首页 物质代谢联系与调

物质代谢联系与调

举报
开通vip

物质代谢联系与调会计学1物质代谢联系与调二、机体物质代谢不断受到精细调节机体有精细的调节机制,调节代谢的强度、方向和速度内外环境不断变化影响机体代谢适应环境的变化第3页/共75页第2页/共75页三、各组织、器官物质代谢各具特色结构不同酶系的种类、含量不同不同的组织、器官代谢途径不同、功能各异第4页/共75页第3页/共75页四、各种代谢物均具有各自共同的代谢池例如:各种组织消化吸收的糖肝糖原分解糖异生血糖第5页/共75页第4页/共75页五、ATP是机体储存能量和消耗能量的共同形式营养物分解释放能量ADP+PiATP直接供能第6页/共...

物质代谢联系与调
会计学1物质代谢联系与调二、机体物质代谢不断受到精细调节机体有精细的调节机制,调节代谢的强度、方向和速度内外环境不断变化影响机体代谢适应环境的变化第3页/共75页第2页/共75页三、各组织、器官物质代谢各具特色结构不同酶系的种类、含量不同不同的组织、器官代谢途径不同、功能各异第4页/共75页第3页/共75页四、各种代谢物均具有各自共同的代谢池例如:各种组织消化吸收的糖肝糖原分解糖异生血糖第5页/共75页第4页/共75页五、ATP是机体储存能量和消耗能量的共同形式营养物分解释放能量ADP+PiATP直接供能第6页/共75页第5页/共75页六、NADPH提供合成代谢所需的还原当量例如:乙酰CoANADPH+H+脂酸、胆固醇磷酸戊糖途径第7页/共75页第6页/共75页物质代谢的相互联系MetabolicInterrelationships第二节第8页/共75页第7页/共75页一、各种能量物质的代谢相互联系相互制约三大营养素共同中间产物共同最终代谢通路糖脂肪蛋白质乙酰CoATAC2H氧化磷酸化ATPCO2三大营养素可在体内氧化供能。第9页/共75页第8页/共75页从能量供应的角度看,三大营养素可以互相代替,并互相制约。一般情况下,机体优先利用燃料的次序是糖原、脂肪和蛋白质。供能以糖及脂为主,并尽量节约蛋白质的消耗。第10页/共75页第9页/共75页脂肪分解增强ATP增多ATP/ADP比值增高任一供能物质的代谢占优势,常能抑制和节约其他物质的降解。糖分解被抑制6-磷酸果糖激酶-1被抑制(糖分解代谢限速酶之一)例如:第11页/共75页第10页/共75页饥饿时:肝糖原分解,肌糖原分解肝糖异生,蛋白质分解以脂酸、酮体分解供能为主蛋白质分解明显降低1~2天3~4周第12页/共75页第11页/共75页(一)体内糖可转变脂肪,但(偶数)脂肪酸不能转变成糖1.摄入的糖量超过能量消耗时:二、糖、脂和蛋白质代谢通过中间代谢物而相互联系葡萄糖乙酰CoA合成脂肪(脂肪组织)合成糖原储存(肝、肌肉)第13页/共75页第12页/共75页2.脂肪的甘油部分能在体内转变为糖脂酸乙酰CoA葡萄糖脂肪甘油甘油激酶肝、肾、肠磷酸-甘油葡萄糖第14页/共75页第13页/共75页3.脂肪的分解代谢受糖代谢的影响饥饿、糖供应不足或糖代谢障碍时:高酮血症草酰乙酸相对不足糖不足脂肪大量动员酮体生成增加氧化受阻第15页/共75页第14页/共75页(二)体内糖与大部分氨基酸碳架部分可以相互转变例如:丙氨酸丙酮酸脱氨基糖异生葡萄糖1.大部分氨基酸脱氨基后,生成相应的α-酮酸,可转变为糖第16页/共75页第15页/共75页2.糖代谢的中间产物可氨基化生成某些非必需氨基酸糖丙酮酸草酰乙酸乙酰CoA柠檬酸α-酮戊二酸丙氨酸天冬氨酸谷氨酸第17页/共75页第16页/共75页氨基酸乙酰CoA脂肪1.蛋白质可以转变为脂肪2.氨基酸可作为合成磷脂的原料丝氨酸磷脂酰丝氨酸胆胺脑磷脂胆碱卵磷脂(三)脂类不能转变成氨基酸,但氨基酸能转变成脂肪第18页/共75页第17页/共75页——但不能说,脂类可转变为氨基酸。脂肪甘油磷酸甘油醛糖酵解途径丙酮酸其他α-酮酸某些非必需氨基酸3.脂肪的甘油部分可转变为非必需氨基酸第19页/共75页第18页/共75页(四)某些氨基酸是核苷酸/核酸合成的前体1.氨基酸是体内合成核酸的重要原料甘氨酸天冬氨酸谷氨酰胺一碳单位合成嘌呤合成嘧啶2.磷酸核糖由磷酸戊糖途径提供第20页/共75页第19页/共75页葡萄糖、糖原丙酮酸乙酰CoA脂肪Leu、Lys草酰乙酸α-酮戊二酸琥珀酸延胡索酸TyrProVal,Ile,Met,ThrAspGluArgHisPro胆固醇、酮体AlaTrpSerGlyThrCys甘油脂酸第21页/共75页第20页/共75页体内重要组织、器官的代谢特点及联系MetabolicSpecialty&InterrelationshipsofImportantTissues&ApparatusintheBody第三节第22页/共75页第21页/共75页在糖、脂、蛋白质、水、盐及维生素代谢中均具有独特而重要的作用。合成、储存糖原分解糖原生成葡萄糖,释放入血是糖异生的主要器官肝在糖代谢中的作用例如:——肝在维持血糖稳定中起重要作用。一、肝是人体最重要的物质代谢中心和枢纽第23页/共75页第22页/共75页酮体乳酸游离脂酸葡萄糖正常优先以脂酸为燃料产生ATP。能量可依次以消耗自由脂酸、葡萄糖、酮体等能源物质提供。二、心可利用多种能源物质,以有氧氧化为主第24页/共75页第23页/共75页耗能大,耗氧多。葡萄糖为主要能源,每天消耗约100g。不能利用脂酸,葡萄糖供应不足时,利用酮体。三、脑主要利用葡萄糖供能且耗氧量大第25页/共75页第24页/共75页合成、储存肌糖原;通常以脂酸氧化为主要供能方式;剧烈运动时,以糖酵解为主。四、肌肉主要氧化脂肪酸,强烈运动产生大量乳酸第26页/共75页第25页/共75页五、糖酵解是为成熟红细胞提供能量的主要途径红细胞没有线粒体,每天消耗1520g葡萄糖。第27页/共75页第26页/共75页合成及储存脂肪的重要组织;将脂肪分解成脂酸、甘油,供机体其他组织利用。六、脂肪组织是合成、储存脂肪的重要组织第28页/共75页第27页/共75页肾髓质主要由糖酵解供能;肾皮质主要由脂酸、酮体有氧氧化供能。七、肾是可进行糖异生和生成酮体两种代谢的器官第29页/共75页第28页/共75页器官组织特有的酶功能主要代谢途径主要供能物质代谢和输出的产物肝葡萄糖激酶,葡萄糖-6-磷酸酶,甘油激酶,磷酸烯醇式丙酮酸羧激酶代谢枢纽糖异生,脂酸β-氧化,糖有氧氧化,糖原代谢,酮体生成等葡萄糖,脂酸,乳酸,甘油,氨基酸葡萄糖,VLDL,HDL,酮体等脑神经中枢糖有氧氧化,糖酵解,氨基酸代谢葡萄糖,脂酸,酮体,氨基酸等乳酸,CO2,H2O心脂蛋白脂酶,呼吸链丰富泵出血液有氧氧化脂酸,葡萄糖,酮体,VLDLCO2,H2O脂肪组织脂蛋白脂酶,激素敏感脂肪酶储存及动员脂肪酯化脂酸,脂解VLDL,CM游离脂酸,甘油骨骼肌脂蛋白脂酶,呼吸链丰富收缩有氧氧化,糖酵解脂酸,葡萄糖,酮体乳酸,CO2,H2O肾甘油激酶,磷酸烯醇式丙酮酸羧激酶排泄尿液糖异生,糖酵解,酮体生成脂酸,葡萄糖,乳酸,甘油葡萄糖红细胞无线粒体运输氧糖酵解葡萄糖乳酸重要器官及组织氧化供能的特点第30页/共75页第29页/共75页代谢调节方式TheWayforRegulationofMetabolism第四节第31页/共75页第30页/共75页代谢调节普遍存在于生物界,是生物的重要特征。主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,这种调节称为原始调节或细胞水平代谢调节。单细胞生物第32页/共75页第31页/共75页高等生物——三级水平代谢调节细胞水平代谢调节激素水平代谢调节高等生物在进化过程中,出现了专司调节功能的内分泌细胞及内分泌器官,其分泌的激素可对其他细胞发挥代谢调节作用。整体水平代谢调节在中枢神经系统的控制下,或通过神经纤维及神经递质对靶细胞直接发生影响,或通过某些激素的分泌来调节某些细胞的代谢及功能,并通过各种激素的互相协调而对机体代谢进行综合调节。第33页/共75页第32页/共75页一、细胞水平的代谢调节主要调节关键酶活性•细胞水平的代谢调节主要是酶水平的调节。•细胞内酶呈隔离分布。•代谢途径的速度、方向由其中的关键酶(keyenzyme)的活性决定。•代谢调节主要是通过对关键酶活性的调节而实现的。第34页/共75页第33页/共75页(一)细胞酶系有特定细胞和亚细胞区域的隔离分布代谢途径有关酶类常常组成多酶体系,分布于细胞的某一区域。第35页/共75页第34页/共75页多酶体系分布多酶体系分布DNA及RNA合成细胞核糖酵解胞液蛋白质合成内质网,胞液戊糖磷酸途径胞液糖原合成胞液糖异生胞液脂酸合成胞液脂酸β氧化线粒体胆固醇合成内质网,胞液多种水解酶溶酶体磷脂合成内质网三羧酸循环线粒体血红素合成胞液,线粒体氧化磷酸化线粒体尿素合成胞液,线粒体呼吸链线粒体主要代谢途径多酶体系在细胞内的分布第36页/共75页第35页/共75页酶隔离分布的意义:提高同一代谢途径酶促反应速率。使各种代谢途径互不干扰,彼此协调,有利于调节物对各途径的特异调节。第37页/共75页第36页/共75页①速度最慢,它的速度决定整个代谢途径的总速度,故又称其为限速酶(limitingvelocityenzymes)。②催化单向反应不可逆或非平衡反应,它的活性决定整个代谢途径的方向。③这类酶活性除受底物控制外,还受多种代谢物或效应剂的调节。关键酶催化的反应具有以下特点:代谢途径是一系列酶促反应组成的,其速度及方向由其中的关键酶决定。第38页/共75页第37页/共75页代谢途径关键酶糖原降解磷酸化酶糖原合成糖原合酶糖酵解己糖激酶磷酸果糖激酶-1丙酮酸激酶糖有氧氧化丙酮酸脱氢酶系柠檬酸合酶异柠檬酸脱氢酶糖异生丙酮酸羧化酶磷酸烯醇式丙酮酸羧激酶果糖双磷酸酶-1脂酸合成乙酰辅酶A羧化酶胆固醇合成HMG辅酶A还原酶某些重要代谢途径的关键酶第39页/共75页第38页/共75页①快速代谢②迟缓代谢数秒、数分钟通过改变酶的活性数小时、几天通过改变酶的含量变构调节(allostericregulation)化学修饰调节(chemicalmodification)•代谢调节主要是通过对关键酶活性的调节而实现的。第40页/共75页第39页/共75页1.代谢途径关键酶多数受到变构调节小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。(二)小分子代谢物改变关键酶构象对酶活性变构调节第41页/共75页第40页/共75页被调节的酶称为变构酶或别构酶(allostericenzyme)。使酶发生变构效应的物质,称为变构效应剂(allostericeffector)。•变构激活剂allostericeffector——引起酶活性增加的变构效应剂。•变构抑制剂allostericeffector——引起酶活性降低的变构效应剂。第42页/共75页第41页/共75页代谢途径变构酶变构激活剂变构抑制剂糖酵解己糖激酶AMP、ADP、FDP、PiG-6-P磷酸果糖激酶-1FDP柠檬酸丙酮酸激酶ATP,乙酰CoA三羧酸循环柠檬酸合酶AMPATP,长链脂酰CoA异柠檬酸脱氢酶AMP,ADPATP糖异生丙酮酸羧化酶乙酰CoA,ATPAMP糖原分解磷酸化酶bAMP,G-1-P,PiATP,G-6-P脂酸合成乙酰辅酶A羧化酶柠檬酸,异柠檬酸长链脂酰CoA氨基酸代谢谷氨酸脱氢酶ADP,亮氨酸,蛋氨酸GTP,ATP,NADH嘌呤合成谷氨酰胺PRPP酰胺转移酶AMP,GMP嘧啶合成天冬氨酸转甲酰酶CTP,UTP核酸合成脱氧胸苷激酶dCTP,dATPdTTP一些代谢途径中的变构酶及其变构效应剂第43页/共75页第42页/共75页2.代谢途径的起始物或产物通过变构调节影响代谢途径变构酶催化亚基调节亚基变构效应剂:底物、终产物其他小分子代谢物第44页/共75页第43页/共75页变构效应剂+酶的调节亚基酶的构象改变酶的活性改变(激活或抑制)疏松亚基聚合紧密亚基解聚酶分子多聚化第45页/共75页第44页/共75页3.变构调节的生理意义①代谢终产物反馈抑制(feedbackinhibition)反应途径中的酶,使代谢物不致生成过多。乙酰CoA乙酰CoA羧化酶丙二酰CoA长链脂酰CoA第46页/共75页第45页/共75页②变构调节使能量得以有效利用,不致浪费。G-6-P–+糖原磷酸化酶抑制糖的氧化糖原合酶促进糖的储存第47页/共75页第46页/共75页③变构调节使不同的代谢途径相互协调。柠檬酸–+6-磷酸果糖激酶-1抑制糖的氧化乙酰辅酶A羧化酶促进脂酸的合成第48页/共75页第47页/共75页(三)关键酶活性可由酶的化学修饰调节1.通过对酶蛋白的化学修饰调节代谢途径关键酶活性酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰(covalentmodification),从而引起酶活性改变,这种调节称为酶的化学修饰。第49页/共75页第48页/共75页化学修饰的主要方式:磷酸化---去磷酸乙酰化---脱乙酰甲基化---去甲基腺苷化---脱腺苷SH与–S—S–互变第50页/共75页第49页/共75页酶化学修饰类型酶活性改变糖原磷酸化酶磷酸化/脱磷酸激活/抑制磷酸化酶b激酶磷酸化/脱磷酸激活/抑制糖原合酶磷酸化/脱磷酸抑制/激活丙酮酸脱羧酶磷酸化/脱磷酸抑制/激活磷酸果糖激酶磷酸化/脱磷酸抑制/激活丙酮酸脱氢酶磷酸化/脱磷酸抑制/激活HMG-CoA还原酶磷酸化/脱磷酸抑制/激活HMG-CoA还原酶激酶磷酸化/脱磷酸激活/抑制乙酰CoA羧化酶磷酸化/脱磷酸抑制/激活脂肪细胞甘油三酯脂肪酶磷酸化/脱磷酸激活/抑制黄嘌呤氧化脱氢酶SH/-S-S-脱氢酶/氧化酶酶促化学修饰对酶活性的调节第51页/共75页第50页/共75页酶的磷酸化与脱磷酸化-OHThrSerTyr酶蛋白H2OPi磷蛋白磷酸酶ATPADP蛋白激酶ThrSerTyr-O-PO32-磷酸化的酶蛋白第52页/共75页第51页/共75页2.酶促化学修饰的特点:①酶蛋白的共价修饰是可逆的酶促反应,在不同酶的作用下,酶蛋白的活性状态可互相转变。催化互变反应的酶在体内可受调节因素如激素的调控。②具有放大效应,效率较变构调节高。③磷酸化与脱磷酸是最常见的方式。同一个酶可以同时受变构调节和化学修饰调节。第53页/共75页第52页/共75页(四)改变细胞内酶的含量可调节酶的活性1.调节酶蛋白含量可通过诱导或阻遏酶蛋白基因的表达加速酶合成的化合物称为诱导剂(inducer)减少酶合成的化合物称为阻遏剂(repressor)第54页/共75页第53页/共75页常见的诱导或阻遏方式:Ⅰ底物对酶合成的诱导和阻遏Ⅱ产物对酶合成的阻遏Ⅲ激素对酶合成的诱导Ⅳ药物对酶合成的诱导第55页/共75页第54页/共75页2.调节细胞酶含量也可通过改变酶蛋白降解速度溶酶体蛋白酶体——释放蛋白水解酶,降解蛋白质——泛素识别、结合蛋白质;蛋白水解酶降解蛋白质通过改变酶蛋白分子的降解速度,也能调节酶的含量。第56页/共75页第55页/共75页内、外环境改变机体相关组织分泌激素激素与靶细胞上的受体结合靶细胞产生生物学效应,适应内外环境改变激素作用机制:二、激素通过作用特异受体调节代谢过程第57页/共75页第56页/共75页激素分类:Ι膜受体激素Ⅱ胞内受体激素按激素受体在细胞的部位不同,分为:第58页/共75页第57页/共75页1.膜受体激素信号通过跨膜受体传递调节细胞代谢激素作用方式:第59页/共75页第58页/共75页2.激素-胞内受体复合物可影响基因转录调节细胞代谢第60页/共75页第59页/共75页(一)糖、脂和蛋白质代谢在不同饥饿状态有不同改变糖原消耗血糖趋于降低胰岛素分泌减少胰高血糖素分泌增加引起一系列的代谢变化1.短期饥饿时脂肪动员增加而减少糖的利用三、机体通过神经系统及神经-体液途径整体调节体内物质代谢第61页/共75页第60页/共75页(1)脂代谢变化脂肪动员加强,酮体生成增多(2)糖代谢变化糖异生加强,组织对葡萄糖利用降低(3)蛋白质代谢变化肌蛋白质分解加强,氨基酸异生成糖第62页/共75页第61页/共75页2.长期饥饿时各组织发生与短期饥饿不同的代谢改变:(1)蛋白质代谢变化蛋白质分解减少(2)糖代谢变化肝肾糖异生增强肝糖异生的主要原料为乳酸、丙酮酸(3)脂代谢变化脂肪动员进一步加强脑组织利用酮体增加第63页/共75页第62页/共75页(二)应激增加糖、脂和蛋白质分解的能源供应,限制能源存积概念:应激(stress)指人体受到一些异乎寻常的刺激,如创伤、剧痛、冻伤、缺氧、中毒、感染及剧烈情绪波动等所作出一系列反应的“紧张状态”。第64页/共75页第63页/共75页机体整体反应:交感神经兴奋肾上腺髓质及皮质激素分泌增多胰高血糖素、生长激素增加,胰岛素分泌减少引起一系列的代谢变化第65页/共75页第64页/共75页代谢改变:1.血糖升高2.脂肪动员增强3.蛋白质分解加强这对保证大脑、红细胞的供能有重要意义。为心肌、骨骼肌及肾等组织供能。肌释出丙氨酸等氨基酸增加。第66页/共75页第65页/共75页内分泌腺或组织代谢改变血中含量胰腺α-细胞、β-细胞胰高血糖素分泌增加、胰岛素分泌抑制胰高血糖素↑胰岛素↓肾上腺髓质、皮质去甲肾上腺素及肾上腺素分泌增加、皮质醇分泌增加肾上腺素↑皮质醇↑肝糖原分解增加、糖原合成减少、糖异生增强、脂酸β氧化增加、酮体生成增加葡萄糖↑酮体↑肌糖原分解增加、葡萄糖的摄取利用减少、蛋白质分解增加、脂酸β-氧化增强乳酸↑葡萄糖↑氨基酸↑脂肪组织脂肪分解增强、葡萄糖摄取及利用减少、脂肪合成减少游离脂酸↑甘油↑应激时机体的代谢改变第67页/共75页第66页/共75页代谢综合征(MetabolicSyndrome,MS):以肥胖、高血压、糖代谢及血脂异常等为主要临床表现的症候群。表现为心脑血管病的多种代谢危险因素在同一个体内集结的状态。而超重和肥胖在MS发生、发展中起着决定性的作用。(三)肥胖是多种因素引起的进食行为和能量代谢调节的紊乱第68页/共75页第67页/共75页体质性肥胖:青少年期多见的肥胖,主要由于脂肪细胞数量增加所致。获得性肥胖:成人因营养过剩引起的肥胖,主要由于脂肪细胞体积增加,也有数量增加。1.肥胖者增加脂肪储存有不同类型单纯性肥胖继发性肥胖症某些神经、内分泌疾病引起。第69页/共75页第68页/共75页肥胖诊断常用 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 是体重指数(bodymassindex,BMI,BMI=体重(kg)/身高2(m2)。如体重超过标准体重的20%,或体重指数>30即为肥胖。第70页/共75页第69页/共75页2.正常食欲、进食和能量消耗的平衡受到神经、内分泌系统复杂调节短期进食调节激素主要包括生长激素释放肽(ghrelin)和胆囊收缩素(cholecystokinin,CCK)。参与食欲、进食长期调节的激素包括胰岛素和瘦蛋白(leptin)。第71页/共75页第70页/共75页高胰岛素血症是肥胖的重要特征,也是促进肥胖形成的重要因素。肥胖者常可表现胰岛素抵抗和高胰岛素血症。肥胖者糖代谢表现异常。肥胖者也存在脂代谢异常。3.肥胖者常表现胰岛素分泌、功能异常和糖脂代谢的紊乱第72页/共75页第71页/共75页代谢组学(metabonomics)是对某一生物或细胞所有低相对分子质量代谢产物进行定性和定量分析,检测活细胞中代谢变化的研究领域。四、代谢组学是对小分子代谢物集合的整体水平研究(一)代谢组学检测某一生物或细胞所有低相对分子质量代谢产物第73页/共75页第72页/共75页代谢物组学研究有样品预处理、数据采集和数据分析解释三个阶段,以高通量的检测实验和大规模的计算为特征。-核磁共振技术有极大优势,1H-核磁共振(1H-NMR)最为常用-可得到代谢物成分指纹图谱。-在模式识别方法中,主成分分析法(principalcomponentanalysis,PCA)最为常用、有效。(二)代谢物组学研究需要高通量定量检测技术和大规模的计算第74页/共75页第73页/共75页用于药物的作用机制的研究广泛用于候选药物的毒性评价,大大提高了安全性评价的技术分析水平。发现疾病相关的有价值的代谢物特征模式和生物标志物,用于疾病的诊断。(三)代谢物组学在新药发现开发和疾病诊断方面有巨大应用潜力第75页/共75页第74页/共75页感谢您的观看!第75页/共75页
本文档为【物质代谢联系与调】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
莉莉老师
暂无简介~
格式:ppt
大小:1008KB
软件:PowerPoint
页数:75
分类:
上传时间:2021-12-03
浏览量:1