度的定量关系不适用于浓溶液和电解质溶液。对于电解质稀溶液,蒸汽压下降、沸点上升、凝固点下降和渗透压的数值都比同浓度的非电解质稀溶液的相应数值要大。对同浓度的溶液来说,沸点高低或渗透压大小顺序为:1)A2B或AB2型强电解质溶液>AB型强电解质溶液>弱电解质溶液>非电解质溶液对同浓度的溶液来说,蒸汽压或凝固点的顺序正好相反:2)A2B或AB2型强电解质溶液<AB型强电解质溶液<弱电解质溶液<非电解质溶液例1,将质量摩尔浓度均为0.10mol·kg-1的BaCl2,HCl,HAc,蔗糖水溶液的粒子数、蒸气压、沸点、凝固点和渗透压按从大到小次序排序:解:按从大到小次序排序如下:粒子数:BaCl2→HCl→HAc→蔗糖蒸气压:蔗糖→HAc→HCl→BaCl2沸点:BaCl2→HCl→HAc→蔗糖凝固点:蔗糖→HAc→HCl→BaCl2渗透压:BaCl2→HCl→HAc→蔗糖例2,下列水溶液蒸气压及凝固点的高低顺序为:0.1molkg-1蔗糖﹥0.1molkg-1HAc﹥0.1molkg-1NaCl﹥0.1molkg-1CaCl21.水的电离平衡:H2O(ι)=====H+(aq)+OH-(aq)(1)水的离子积:KwW=wC(H+)·C(OH-)250CKwW=1.0×10-14-3HCl溶液中,C(H+-3,C(H+)·C(OH-)=KwWC(OH-)=(2)pH值:pH=-lg{C(H)},pOH=-lg{C(OH)},pH+pOH=14-3HCl溶液,pH=1,pOH=14-1=132.酸碱质子理论(1)酸:凡能给出H+的物质称为酸。(2)碱:凡能接受H+的物质称为碱。一个酸给出质子变为其共轭碱,一个碱给出质子变为其共轭酸.HA =====H++ A-共轭酸共轭碱例如,共轭酸碱对:HAc—NaAc、HF—NH4F、NH4Cl—NH3、H2CO3—HCO3-、HCO3-—CO32-、H2PO4-—HPO42-等。有的物质既可作为酸给出质子,又可作为碱得到质子,因此具有两性。如,HCO3-、H2PO4-、HPO42-等。3.一元弱酸的解离平衡:如,HAc(aq)=====H+(aq)+Ac-(aq)弱酸的解离常数:Ka=若弱酸比较弱,Ka<10-4则:ceq(H+)≈;解离度α=×100%,ceq(H+)=cα;HAc(aq)=====H+(aq)+Ac-(aq)平衡浓度/mol·dm-3c-cαcαcα若弱酸比较弱,Ka≈cα2α≈…….称溶液的稀释定律说明:(1)Ka越大则酸性越强。Ka只与温度有关,在一定温度下,Ka为一常数,Ka不随浓度变化而变。(2)在一定的温度下,解离度α大小可随浓度c而变,溶液稀释时,浓度c下降,则解离度α升高;(3)稀释虽然增加了解离度,但由于体积增大,总浓度却减少,一般,解离度增大的程度比浓度减少的程度要小的多,因此总的说来,溶液稀释,H+降低.例1.求-3HAc溶液的PH值。(Ka=1.8×10-5)解:ceq(H+)≈=pH=2.88例2.某温度时,-3HCN的电离度为0.010%,则该温度时,HCN的解离常数Ka是多少?解:Ka=cα2=0.100×(0.010%)2=1.00×10-94.一元弱碱的解离平衡:如,NH3(aq)+H2O(ι)=====NH4+(aq)+OH-(aq)弱碱的解离常数:Kb=若弱碱比较弱,Kb<10-4则:Ceq(OH-)≈Ceq(H+)=例:求-3氨水溶液的PH值。(Kb=1.8×10-5)解:Ceq(OH-)≈=Ceq(H+)==PH=11.135.多元弱酸解离平衡:多元弱酸碱二级解离往往比一级解离弱得多,可近似按一级解离处理。如,H2S(aq)=H+(aq)+HS-(aq),Ka1=9.1×10-8HS-(aq)=H+(aq)+S2-(aq),Ka2=1.1×10-12Ka1>>Ka2,忽略二级解离,按一级解离处理:ceq(H+)≈ 因ceq(H+)≈ceq(HS-),根据二级解离平衡,故ceq(S2-)≈Ka26.盐类水解平衡及溶液的酸碱性(1)强碱弱酸盐的水解:强碱弱酸盐水解生成弱酸和强碱,溶液呈碱性。例如NaAc水解:Ac-+H2O=HAc+OH-(2)强酸弱碱盐的水解:强酸弱碱盐水解生成弱碱和强酸,溶液呈酸性。例如NH4Cl水解:NH4++H2O=NH3.H2O+H+(3)弱酸弱碱盐水解:水解生成弱酸和弱碱,溶液酸碱性视弱酸Ka和弱碱Kb相对强弱大小。例如NH4Ac水解溶液呈中性:NH4Ac+H2O=NH3.H2O+HAc(4)强酸强碱盐水解:溶液呈中性。如NaCl溶液,pH=7。7.缓冲溶液(1)同离子效应:在弱电解质溶液中,加入与弱电解质具有相同离子的强电解质,使弱电解质的解离度降低,这种现象叫做同离子效应。在弱酸的溶液中,加入该酸的共轭碱,或在弱碱的溶液中加入该碱的共轭酸,则弱酸或弱碱解离度降低。例如,在HAc溶液中加入NaAc,使HAc解离平衡向左移动,即HAc(aq)=====H+(aq)+AC-(aq)←AC-(加入NaAc),从而使HAc解离度α降低(解离常数Ka不变),H+浓度降低,溶液pH值升高。同理,在氨水溶液中加入氯化铵,增加NH4+浓度,使氨水解离度降低,OH-降低,溶液pH值升高。溶液pH值降低。(2)缓冲溶液:由弱酸及其共轭碱(如,弱酸与弱酸盐)或弱碱及其共轭酸(如,弱碱与弱碱盐)所组成的溶液,能抵抗外加少量强酸、强碱或稍加稀释而使本身溶液pH值基本保持不变,这种对酸和碱具有缓冲作用的溶液称缓冲溶液。说明:缓冲溶液的缓冲能力是有限的,当加入大量的酸碱时,溶液的pH值将发生变化.3)缓冲溶液种类:a.弱酸-弱酸盐:如HAc-NaAc,HF-NH4F;过量的弱酸和强碱.如过量的HAc和NaOH混合,反应后,过剩的HAc和生成的NaAc组成缓冲溶液。b.弱碱-弱碱盐:如NH3-NH4Cl;过量的弱碱和强酸.如过量的NH3.H2O和HCl混合,反应后,过剩的NH3和生成的NH4Cl组成缓冲溶液。。c.多元酸-酸式盐,多元酸的两种不同的酸式盐:如H2CO3-NaHCO3,NaHCO3-Na2CO3;NaH2PO4-Na2HPO4.4)缓冲溶液pH值计算:=,其中,pKa=-lgKa;,pKb=-lgKb例1.将100ml0.20mol.dm-3HAc和50ml 0.20mol.dm-3NaAc混合,求混合后溶液pH值.已知HAc的解离常数Ka=1.76×10-5解:混合后:-3HAc和50ml 0.20mol.dm-3NaOH混合,求混合后溶液pH值.已知HAc的解离常数Ka=1.76×10-5解:混合后,剩余HAc浓度为:HAc和NaOH反应后生成的NaAc浓度为:例3.将100ml0.20mol.dm-3NH3和50ml 0.20mol.dm-3NH4Cl混合,求混合后溶液pH值.已知NH3的解离常数Kb=1.76×10-5解:混合后:例4.将100ml0.20mol.dm-3NH3和50ml 0.20mol.dm-3NaOH混合,求混合后溶液pH值.已知NH3的解离常数Kb=1.76×10-5解:混合后,剩余NH3浓度为:NH3和NaOH反应后生成的NH4Cl浓度为:(4)缓冲溶液的配制:当组成缓冲溶液的共轭酸碱对的浓度相当时,即当Ca=Cb时,缓冲溶液缓冲能力最大,此时pH=pKa,此即为选择缓冲溶液的原则。例如,配制pH=5左右的缓冲溶液,可选HAc—NaAc混合溶液(pKa=4.74);配制pH=9左右的缓冲溶液,可选NH3—NH4Cl混合溶液(pKa=9.26);配制pH=7左右的缓冲溶液,可选NaH2PO4—Na2HPO4混合溶液(pKa2=7.20)。一般认为,当缓冲对的浓度比在0.1和10之间才具有缓冲作用,缓冲溶液的缓冲范围:pH=pKa±11.难溶电解质的沉淀溶解平衡难溶电解质的沉淀溶解平衡:AnBm(s)==nAm+(aq)+mBn-(aq)(1)溶度积(常数):Ksp(AnBm)={ceq(Am+)}n{ceq(Bn-)}m溶度积Ksp在一定温度下为一常数.如,AgCl(s)=====Ag+(aq)+Cl-(aq)25oC,KSP(AgCl)={ceq(Ag+)}.{ceq(Cl-)}=1.77×10-7KSP(CaF2)=ceq(Ca2+).{ceq(F-)}2=3.4×10-11KSP{Mg(OH)2}=ceq(Mg2+).{ceq(OH-)}2=1.8×10-11(2)溶解度s(mol.dm-3)与溶度积Ksp的关系:1)溶解度s:每dm3水溶液中含溶质的摩尔数,mol.dm-3。2)溶解度s与溶度积Ksp的关系:对于AB型沉淀:如AgCl、AgBr、AgI、CaCO3、CaSO4等。CaCO3(s)=Ca2+(aq)+CO32-(aq)平衡浓度/mol·dm-3ssKsp(CaCO3)=s2,s=对于A2B或AB2型沉淀:如Ag2CrO4,Mg(OH)2等。Ag2CrO4(s)=2Ag+(aq)+CrO42-(aq)平衡浓度/mol·dm-32ssKsp(Ag2CrO4)=(2s)2s=4s3,s=对同一种类型的沉淀,溶度积Ksp越大,溶解度S越大;对不同类型的沉淀,通过计算S比较溶解度的大小。例1.250C时,铬酸银(Ag2CrO4)的溶解度为1.31×10-4mol.dm-3,求其溶度积.解:Ag2CrO4(s)=2Ag+(aq)+CrO42-(aq)平衡浓度/mol·dm-32ssKsp(Ag2CrO4)=(2s)2s=4s3=4×(1.31×10-4)3=9.0×10-12例2.250C时,AgCl、Ag2CrO4的溶度积分别为1.56×10-10、9.0×10-12,问其溶解度何者为大?解:AgCl溶解度为:s==Ag2CrO4的溶解度为:s=可见溶解度大小为:Ag2CrO4>AgCl(3)溶度积规则:判断沉淀的生成和溶解。溶液中,离子浓度的乘积:Q={C(Am+)}n{C(Bn-)}m溶度积:Ksp(AnBm)={Ceq(Am+)}n{Ceq(Bn-)}m若Q<KSP,不饱和溶液,无沉淀析出或沉淀将溶解;Q=KSP,饱和溶液,沉淀和溶解达到平衡;Q>KSP,过饱和溶液,有沉淀析出如,在FeS的饱和溶液中,Q=KSP,加入盐酸后,由于S2-+2H+=H2S(g),降低S2-浓度,使Q<KSP,以致FeS沉淀溶解。注意:1)Q为任意状态溶液离子浓度如起始浓度以计量系数为指数的乘积;2)若有几种沉淀,先满足Q=KSP者,先沉淀;3)沉淀完全(离子浓度<10-6)不等于离子全部沉淀.例:将0.10moldm-3MgCl2溶液与0.10moldm-3氨水,问溶液能否生成Mg(OH)2沉淀?已知Ksp[Mg(OH)2]=5.61x10-12;氨水Kb=1.77×10-5解:混合后,Q=c(Mg2+).{c(OH-)}2=0.050×{9.4×10-4}2=4.42×10-8KSP{Mg(OH)2}=1.8×10-11Q>KSP,故有沉淀析出.(4)同离子效应:在难溶电解质溶液中,加入与难溶电解质具有相同离子的易溶电解质,可使难溶电解质溶解度降低,这种现象叫做同离子效应。例如,在AgCl溶液中,加入NaCl,使AgCl溶解度下降。3.3周期元素周期表是元素周期系的体现,元素周期表由周期和族组成。1.每周期元素的数目=相应能级组所能容纳的最多电子数 周期 能级组 元素数目 1234567 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d10………… 288181832未完成2.元素在周期表中的位置和原子结构的关系(1)周期数=电子层数(2)族数知道元素在周期表中的位置(哪一周期、哪一族)就可写出原子的电子分布式和外层电子分布式,反过来也一样。例1.有一元素在周期表中属于第4周期第VI主族,试写出该元素原子的电子分布式和外层电子分布式。解:根据该元素在周期表中的位置可直接写出该元素的外层电子分布式:4s24p4(第4周期第6主族)再根据外层电子分布式推出完整的电子分布式:1s22s22p63s23p63d104s24p4例2.已知锝的外层电子分布式4d55s2,指出该元素在周期表中所属的周期数和族数。解:周期数=5(层数=5)族数=VIIB族(ns电子+(n-1)d电子数=2+5=7)(3)元素在周期表中的分区根据原子的外层电子构型可将元素分成5个区: 族数 IA,IIA IIIB-VIIB,VIII IB,IIB IIIA-VIIA 外层电子构型 ns1-2 (n-1)d1-8ns2 (n-1)d10ns1-2 ns2np1-6 分区 s区 d区 ds区 p区 族 主族 副族+VIII=过渡元素 主族f区=镧系+锕系元素例3.试分别指出例1中34号元素和例2中锝元素在周期表中所属的分区。解:根据34号元素外层电子分布式4s24p4,得知该元素属p区。根据锝元素的外层电子分布式4d55s2,得知该元素属d区。1.金属性和非金属性(1)同一周期:从左→右,原子半径逐渐减少,非金属性增强.(2)同一族:主族元素:从上→下,原子半径逐渐增大,金属性增强过渡元素:过渡元素:从下→上金属性增强.2.元素的电离能、电子亲合能和电负性(1)元素的第一电离能:基态的气态原子失去一个电子形成+1价气态离子时所吸收的能量。X(气)-e=X+(气)。用于衡量单个原子失去电子的难易程度。第一电离能越大,原子越难失去电子;数值越小,原子越易失去电子。(2)元素的电子亲合能:基态的气态原子获得一个电子形成-1价气态离子时所放出的能量。X(气)+e=X-(气)。用于衡量单个原子获得电子的难易程度。电子亲合能越大,原子越容易获得电子;数值越小,原子越难获得电子。(3)元素电负性:用于衡量原子在分子中吸引电子的能力。电负性越大,吸引电子的能力大,元素的非金属性越强;电负性越小,元素的金属性越强。同一周期自左向右,电负性值增大,非金属性增强,金属性减弱;同一族自上向下电负性逐渐减少.金属元素的电负性值﹤2.0(除铂系和金),非金属元素的电负性值﹥2.0(除Si为1.8外)。1.氧化物及其水合物的酸碱性一般规律3.4化学反应方程式,化学反应速率与化学平衡1.化学反应方程式的写法与配平:把参加化学反应的反应物的分子式或离子式写在左边,生成物的分子式或离子式写在右边,根据反应物和产物原子总数和电荷总数均相等的原则配平反应方程式。如,NaCO3+HCl=NaCl+CO2+H2O;2Ca(OH)2+2SO2+O2=2CaSO4+2H2O2.化学反应中的有关计算:对于已配平的化学反应,参加反应的各物质的物质量(n:摩尔数)之比等于其化学计量系数之比。aA+bB=gG+dDa:b=nA:nB,nA=nB1.反应热:化学反应时所吸收或放出的热叫做反应的热效应,简称反应热。以符号q表示。吸热,q>0;放热q<0。2.热化学反应方程式的写法(1)热化学反应方程式:表明化学反应方程式和反应热(q)关系的方程式。(2)热化学反应方程式的书写:1)标明温度和压力:T=298.15k,P=101.325kPa可省略。2)右下角标明物质聚集状态:气态:g液态:ι固态:s溶液:aq3)配平反应方程式:物质前面的计量系数代表物质的量,可为分数。4)标明反应热:q<0:放热,q>0:吸热,单位:kJmol-1例:C(s)+O2(g)=CO2(g);q=-393.5kJmol-11.热力第一定律热力第一定律:当封闭体系状态发生变化时,其反应系统内能的变化量(△u)等于热(q)和功(w)代数和。·u=q+w⑴恒容过程:在恒容不作非体积功条件下,△u=qV,即反应中系统内能的变化量(△u)在数值上等于等容热效应qV。⑵恒压过程:在恒压,只作体积功的条件下,△H=qp,即反应的焓变△H在数值上等于其等压热效应。因此,若反应在等压条件下,可用反应的焓变△H表示反应热效应,△H﹤0放热;△H﹥0吸热。2.反应热效应的理论计算(1)盖斯(Hess)定律:在恒容或恒压条件下,化学反应的反应热只与反应的始态和终态有关,而与变化的途径无关。推论:热化学方程式相加减,相应的反应热随之相加减若,反应(3)=反应(1)±反应(2)则,△H3=△H1±△H2例:(1)C(s)+O2(g)=CO2(g);△H1=-393.5kJmol-1(2)CO(g)+1/2O2(g)=CO2(g);△H2=-283.0kJmol-1则反应(1)-(2)得反应(3)C(s)+1/2O2(g)=CO(g);△H3故△H3=△H1-△H2=〔(-393.5)-(-283.0)〕=-110.5kJmol-1注意:1)方程式乘以系数,相应反应热也应乘以该系数.如,2C(s)+2O2(g)=2CO2(g);△H=-787kJmol-1因此,反应(3)=2(1)±3(2),则△H3=2△H1±3△H22)正逆反应的反应热绝对值相等,符号相反。如,CO2(g)=C(s)+O2(g);△H=393.5kJmol-1(2)反应的标准摩尔焓变△rHmθ的计算1)标准条件对于不同状态的物质,其标准的含义不同:气态物质:指气体混合物中,各气态物质的分压均为标准压力Pθ。Pθ=100kPa溶液中水合离子或水合分子:指水合离子或水合分子的有效浓度为标准浓度Cθ。Cθ=1mol.dm-3液体或固体:指纯液体或纯固体。2)标准状态:反应中的各物质均处于标准条件下称该反应处于标准状态。以“θ”表示。3)物质的标准摩尔生成焓:在标准状态下由指定单质生成单位物质量(1mol)的纯物质时反应的焓变称该物质标准摩尔生成焓。以△fHmθ(298.15K)表示。单位kJmol-1规定:指定单质标准摩尔生成焓为零。△fHmθ(单质,298.15K)=0,如,△fHmθ(H2,g,298.15K)=0;△fHmθ(Zn,s,298.15K)=0例,已知反应2H2(g)+O2(g)=2H2O(ι),△rHmθ=-570kJmol-1,求液态水的标准摩尔生成焓。解:△fHmθ(H2O,ι,298.15K)=4)反应的标准摩尔焓变△rHmθ的计算对于反应:aA+bB=gG+dD△rHmθ(298.15K)={g△fHmθ(G,298.15K)+d△fHmθ(D,298.15K)}-{a△fHmθ(A,298.15K)+b△fHmθ(B,298.15K)};kJmol-1例,已知在标准压力和298.15K时CO(g)和H2O(g)的标准摩尔生成焓分别为-110.4KJmol-1和-241.7KJmol-1,求生产水煤气反应的C(S)+H2O(g)=CO(g)+H2(g)的标准摩尔焓变解:△rHmθ(298.15K)={△fHmθ(CO,g,298.15K)+△fHmθ(H2,g,298.15K)}-{△fHmθ(C,s,298.15K)+△fHmθ(H2O,g,298.15K)}={(-110.4)+0}-{0+(-241.7)}=+131.3KJmol-15)说明:反应的焓变基本不随温度而变。即△H(T)≈△H(298.15K)1.熵(1)熵:是系统内物质微观粒子的混乱度(或无序度)的量度.符号S.熵是状态函数。熵值越大,系统混乱度越大。(2)热力学第三定律:在绝对零度时,一切纯物质的完美晶体的熵值为零,即S(0K)=0.(3)物质的标准摩尔熵:单位物质量的纯物质在标准状态下的规定熵叫做该物质的标准摩尔熵,以Sθm表示。单位J.mol-1.K-1.(4)物质熵值的大小,有如下规律:1)对同一物质而言,气态时的熵大于液态时,而液态时的熵又大于固态.即Sg>Sι>Ss.如,Sθm(H2O,g,298.15K)>Sθm(H2O,ι,298.15K)2)同一物质,聚集状态相同时,熵值随温度升高而增大.即S高温>S低温如,Sθm(Fe,s,500K)>Sθm(Fe,s,298.15K)3)当温度和聚集状态相同时,结构较复杂(内部微观粒子较多)的物质的熵值大于结构简单的。即S(复杂分子)>S(简单分子)。如,Sθm(C2H6,g,298.15K)>Sθm(CH4,g,298.15K)(5)反应的标准摩尔熵变ΔrSmθ对于反应:aA+bB=gG+dDΔrSmθ(298.15K)={gSmθ(G,298.15K)+dSmθ(D,298.15K)}-{aSmθ(A,298.15K)+bSmθ(B,298.15K)};J.K-1.mol-1说明:反应的熵值基本不随温度而变。即ΔS(T)≈ΔS(298.15k)1.吉布斯函数:G=H–TS,为一复合状态函数2.吉布斯函数变:ΔG=ΔH–TΔS3.反应方向(自发性)的判断:对于恒温、恒压不作非体积功的一般反应,其自发性的判断标准为:ΔG<0反应正向自发;ΔG=0平衡状态;ΔG>0反应逆向自发,正向非自发。考虑ΔH和ΔS两个因素的影响,分为以下四种情况:(1)ΔH<0,ΔS>0;ΔG<0正向自发(2)ΔH>0,ΔS<0;ΔG>0正向非自发(3)ΔH>0,ΔS>0;升高至某温度时ΔG由正值变为负值,高温有利于正向自发(4)ΔH<0,ΔS<0;降低至某温度时ΔG由正值变为负值,低温有利于正向自发4.反应自发进行的临界温度为:T=1.化学反应速率的表示(1)化学反应速率(反应速率)υ为:υ=νB-1其中,νB:物质B的化学计量数,反应物取负值,生成物取正值。:反应随时间引起引起的物质B的浓度的变化率。(2)对于反应:aA+bB=gG+dD反应速率υ=-=-=+=+例,反应N2+3H2=2NH3反应速率υ=-=-=+化学反应速率大小首先取决于反应物本性,对一给定的反应,反应速率υ与反应物浓度(压力)、温度、催化剂等因素有关。2.浓度的影响和反应级数浓度对反应速率的影响:增加反应物或减少生成物的浓度,反应速率加大。(1)质量作用定律:在一定温度下,对于元反应,反应速率与反应物浓度(以反应方程式中相应物质的化学计量数为指数)的乘积成正比。元反应:即一步完成的反应,又称基元反应或简单反应.2)化学反应速率方程式对于元反应:aA+bB=gG+dD速率方程式:υ=κ{c(A)}a{c(B)}b式中κ:速率常数,在一定温度和催化剂下,为一常数,与浓度和压力无关。 n=a+bn:称反应级数;例:C2H5Cl=C2H4+HCl;υ=κc(C2H5Cl);n=1一级反应NO2+CO=NO+CO2;υ=κ{c(NO2)}{c(CO)};n=2二级反应2NO+O2=2NO2;υ=κ{c(NO)}2.{c(O2)};n=3三级反应非元反应:即两个或两个以上元反应构成.反应,aA+bB=gG+dD速率方程式:υ=κ{c(A)}x{c(B)}y式中n=x+yn:反应级数,由试验来确定。例,在1073K时,反应2NO+2H2=====N2+2H2O经试验确定其反应速率方程式为:υ=κ{c(NO)}2{c(H2)},故该反应为三级反应.注意:在书写反应速率方程式时,反应中液态和固态纯物质的浓度作为常数“1”。1.阿仑尼乌斯公式:κ=Ze-㏑κ=-+㏑Z式中,κ:速率常数;Z:指前因子;Ea:化学反应的活化能.2.温度对反应速率的影响由阿仑尼乌斯公式可见:1)温度升高T↑;速率常数升高κ↑(κ正↑,κ逆↑);反应速率升高υ↑2)活化能越低Ea↓,反应速率越高υ↑3)反应速率常数变化与温度变化的关系为:。3.活化能与催化剂(1)活化能:活化络合物(或活化分子)的平均能量与反应物分子平均能量之差。即反应发生所必须的最低能量,以表示Ea。(2)活化能与反应热效应的关系:Ea(正)-Ea(逆)≈△HEa(正):正反应活化能;Ea(逆):逆反应活化能。若Ea(正)﹥Ea(逆),△H﹥0,反应吸热;若Ea(正)﹤Ea(逆),△H﹤0,反应放热。4.催化剂:改变反应历程,降低反应活化能,加快反应速率。而本身组成、质量及化学性质在反应前后保持不变。5.从活化分子、活化能的观点解释加快反应速率的方法:从活化分子、活化能的观点来看,增加活化分子总数可加快反应速率。活化分子总数=分子总数×活化分子数%(1)增大浓度:活化分子%一定,浓度增大,增加单位体积内分子总数,增加活化分子总数,从而加快反应速率。(2)升高温度:分子总数不变,升高温度,一方面,分子运动速率加快,分子碰撞几率增加,反应速率增加;另一方面,升高温度使更多分子获得能量而成为活化分子,活化分子%显着增加,增加活化分子总数,从而加快反应速率。(3)催化剂:降低反应的活化能,使更多分子成为活化分子,活化分子%显着增加,增加活化分子总数,从而加快反应速率(υ正↑υ逆↑)θ的表达式多重平衡规则转化率平衡中物质量关系及有关平衡的计算温度对平衡常数的影响1.化学平衡的特征(1)当正、逆两方向反应速率相等时,即υ正=υ逆系统达到平衡状态;(2)生成物和反应物的浓度(或压力)不再随时间变化;(3)化学平衡是有条件的、相对的、暂时的动态平衡。条件改变,平衡会发生移动。2.标准平衡常数kθ(1)当反应达到平衡时,生成物相对浓度(或相对压力)以计量系数为指数的的乘积与反应物相对浓度(或相对压力)以计量系数为指数的的乘积的比值为一常数,此常数称为该反应在该温度下的标准平衡常数,以kθ表示。(2)kθ的表达式对于气体反应:aA(g)+bB(g)=====gG(g)+dD(g)kθ=对于溶液中的反应:aA(aq)+bB(aq)=gG(aq)+dD(aq)kθ=式中,pθ=100kPa;Cθ=1moldm-3说明:1)kθ只是温度的函数,温度一定,kθ为一常数,不随浓度或压力而变。2)反应中的液态和固态纯物质,作为常数“1”不带入平衡常数表达式。3)kθ表达式,与化学方程式的书写方式有关例,N2+3H2=2NH3;k1θN2+H2=NH3;k2θ2NH3=N2+3H2;k3θk1θ={k2θ}2=3.多重平衡规则:如果某个反应可以表示为两个或更多个反应的总和,则总反应的平衡常数等于各反应平衡常数的乘积.可表示为:反应(3)=反应(1)+反应(2);k3θ=k1θ.k2θ反应(3)=反应(1)-反应(2);k3θ=k1θ/k2θ4.转化率5.平衡中物质量关系及有关平衡的计算(1)已知初始浓度和转化率,通过化学平衡可求平衡常数;(2)已知平衡常和数初始浓度,通过化学平衡可求平衡浓度和转化率.例,在一定温度下,将1.0molN2O4(g)放入一密闭容器中,当反应N2O4(g)=2NO2(g)达到平衡时,容器内有0.8molNO2(g),气体总压力为100.0kPa,求该反应的K?。解:N2O4(g)=2NO2(g)平衡时物质的量/mol0.60.8平衡时的摩尔分数x0.6/1.40.8/1.4平衡分压为:0.6/1.4×P总=42.86kPa;0.8/1.4×P总=57.14kPa6.温度对标准平衡常数的影响(1)标准平衡常数K?与ΔrG?m的关系㏑kθ=(2)温度对平衡常数的影响㏑kθ==+可见,温度对平衡常数的影响与反应的热效应有关。1)对于吸热反应,△rHmθ>0,随温度升高,平衡常数增大.即T↑,kθ↑2)对于放热反应,△rHmθ<0,随温度升高,平衡常数减少.即T↑,kθ↓3)平衡常数变化与温度变化的关系为:。1.化学平衡的移动:因条件的改变使化学反应从原来的平衡状态转变到新的平衡状态的过程叫化学平衡的移动。吕.查德里原理:假如改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。即2.浓度对化学平衡的影响:在其他条件不变的情况下,增大反应物的浓度或减少生成物的浓度,都可以使平衡向正反应的方向移动;增大生成物的浓度或减少反应物的浓度,都可以使平衡向逆反应的方向移动。3.压力对化学平衡的影响:在其他条件不变的情况下,增大压力会使化学平衡向着气体分子数减小的方向移动;减小压力,会使平衡向着气体分子数增大的方向移动。若反应前后,气体分子数相等,则压力对平衡的移动没有影响。4.温度对化学平衡的影响:在其他条件不变的情况下,升高温度,会使化学平衡向着吸热反应的方向移动;降低温度,会使化学平衡向着放热反应的方向移动。注意:催化剂能同样倍数的加快正逆反应速率,故不能使平衡发生移动.如,对于反应NO(g)+CO(g)=N2(g)+CO2(g),,为了提高有毒气体NO和CO的转化率,应采取的措施是低温高压。5.利用反应商判断反应移动的方向(1)反应商:反应在任意状态(或起始状态)时,生成物相对浓度(或相对压力)以计量系数为指数的的乘积与反应物相对浓度(或相对压力)以计量系数为指数的的乘积的比值称为反应商。以Q表示.对于气体反应:aA(g)+bB(g)=====gG(g)+dD(g)QP=,称为压力商;对于溶液中的反应:aA(aq)+bB(aq)=gG(aq)+dD(aq)QC=,称为浓度商。(2)热力学等温方程式:=+RTlnQ;其中,=-RTlnKθ由此可得:(3)反应方向(即平衡移动)判断当Q<Kθ,则<0,反应正向自发进行(平衡向正反应方向移动);当Q=Kθ,则=0,平衡状态(反应不移动);当Q>Kθ,则>0,反应逆向自发进行(平衡向逆反应方向移动)如,对于反应在298K时标准平衡常数为,在此温度时,该反应的反应商Q=1.2,则该反应可正向进行(Q<Kθ)。3.5氧化还原与电化学1.氧化反应:物质失去电子的反应称氧化反应即化合价升高的过程.例,Zn-2e-1=Zn2+2.还原反应:物质得到电子的反应称还原反应即化合价降低的过程例Cu2++2e-1=Cu3.氧化剂:得到电子(化合价降低)的物质是氧化剂,如Cu2+。4.还原剂:失去电子(化合价升高)的物质是还原剂,如Zn。5.氧化还原反应:有电子转移的反应。6.歧化反应:同一物质,在同一反应中,既可作为氧化剂(得电子化合价降低),又可作为还原剂(失电子化合价升高),此反应称为歧化反应。如,歧化反应3I2+6OH-=====IO3-+5I-+3H2O中,单质I2既是氧化剂又是还原剂。6.氧化还原反应方程式的配平:氧化还原反应方程式的配平有离子—电子法和化合价升降法,下面是离子—电子法的配平步骤:(1)用离子式写出参加氧化还原反应的反应物和产物;如,MnO4-+Fe2+→Mn2++Fe3+(2)写出氧化还原反应的两个半反应:还原剂失去电子被氧化—氧化反应;氧化剂得到电子被还原—还原反应;MnO4-+e-→Mn2+;Fe2+→Fe3+(3)配平半反应式:使两边的各种元素原子总数和电荷总数均相等;MnO4-+8H++5e-→Mn2++4H2O;Fe2+-e-→Fe3+(4)根据氧化剂和还原剂得失电子总数相等的原则确定各半反应式的系数,并合并之,写出配平的离子方程式和分子方程式。MnO4-+5Fe2++8H+=Mn2++5Fe3++4H2O1.原电池及电极反应(1)原电池:将化学能转化为电能的装置。(2)原电池的电极反应(半反应)及电池反应(总反应):例如铜锌原电池:负极发生氧化反应,Zn-2e-1=Zn2+正极发生还原反应,Cu2++2e-1=Cu原电池的总反应:Zn+Cu2+=Zn2++Cu(3)组成原电池的电极归纳起来分为四类:1)金属—金属离子电极,例如:Zn︱Zn2+(C)2)非金属—非金属离子电极,例如:Pt︱H2(P)︱H+(C)3)金属离子电极,例如:Pt︱Fe3+(C1),Fe2+(C2)4)金属—金属难溶盐电极,例如:Ag,AgCl(S)∣Cl—(C)说明:1)非金属电极及离子电极,必须外加一个能导电而本身并不参加反应的惰性电极(如铂Pt、石墨C)作辅助电极;2)不同价态离子之间无相界,用(,)隔开;H+离子或OH-离子参与了氧化还原反应,也应写入半电池中。2.原电池的图式:(-)B︱B+(C)┆┆A+(C)∣A(+)“︱”代表相界,“┆┆”代表盐桥,电子通过盐桥流动,盐桥起沟通线路作用。如,铜锌原电池图式为:(-)Zn︱Zn2+(C)┆┆Cu2+(C)∣Cu(+)又如,反应5Fe2++8H++MnO=Mn2++5Fe3++4H2O, 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 为原电池,原电池图式为:(-)Pt|Fe3+,Fe2+┆┆MnO,Mn2+,H+|Pt(+)1.电极电势:金属(或非金属)与溶液中自身离子达到平衡时产生的电势称电极的电极电势,以φ表示。2.标准电极电势:电极处在标准状态(气体分压为100kPa,离子浓度为1mol.dm-3)时的电极电势,以φθ表示。(1)标准氢电极:规定在任何温度下标准氢电极的电极电势为零,即φ&theta
本文档为【普通化学知识点总结全】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
海艳
人民教师
格式:doc
大小:174KB
软件:Word
页数:0
分类:企业经营
上传时间:2020-08-29
浏览量:13