首页 初中数学竞赛讲座之四--一元一次方程

初中数学竞赛讲座之四--一元一次方程

举报
开通vip

初中数学竞赛讲座之四--一元一次方程第四讲 一元一次方程 方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.   用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.   如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方...

初中数学竞赛讲座之四--一元一次方程
第四讲 一元一次方程 方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.   用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.   如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.   只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 形式(最简形式).   解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.    一元一次方程ax=b的解由a,b的取值来确定:     (2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;   (3)若a=0,且b≠0,方程变为0·x=b,则方程无解.   例1 解方程        解法1 从里到外逐级去括号.去小括号得     去中括号得     去大括号得         解法2 按照分配律由外及里去括号.去大括号得     化简为     去中括号得     去小括号得                例2 已知下面两个方程 3(x+2)=5x,① 4x-3(a-x)=6x-7(a-x) ②   有相同的解,试求a的值.    分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 解题思路是从方程①中求出x的值,代入方程②,求出a的值.   解 由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有 4×3-3(a-3)=6×3-7(a-3), 7(a-3)-3(a-3)=18-12,      例3 已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.   解 由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有 2[2(x+3)-3(x-3)]=3×3,-2x=-21,   例4 解关于x的方程(mx-n)(m+n)=0.   分析 这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.   解 把原方程化为 m2x+mnx-mn-n2=0, 整理得 m(m+n)x=n(m+n).      当m+n≠0,且m=0时,方程无解;   当m+n=0时,方程的解为一切实数.    说明 关于失联党员情况说明岗位说明总经理岗位说明书会计岗位说明书行政主管岗位说明书 含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.   例5 解方程 (a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.   分析 本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.   解 将原方程整理化简得 (a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,    即 (a2-b2)x=(a-b)2.   (1)当a2-b2≠0时,即a≠±b时,方程有唯一解     (2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.   例6 已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.   解 因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以 m2-1=0,即m=±1.   (1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为 199(1+4)(4-2×1)+1=1991;   (2)当m=-1时,原方程无解.   所以所求代数式的值为1991.   例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.   解 将原方程变形为 2ax-a=3x-2,   即 (2a-3)x=a-2.   由已知该方程无解,所以          例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?   来确定:   (1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.   (2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.   (3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.   解 按未知数x整理方程得 (k2-2k)x=k2-5k.   要使方程的解为正数,需要 (k2-2k)(k2-5k)>0.   看不等式的左端 (k2-2k)(k2-5k)=k2(k-2)(k-5).   因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.   例9 若abc=1,解方程     解 因为abc=1,所以原方程可变形为     化简整理为     化简整理为          说明 像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.   例10 若a,b,c是正数,解方程     解法1 原方程两边乘以abc,得到方程   ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得 ab[x-(a+b+c)]+bc[x-(a+b+c)] +ac[x-(a+b+c)]=0,   因此有 [x-(a+b+c)](ab+bc+ac)=0.   因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以 x-(a+b+c)=0,   即x=a+b+c为原方程的解.   解法2 将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到     其余两项做类似处理.   设m=a+b+c,则原方程变形为     所以            即 x-(a+b+c)=0. 所以x=a+b+c为原方程的解.   说明 注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.   例11 设n为自然数,[x] 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示不超过x的最大整数,解方程:     分析 要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)    …,n[x]都是整数,所以x必是整数.   解 根据分析,x必为整数,即x=[x],所以原方程化为         合并同类项得         故有       所以x=n(n+1)为原方程的解.   例12 已知关于x的方程     且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.   解 由原方程可解得          a最小,所以x应取x=160.所以     所以满足题设的自然数a的最小值为2.      练习四     1.解下列方程:*      2.解下列关于x的方程:   (1)a2(x-2)-3a=x+1;            4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.
本文档为【初中数学竞赛讲座之四--一元一次方程】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_716588
暂无简介~
格式:doc
大小:248KB
软件:Word
页数:12
分类:小学语文
上传时间:2010-01-29
浏览量:15