首页 高中数学导数压轴题(一)

高中数学导数压轴题(一)

举报
开通vip

高中数学导数压轴题(一)------------------------------------------作者xxxx------------------------------------------日期xxxx高中数学导数压轴题(一)【精品文档】【精品文档】【精品文档】【精品文档】【精品文档】【精品文档】高中数学导数压轴题(一)1.已知函数f(x)=ax2+lnx,g(x)=﹣bx,其中a,b∈R,设h(x)=f(x)﹣g(x),(1)若f(x)在x=处取得极值,且f′(1)=g(﹣1)﹣2.求函数h(x)的单调区间;(2)若a=0...

高中数学导数压轴题(一)
------------------------------------------作者xxxx------------------------------------------日期xxxx高中数学导数压轴题(一)【精品文档】【精品文档】【精品文档】【精品文档】【精品文档】【精品文档】高中数学导数压轴题(一)1.已知函数f(x)=ax2+lnx,g(x)=﹣bx,其中a,b∈R,设h(x)=f(x)﹣g(x),(1)若f(x)在x=处取得极值,且f′(1)=g(﹣1)﹣2.求函数h(x)的单调区间;(2)若a=0时,函数h(x)有两个不同的零点x1,x2①求b的取值范围;②求证:>1.2.设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.3.已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.4.已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+)在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:×××…×<(n≥2,n∈N*).5.设函数f(x)=(1+x)2﹣2ln(1+x)(1)若关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,若关于x的方程g(x)=p至少有一个解,求p的最小值.(3)证明不等式:(n∈N*).6.已知函数,f(x)=alnx﹣ax﹣3(a∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t[1,2],函数在区间(t,3)上总存在极值?7.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=﹣2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.8.已知函数f(x)=alnx﹣ax﹣3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)(n!=1×2×3×…×n).9.已知函数f(x)=lnx﹣a(x﹣1),a∈R(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围.10.设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)设F(x)=f(x)+ax2+ax,问F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)设A(x1,y1),B(x2,y2)是函数g(x)=f(x)+ax图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为为k.证明:k>g′(x0).11.已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x(a∈R),f′(x)为f(x)的导数.(Ⅰ)当a=﹣3时证明y=f(x)在区间(﹣1,1)上不是单调函数.(Ⅱ)设,是否存在实数a,对于任意的x1∈[﹣1,1]存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在求出a的取值范围;若不存在说明理由.12.设a为实数,函数f(x)=ex﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.13.已知函数f(x)=xlnx,g(x)=.(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.14.设函数f(x)=lnx﹣ax2﹣bx.(Ⅰ)当a=b=时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+ax2+bx+(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1,方程2mf(x)=x2有唯一实数解,求正数m的值..15.已知函数f(x)=x2+lnx(1)求函数f(x)在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=x3图象的下方.16.设f(x)=px﹣﹣2lnx.(Ⅰ)若f(x)在其定义域内为单调递增函数,求实数p的取值范围;(Ⅱ)设g(x)=,且p>0,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.17.若f(x)=其中a∈R(1)当a=﹣2时,求函数y(x)在区间[e,e2]上的最大值;(2)当a>0,时,若x∈[1,+∞),f(x)≥a恒成立,求a的取值范围.18.已知函数f(x)=(x3﹣6x2+3x+t)ex,t∈R.(Ⅰ)若函数y=f(x)依次在x=a,x=b,x=c(a<b<c)处取极值,求t的取值范围;(Ⅱ)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立,求正整数m的最大值.19.已知函数f(x)=2lnx﹣x2.(Ⅰ)求函数y=f(x)在上的最大值.(Ⅱ)如果函数g(x)=f(x)﹣ax的图象与x轴交于两点A(x1,0)、B(x2,0),且0<x1<x2.y=g′(x)是y=g(x)的导函数,若正常数p,q满足p+q=1,q≥p.求证:g′(px1+qx2)<0.20.设,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.(1)求a的值;(2)若∀x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.(3)求证:.21.已知函数.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;(Ⅲ)在(Ⅱ)的条件下,设函数,若在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,求实数a的取值范围.22.已知函数,(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;(Ⅲ)若p2﹣p≥0,且至少存在一点x0∈[1,e],使得f(x0)>g(x0)成立,求实数p的取值范围.23.已知a为常数,a∈R,函数f(x)=x2+ax﹣lnx,g(x)=ex.(其中e是自然对数的底数)(Ⅰ)过坐标原点O作曲线y=f(x)的切线,设切点为P(x0,y0),求证:x0=1;(Ⅱ)令,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.24.已知函数f(x)=lnx,g(x)=ex…(1)若函数φ(x)=f(x)﹣,求函数φ(x)的单调区间;(2)若x≥0,g(x)≥kf(x+1)+1恒成立,求实数k的取值范围;(3)设直线l为函数f(x)的图象上一点,A(x0,f(x0))处的切线,证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.25.已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[﹣1,1]上的减函数.(Ⅰ)求λ的最大值;(Ⅱ)若g(x)<t2+λt+1在x∈[﹣1,1]上恒成立,求t的取值范围;(Ⅲ)讨论关于x的方程的根的个数.26.已知函数f(x)=ln(1+x)﹣ax在x=﹣处的切线的斜率为1.(Ⅰ)求a的值及f(x)的最大值;(Ⅱ)证明:1+++…+>ln(n+1)(n∈N*);(Ⅲ)设g(x)=b(ex﹣x),若f(x)≤g(x)恒成立,求实数b的取值范围.27.设函数f(x)=lnx﹣ax(a∈R).(1)若直线y=3x﹣1是函数f(x)图象的一条切线,求实数a的值;(2)若函数f(x)在[1,e2]上的最大值为1﹣ae(e为自然对数的底数),求实数a的值;(3)若关于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且仅有唯一的实数根,求实数t的取值范围.28.已知函数f(x)=xe1﹣x,g(x)=(2﹣a)x﹣2lnx+a﹣2.(1)求函数g(x)的单调区间;(2)若对于∀x0∈(0,e],在区间(0,e]上总存在两个不同实数xi(i=1,2),使得f(x0)=g(xi),求实数a的取值范围.29.已知函数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)函数f(x)在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由;(Ⅲ)若任意的x1,x2∈(1,2)且x1≠x2,证明:.(注:ln2≈0.693)30.已知函数f(x)=nx﹣xn,x∈R,其中n∈N•,且n≥2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2﹣x1|<+2. 2017年02月26日LX的高中数学组卷参考答案与试题解析 一.解答题(共30小题)1.(2017•南京一模)已知函数f(x)=ax2+lnx,g(x)=﹣bx,其中a,b∈R,设h(x)=f(x)﹣g(x),(1)若f(x)在x=处取得极值,且f′(1)=g(﹣1)﹣2.求函数h(x)的单调区间;(2)若a=0时,函数h(x)有两个不同的零点x1,x2①求b的取值范围;②求证:>1.【专题】压轴题;函数思想;转化法;导数的综合应用.【分析】(1)根据极值点处的导数为零,结合f(1)=g(﹣1)﹣2列出关于a,b的方程组,求出a,b,然后再利用导数研究导数研究单调区间;(2)①将a=0代入,研究极值的符号,即可求出求b的取值范围,②结合①的结论,通过适当的变形,利用放缩法和基本不等式即可证明.【解答】解:(1)由已知得f,(x>0),所以,所以a=﹣2.由f′(1)=g(﹣1)﹣2,得a+1=b﹣2,所以b=1.所以h(x)=﹣x2+lnx+x,(x>0).则,(x>0),由h′(x)>0得0<x<1,h′(x)<0得x>1.所以h(x)的减区间为(1,+∞),增区间为(0,1).(2)①由已知h(x)=lnx+bx,(x>0).所以h,(x>0),当b≥0时,显然h′(x)>0恒成立,此时函数h(x)在定义域内递增,h(x)至多有一个零点,不合题意.当b<0时,令h′(x)=0得x=>0,令h′(x)>0得;令h′(x)<0得.所以h(x)极大=h()=﹣ln(﹣b)﹣1>0,解得.且x→0时,lnx<0,x→+∞时,lnx>0.所以当时,h(x)有两个零点.②证明:由题意得,即,①×②得.因为x1,x2>0,所以﹣b(x1+x2)>0,所以,因为0<﹣b<,所以e﹣b>1,所以x1x2>>>e2,所以>1.【点评】本题考查了导数和函数的单调性和极值的关系,以及函数的零点存在定理和不等式的证明,培养了学生的运算能力,化归能力,分类讨论的能力,属于难题. 2.(2016•天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【专题】压轴题;转化思想;分类法;导数的综合应用.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题. 3.(2016•离石区二模)已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.【专题】计算题;压轴题;导数的概念及应用.【分析】(Ⅰ)先根据题意写出:g(x)再求导数,由题意知,g′(x)≥0,x∈(0,+∞)恒成立,即由此即可求得实数a的取值范围;(Ⅱ)由(Ⅰ)知,利用换元法令t=ex,则t∈[1,2],则h(t)=t3﹣3at,接下来利用导数研究此函数的单调性,从而得出h(x)的极小值;(Ⅲ)对于能否问题,可先假设能,即设F(x)在(x0,F(x0))的切线平行于x轴,其中F(x)=2lnx﹣x2﹣kx结合题意,列出方程组,证得函数在(0,1)上单调递增,最后出现矛盾,说明假设不成立,即切线不能否平行于x轴.【解答】解:(Ⅰ)g(x)=f(x)﹣ax=lnx+x2﹣ax,由题意知,g′(x)≥0,对任意的x∈(0,+∞)恒成立,即又∵x>0,,当且仅当时等号成立∴,可得(Ⅱ)由(Ⅰ)知,,令t=ex,则t∈[1,2],则h(t)=t3﹣3at,由h′(t)=0,得或(舍去),∵,∴若,则h′(t)<0,h(t)单调递减;若,则h′(t)>0,h(t)单调递增∴当时,h(t)取得极小值,极小值为(Ⅲ)设F(x)在(x0,F(x0))的切线平行于x轴,其中F(x)=2lnx﹣x2﹣kx结合题意,有①﹣②得所以,由④得所以设,⑤式变为设,所以函数在(0,1)上单调递增,因此,y<y|u=1=0,即,也就是此式与⑤矛盾所以F(x)在(x0,F(x0))的切线不能平行于x轴【点评】此题是个难题.本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,根据解题要求选择是否分离变量,体现了转化的思想和分类讨论以及数形结合的思想方法,同时考查了学生的灵活应用知识分析解决问题的能力和计算能力. 4.(2016•商丘三模)已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+)在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:×××…×<(n≥2,n∈N*).【专题】压轴题.【分析】利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间),对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况;(2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围.(3)是近年来高考考查的热点问题,即与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n有某些结论成立,进而解答出这类不等式问题的解.【解答】解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【点评】本题考查利用函数的导数来求函数的单调区间,已知函数曲线上一点求曲线的切线方程即对函数导数的几何意义的考查,考查求导公式的掌握情况.含参数的数学问题的处理,构造函数求解证明不等式问题. 5.(2016•湖南模拟)设函数f(x)=(1+x)2﹣2ln(1+x)(1)若关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,若关于x的方程g(x)=p至少有一个解,求p的最小值.(3)证明不等式:(n∈N*).【专题】综合题;压轴题;导数的概念及应用.【分析】(1)依题意得f(x)max≥m,x∈[0,e﹣1],求导数,求得函数的单调性,从而可得函数的最大值;(2)求导函数,求得函数的单调性与最值,从而可得p的最小值;(3)先证明ln(1+x)≤x,令,则x∈(0,1)代入上面不等式得:,从而可得.利用叠加法可得结论.【解答】(1)解:依题意得f(x)max≥m,x∈[0,e﹣1]∵,而函数f(x)的定义域为(﹣1,+∞)∴f(x)在(﹣1,0)上为减函数,在(0,+∞)上为增函数,∴f(x)在[0,e﹣1]上为增函数,∴∴实数m的取值范围为m≤e2﹣2(2)解:g(x)=f(x)﹣x2﹣1=2x﹣2ln(1+x)=2[x﹣ln(1+x)],∴显然,函数g(x)在(﹣1,0)上为减函数,在(0,+∞)上为增函数∴函数g(x)的最小值为g(0)=0∴要使方程g(x)=p至少有一个解,则p≥0,即p的最小值为0(3)证明:由(2)可知:g(x)=2[x﹣ln(1+x)]≥0在(﹣1,+∞)上恒成立所以ln(1+x)≤x,当且仅当x=0时等号成立令,则x∈(0,1)代入上面不等式得:即,即所以ln2﹣ln1<1,,,…,将以上n个等式相加即可得到:【点评】本题考查导数知识的运用,考查函数的单调性与最值,考查不等式的证明,考查恒成立问题,属于中档题. 6.(2016•江门模拟)已知函数,f(x)=alnx﹣ax﹣3(a∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t[1,2],函数在区间(t,3)上总存在极值?【专题】计算题;综合题;压轴题;数形结合;分类讨论.【分析】利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间),对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况;(2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围.【解答】解:(Ⅰ),当a=1时,令导数大于0,可解得0<x<1,令导数小于0,可解得x<0(舍)或x>1故函数的单调增区间为(0,1),单调减区间是(1,+∞)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴,由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴.【点评】此题是个难题.本题考查利用函数的导数来求函数的单调区间,已知函数曲线上一点求曲线的切线方程即对函数导数的几何意义的考查,考查求导公式的掌握情况.含参数的数学问题的处理,构造函数求解证明不等式问题. 7.(2016•鹰潭校级模拟)已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=﹣2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.【专题】压轴题;导数的综合应用.【分析】(1)先求原函数的导数,根据f′(x)<0求得的区间是单调减区间,即可;(2)由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则存在唯一的实数根x0,即b=2x3+x2+x存在唯一的实数根x0,就把问题转化为求函数最值问题;(3)假设存在常数λ,依据曲线C在点A处的切线l1与曲线C交于另一点B,曲线C在点B处的切线l2,得到关于λ的方程,有解则存在,无解则不存在.【解答】解:(1)当a=﹣2时,函数f(x)=x3+x2﹣2x+b则f′(x)=3x2+5x﹣2=(3x﹣1)(x+2)令f′(x)<0,解得﹣2<x<,所以f(x)的单调递减区间为(﹣2,);(2)函数f(x)的导函数为由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则即x3+x2+(﹣3x2﹣5x﹣1)x+b=0存在唯一的实数根x0,故b=2x3+x2+x存在唯一的实数根x0,令y=2x3+x2+x,则y′=6x2+5x+1=(2x+1)(3x+1)=0,故x=﹣或x=﹣,则函数y=2x3+x2+x在(﹣∞,),(﹣,+∞)上是增函数,在(,﹣)上是减函数,由于x=﹣时,y=﹣;x=﹣时,y=﹣;故实数b的取值范围为:(﹣∞,﹣)∪(﹣,+∞);(3)设点A(x0,f(x0)),则在点A处的切线l1的切线方程为y﹣f(x0)=f′(x0)(x﹣x0),与曲线C联立得到f(x)﹣f(x0)=f′(x0)(x﹣x0),即(x3+x2+ax+b)﹣(x03+x02+ax0+b)=(3x02+5x0+a)(x﹣x0),整理得到(x﹣x0)2[x+(2x0+)]=0,故点B的横坐标为xB=﹣(2x0+)由题意知,切线l1的斜率为k1=f′(x0)=3x02+5x0+a,l2的斜率为k2=f′(﹣(2x0+))=12x02+20x0++a,若存在常数λ,使得k2=λk1,则12x02+20x0++a=λ(3x02+5x0+a),即存在常数λ,使得(4﹣λ)(3x02+5x0)=(λ﹣1)a﹣,故,解得λ=4,a=,故a=时,存在常数λ=4,使得k2=4k1;a≠时,不存在常数,使得k2=4k1.【点评】本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查曲线的切线,同时还考查了方程根的问题,一般要转化为函数的最值来解决. 8.(2016•宜春校级模拟)已知函数f(x)=alnx﹣ax﹣3(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)(n!=1×2×3×…×n).【专题】计算题;证明题;压轴题;函数的性质及应用;导数的综合应用;等差数列与等比数列;不等式的解法及应用.【分析】(Ⅰ)求导f′(x)=(x>0),从而判断函数的单调性;(Ⅱ)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,从而求导F′(x)=,再由导数的正负讨论确定函数的单调性,从而求函数的最大值,从而化恒成立问题为最值问题即可;(Ⅲ)令a=﹣1,此时f(x)=﹣lnx+x﹣3,从而可得f(1)=﹣2,且f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,从而可得﹣lnx+x﹣1>0,即lnx<x﹣1对一切x∈(1,+∞)成立,从而可得若n≥2,n∈N*,则有ln(+1)<<=﹣,从而化ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)为ln(+1)+ln(+1)+…+ln(+1)<1(n≥2,n∈N*);从而证明.【解答】解:(Ⅰ)f′(x)=(x>0),当a>0时,f(x)的单调增区间为(0,1],单调减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),单调减区间为(0,1];(Ⅱ)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,则F′(x)=,若﹣a≤e,即a≥﹣e,F(x)在[e,e2]上是增函数,F(x)max=F(e2)=2a+e2﹣e+1≤0,a≤,无解.若e<﹣a≤e2,即﹣e2≤a<﹣e,F(x)在[e,﹣a]上是减函数;在[﹣a,e2]上是增函数,F(e)=a+1≤0,即a≤﹣1.F(e2)=2a+e2﹣e+1≤0,即a≤,∴﹣e2≤a≤.若﹣a>e2,即a<﹣e2,F(x)在[e,e2]上是减函数,F(x)max=F(e)=a+1≤0,即a≤﹣1,∴a<﹣e2,综上所述,a≤.(Ⅲ)证明:令a=﹣1,此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时,f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,∵n≥2,n∈N*,则有ln(+1)<<=﹣,要证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*),只需证ln(+1)+ln(+1)+…+ln(+1)<1(n≥2,n∈N*);ln(+1)+ln(+1)+…+ln(+1)<(1﹣)+(﹣)+…+(﹣)=1﹣<1;所以原不等式成立.【点评】本题考查了导数的综合应用,放缩法证明不等式,裂项求和法等的应用,同时考查了恒成立问题及分类讨论的数学思想应用,属于难题. 9.(2016•中山市校级模拟)已知函数f(x)=lnx﹣a(x﹣1),a∈R(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围.【专题】综合题;压轴题;导数的综合应用.【分析】(Ⅰ)f(x)的定义域为(0,+∞),,若a≤0,f(x)在(0,+∞)上单调递增;若a>0时,f(x)在(0,)上单调递增,在(,+∞)单调递减.(Ⅱ)f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,,由此进行分类讨论,能求出实数a的取值范围.【解答】(本小题满分12分)解:(Ⅰ)f(x)的定义域为(0,+∞),,若a≤0,则f′(x)>0,∴f(x)在(0,+∞)上单调递增,…(2分)若a>0,则由f′(x)=0,得x=,当x∈(0,)时,f′(x)>0,当x∈()时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)单调递减.所以当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,)上单调递增,在(,+∞)单调递减.…(4分)(Ⅱ)f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,,…(6分)①若a≤0,F′(x)>0,g′(x)在[1,+∞)递增,g′(x)≥g′(1)=1﹣2a>0,∴g(x)在[1,+∞)递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.…(8分)②若0<a<,当x∈(1,),F′(x)>0,∴g′(x)在(1,)递增,从而g′(x)>g′(1)=1﹣2a,∴g(x)在[1,+∞)递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.…(10分)③若a,F′(x)≤0在[1,+∞)恒成立,∴g′(x)在[1,+∞)递减,g′(x)≤g′(1)=1﹣2a≤0,从而g9x)在[1,+∞)递减,∴g(x)≤g(1)=0,f(x)﹣≤0,综上所述,a的取值范围是[).…(12分)【点评】本题考查函数的单调性的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,有一定的探索性,对数学思维的要求较高,解题时要注意导数性质的合理运用. 10.(2016•南通模拟)设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)设F(x)=f(x)+ax2+ax,问F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)设A(x1,y1),B(x2,y2)是函数g(x)=f(x)+ax图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为为k.证明:k>g′(x0).【专题】压轴题;函数思想;综合法;导数的综合应用.【分析】(Ⅰ)先求出函数的定义域,求出函数f(x)的导函数,然后分类讨论,当a≤0时,f(x)的单调增区间为(﹣∞,+∞),当a>0时,f(x)的单调增区间为(0,);(Ⅱ)首先求出F(x)的导函数,然后分类讨论,当a≥0时,恒有F′(x)>0,F(x)在(0,+∞)上无极值;当a<0时,F(x)有极大值,无极小值;(Ⅲ),又,求出g(x)的导函数,然后设出0<x1<x2,即证,再设,即证:,再进一步设出k(t),求出k(t)的导函数,则结论可证.【解答】(Ⅰ)解:在区间(0,+∞)上,.(1)当a≤0时,∵x>0,∴f′(x)>0恒成立,f(x)的单调增区间为(0,+∞);(2)当a>0时,令f′(x)>0,即,得.∴f(x)的单调增区间为(0,);综上所述:当a≤0时,f(x)的单调增区间为(0,+∞),当a>0时,f(x)的单调增区间为(0,);(Ⅱ)由F(x)=f(x)+ax2+ax=lnx﹣ax+ax2+ax=lnx+ax2得(x>0),当a≥0时,恒有F′(x)>0,∴F(x)在(0,+∞)上无极值;当a<0时,令F′(x)=0,得,x∈(0,),F′(x)>0,F′(x)单调递增,x∈(,+∞),F′(x)<0,F′(x)单调递减.∴.F(x)无极小值.综上所述:a≥0时,F(x)无极值,a<0时,F(x)有极大值,无极小值;(Ⅲ)证明:,又,∴g′(x0)=,要证k>g′(x0),即证,不妨设0<x1<x2,即证,即证,设,即证:,也就是要证:,其中t∈(1,+∞),事实上:设t∈(1,+∞),则=,∴k(t)在(1,+∞)上单调递增,因此k(t)>k(1)=0,即结论成立.【点评】本题考查了利用导数研究函数的单调性,考查了利用导数研究函数的极值问题,考查了学生的运算能力,计算量比较大,属于难题.设a∈R,函数f(x)=lnx﹣ax.求f(x)的单调递增区间; 11.(2016•佛山模拟)已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x(a∈R),f′(x)为f(x)的导数.(Ⅰ)当a=﹣3时证明y=f(x)在区间(﹣1,1)上不是单调函数.(Ⅱ)设,是否存在实数a,对于任意的x1∈[﹣1,1]存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在求出a的取值范围;若不存在说明理由.【专题】压轴题;导数的综合应用.【分析】(Ⅰ)证明y=f(x)在区间(﹣1,1)上不是单调函数,先求函数导函数,判断导函数的函数值在区间内不同号;(Ⅱ)令F(x)=f′(x)+2ax,判断是否存在实数a,对于任意的x1∈[﹣1,1]存在x2∈[0,2],使得f'(x1)+2ax1=g(x2)成立,转化成求在[0,2]内的值域,然后使函数F(x)的值域为g(x)值域的子集.【解答】解:(Ⅰ)当a=﹣3时,f(x)=x3+4x2﹣3x,f′(x)=3x2+8x﹣3,由f′(x)=0,即3x2+8x﹣3=0,得x1=﹣3,,当时,f′(x)<0,所以f(x)在(﹣1,)上为减函数,在(,1)上导数为正,函数为增函数,所以,f(x)在(﹣1,1)上不是单调函数.(Ⅱ)因为g(x)=在[0,2]上为增函数,所以g(x)∈[﹣,6].令F(x)=f′(x)+2ax=3x2+2(1﹣a)x﹣a(a+2)+2ax=3x2+2x﹣a2﹣2a若存在实数a,对于任意的x1∈[﹣1,1]存在x2∈[0,2],使得f'(x1)+2ax1=g(x2)成立,则对任意x∈[﹣1,1],有,F(x)max≤6.对于函数F(x)=3x2+2x﹣a2﹣2a,==,F(x)max=5﹣a2﹣2a.联立解得:﹣2≤a≤0.【点评】本题(Ⅰ)主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减;(Ⅱ)考查了导数的综合运用,解答的关键是如何搭桥,把看似无关的两个变量的取值问题,转化成两函数的值域之间的包含关系. 12.(2016•梅州二模)设a为实数,函数f(x)=ex﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.【专题】计算题;压轴题.【分析】(1)由f(x)=ex﹣2x+2a,x∈R,知f′(x)=ex﹣2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值.(2)设g(x)=ex﹣x2+2ax﹣1,x∈R,于是g′(x)=ex﹣2x+2a,x∈R.由(1)知当a>ln2﹣1时,g′(x)最小值为g′(ln2)=2(1﹣ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2﹣2ax+1.【解答】(1)解:∵f(x)=ex﹣2x+2a,x∈R,∴f′(x)=ex﹣2,x∈R.令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x(﹣∞,ln2)ln2(ln2,+∞)f′(x)﹣0+f(x)单调递减2(1﹣ln2+a)单调递增故f(x)的单调递减区间是(﹣∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2﹣2ln2+2a=2(1﹣ln2+a),无极大值.(2)证明:设g(x)=ex﹣x2+2ax﹣1,x∈R,于是g′(x)=ex﹣2x+2a,x∈R.由(1)知当a>ln2﹣1时,g′(x)最小值为g′(ln2)=2(1﹣ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2﹣1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex﹣x2+2ax﹣1>0,故ex>x2﹣2ax+1.【点评】本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答. 13.(2016•高安市校级模拟)已知函数f(x)=xlnx,g(x)=.(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.【专题】计算题;压轴题;函数思想;转化思想;分析法;函数的性质及应用;导数的综合应用.【分析】(Ⅰ)对F(x)求导,利用x∈(1,2)判定导函数的符号,进而得到函数的单调性,在利用零点存在定理进行证明.(Ⅱ)先由x的范围讨论f(x),g(x)的大小,确定之间的关系式m(x),在判断x1+x2与2x0的大小,可以利用分析法对其进行证明.【解答】解:由题意:F(x)=f(x)﹣g(x),那么:F(x)=xlnx﹣.定义域为(0,+∞)F′(x)=1+lnx+,由题设x∈(1,2),故F′(x)>0,即F(x)在区间(1,2)上是增函数.(1,2)是单调增区间.那么:F(1)=ln1﹣=<0,F(2)=2ln2﹣>0,并且F(x)在(1,2)上连续的,故根据零点定理,有F(x)在区间(1,2)有且仅有唯一实根,即一个零点.(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,由f(x)=xlnx,当0<x≤1时,f(x)≤0,而g(x)=>0,故f(x)<g(x);由(Ⅰ)可知F′(x)=1+lnx+,当x>1时,F′(x)>0,存在零点x0∈(1,2),不然有:F(x0)=f(x0)﹣g(x0)=0,故1<x<x0时,f(x)<g(x);当x>x0时,f(x)>g(x);而此得到m(x)=,显然:当1<x<x0时,m′(x)=1+lnx恒大于0,m(x)是单增函数.当x>x0时,m′(x)=恒小于0,m(x)是单减函数.m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),则x1∈(1,x0),x2∈(x0,+∞),显然:当x2→+∞时,x1+x2>2x0.要证明x1+x2>2x0,即可证明x2>2x0﹣x1>x0,而m(x)在x>x0时是单减函数.故证m(x2)<m(2x0﹣x1).又由m(x1)=m(x2),即可证:m(x1)<m(2x0﹣x1).即x1lnx1<,(构造思想)令h(x)=xlnx﹣,由(1<x<x0).其中h(x0)=0,那么:h′(x)=1+lnx+﹣,记φ(t)=,则φ′(t)=,当t∈(0,1)时,φ′(t)>0;当t>1时,φ′(t)<0;故φ(t)max=;而φ(t)>0;故>φ(t)>0,而2x0﹣x>0,从而有:<0;因此:h′(x)=1+lnx+﹣>0,即h(x)单增,从而1<x<x0时,h(x)<h(x0)=0.即x1lnx1<成立.故得:x1+x2>2x0.【点评】本题考查了零点才存在性问题和判断,有考查了利用导数来研究函数的单调性,最值及其运用.考了证明化简的能力,不断的构造思想.属于难题. 14.(2016•赤峰校级四模)设函数f(x)=lnx﹣ax2﹣bx.(Ⅰ)当a=b=时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+ax2+bx+(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1,方程2mf(x)=x2有唯一实数解,求正数m的值..【专题】计算题;压轴题.【分析】(I)函数的定义域是(0,+∞),把代入函数解析式,求其导数,根据求解目标,这个导数在函数定义域内只有一个等于零的点,判断这唯一的极值点是极大值点即可;(II)即函数F(x)的导数在(0,3]小于或者等于恒成立,分离参数后转化为函数的最值;(III)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m.【解答】解:(I)依题意,知f(x)的定义域为(0,+∞),当时,,(2′)令f'(x)=0,解得x=1.(∵x>0)因为g(x)=0有唯一解,所以g(x2)=0,当0<x<1时,f'(x)>0,此时f(x)单调递增;当x>1时,f'(x)<0,此时f(x)单调递减.所以f(x)的极大值为,此即为最大值…(4分)(II),x∈(0,3],则有≤,在x0∈(0,3]上恒成立,所以a≥,x0∈(0,3],当x0=1时,取得最大值,所以a≥…(8分)(III)因为方程2mf(x)=x2有唯一实数解,所以x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,则.令g'(x)=0,x2﹣mx﹣m=0.因为m>0,x>0,所以(舍去),,当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减,当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增当x=x2时,g'(x2)=0,g(x)取最小值g(x2).(12′)则既所以2mlnx2+mx2﹣m=0,因为m>0,所以2lnx2+x2﹣1=0(*)设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,即,解得.…(12分)【点评】本题考查导数在研究函数性质、研究不等式和方程问题中的综合运用,试题的难度不大,但考查点极为全面.本题的难点是第三问中方程解的研究,当函数具有极值点时,在这个极值点左右两侧,函数的单调性是不同的,这样就可以根据极值的大小,结合函数图象的变化趋势确定方程解的个数,如本题中函数在定义域内有唯一的极值点,而且是极小值点,也就是最小值点,如果这个最小值小于零,函数就出现两个零点,方程就有两个不同的实数解,只有当这个最小值等于零时,方程才有一个实数解,而最小值等于零的这个极小值点x满足在此点处的导数等于零,函数值也等于零,即我们的解析中的方程组,由这个方程组求解m使用了构造函数通过函数的性质得到x2的方法也是值得仔细体会的技巧. 15.(2016•金凤区校级二模)已知函数f(x)=x2+lnx(1)求函数f(x)在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=x3图象的下方.【专题】计算题;证明题;压轴题;转化思想.【分析】(1)先求导,由导数研究函数的单调、极值,计算端点函数值,比较极值与端点函数值,进而求出函数的最大值、最小值;(2)构造函数设F(x)=x2+lnxx3,利用导数可知函数F(x)的单调性为递减,从而可得F(x)<F(1)=0可证.【解答】解:(1)由f(x)=x2+lnx有f′(x)=x+(2分)当x∈[1,e]时,f′(x)>0∴f(x)max=f(e)=e2+1,f(x)min=f(1)=(6分)(2)设F(x)=x2+lnx﹣x3,则F′(x)=x+﹣2x2=当x∈[1,+∞)时,F′(x)<0,且F(1)=﹣<0故x∈[1,+∞)时F(x)<0∴x2+lnx<x3,得证(12分)【点评】本题主要考查了导数的应用:求单调区间,求极值、最值,利用单调性证明不等式,解(2)的关键是构造函数,转化为研究函数的单调性. 16.(2016•孝义市模拟)设f(x)=px﹣﹣2lnx.(Ⅰ)若f(x)在其定义域内为单调递增函数,求实数p的取值范围;(Ⅱ)设g(x)=,且p>0,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.【专题】综合题;压轴题.【分析】(I)由f(x)=px﹣﹣2lnx,得=.由px2﹣2x+p≥0在(0,+∞)内恒成立,能求出P的范围.(II)法1:g(x)=在[1,e]上是减函数,所以g(x)∈[2,2e].原命题等价于[f(x)]max>[g(x)]min=2,x∈[1,e],由,解得p>,由此能求出p的取值范围.法2:原命题等价于f(x)﹣g(x)>0在[1,e)上有解,设F(x)=f(x)﹣g(x)=px﹣﹣2lnx﹣,由=,知F(x)是增函数,由[F(x)]max=F(e)>0,能求出p的取值范围.【解答】解:(I)由f(x)=px﹣﹣2lnx,得=.…(3分)要使f(x)在其定义域(0,+∞)内为单调增函数,只需f′(x)≥0,即px2﹣2x+p≥0在(0,+∞)内恒成立,…(5分)从而P≥1.…(7分)(II)解法1:g(x)=在[1,e]上是减函数,所以[g(x)]min=g(e)=2,[g(x)]max=g(1)=2e,即g(x)∈[2,2e].当0<p<1时,由x∈[1,e],得x﹣,故,不合题意.…(10分)当P≥1时,由(I)知f(x)在[1,e]连续递增,f(1)=0<2,又g(x)在[1,e]上是减函数,∴原命题等价于[f(x)]max>[g(x)]min=2,x∈[1,e],…(12分)由,解得p>,综上,p的取值范围是(,+∞).…(15分)解法2:原命题等价于f(x)﹣g(x)>0在[1,e)上有解,设F(x)=f(x)﹣g(x)=px﹣﹣2lnx﹣,∵=,∴F(x)是增函数,…(10分)∴[F(x)]max=F(e)>0,解得p>,∴p的取值范围是(,+∞).…(15分)【点评】本题考查得用导数求函数最值的应用,考查运算求解能力,推理
本文档为【高中数学导数压轴题(一)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
rabbit
我是一名高中英语老师 有着丰厚的教学经验,曾经担任过学校教学教研组组长,撰写过很多论文和期刊
格式:doc
大小:986KB
软件:Word
页数:48
分类:
上传时间:2021-11-25
浏览量:3