首页 使用多相降压转换器的好处

使用多相降压转换器的好处

举报
开通vip

使用多相降压转换器的好处 Analog Applications JournalHigh-Performance Analog Products www.ti.com/aaj 1Q 2012 Texas Instruments Incorporated 8 Benefits of a multiphase buck converter Introduction Single-phase buck controllers work well for low-voltage converter applications with c...

使用多相降压转换器的好处
Analog Applications JournalHigh-Performance Analog Products www.ti.com/aaj 1Q 2012 Texas Instruments Incorporated 8 Benefits of a multiphase buck converter Introduction Single-phase buck controllers work well for low-voltage converter applications with cur- rents of up to approximately 25 A, but power dissipation and efficiency start to become an issue at higher currents. One suitable approach is to use a multiphase buck controller. This article briefly dis cusses the benefits of using a multiphase buck converter versus a single- phase converter and the value a multiphase buck converter can provide when implemented. Figure 1 shows a two-phase circuit. From this circuit’s waveforms, shown in Figure 2, it is clear that the phases are interleaved. Inter leav- ing reduces ripple currents at the input and output. It also reduces hot spots on a printed circuit board or a particular component. In effect, a two-phase buck con verter reduces the RMS-current power dissipation in the FETs and inductors by half. Interleaving also reduces transitional losses. Output-filter consideration The output-filter requirements decrease in a multiphase implementation due to the reduced current in the power stage for each phase. For a 40-A, two-phase solution, an average current of only 20 A is delivered to each inductor. Compared to a 40-A single-phase approach, the inductance and inductor size are drastically reduced because of lower average current and lower saturation current. Output ripple voltage Ripple-current cancellation in the output-filter stage results in a reduced ripple voltage across the output capacitor compared to a single-phase converter. This is another reason why a multi- phase converter is preferred. Equations 1 and 2 calculate the percentage of ripple current can- celed in each inductor. m D Phases� � (1) and By David Baba Applications Engineering Manager Power Management Q1 Gate Multiphase Controller Q3 Gate Phase 1 Node Phase 2 Node L1 L2 Q2 Gate Q4 Gate Q1 Q3 Q2 Q4 VIN VIN VOUT Figure 1. Two-phase buck converter Phase 1 Phase 2 1.628 1.629 1.630 1.631 1.632 1.633 1.634 Time (ms) S w it c h -N o d e V o lt a g e ( V ) 6 5 4 3 2 1 0 Figure 2. Node waveforms of phases 1 and 2 Rip _ normI (D) mp(D) 1 mp(D) D D Phases PhasesPhases , (1 D) D � �� � � � �� � � � � �� � � (2) ๑ᆩܠ၎ইუገ࣑ഗڦࡻت ፕኁǖDavid BabaLjڤዝᅏഗ (TI) ᆌᆩ߾ײևঢ়૙ ᆅჾ ܔᇀۉୁሞ 25 A ፑᆸڦگუገ࣑ഗᆌᆩܸ ჾLjڇ၎ইუ੦዆ഗݥ׉ᆶၳăැۉୁምٷ ڦࣆLjࠀࡼࢅၳ୲৽ਸ๔ׯྺ࿚༶ăᅃዖড ࡻڦݛ݆๟๑ᆩܠ၎ইუ੦዆ഗăԨ࿔ॽ० ڇԲড๑ᆩܠ၎ইუገ࣑ഗࢅڇ၎ገ࣑ഗڦ ࡻتLjժຫ௽ۉୟํ၄้ᅃ߲ܠ၎ইუገ࣑ ഗీࠕ༵ࠃ๊஺ᄣڦኵă ཮ 1 ၂๖କᅃ੼ܾ၎ۉୟăᆯ޿ۉୟڦհႚ DŽ཮ 2 ໯๖Dž੗ᅜൣؤںੂڟ߳၎ࢻ၎঍ ٱăኄዖ঍ٱ੗३ณ๼෇ࢅ๼؜࿖հۉୁă ଷྔLj໲࣏३ณକᆇຘۉୟӱईኁగ߲༬ۨ ፇॲฉڦඤۅăํाฉLjܾ၎ইუገ࣑ഗඟ FET ࢅۉߌڦ RMS-ۉୁࠀࡼইگକᅃӷă၎ ঍ٱ࣏੗ᅜইگدڞ໦ࡼă ๼؜୳հഗ੊୯ ᆯᇀ௅߲၎࿋ڦࠀ୲पۉୁ߸گLjܠ၎ํ၄ ڦ๼؜୳հഗᄲ൱ᄺໜኮইگăܔᇀᅃ੼ 40-A ܾ၎঴ਦݛӄઠຫLjၠ௅߲ۉߌ༵ࠃڦ ೝ਩ۉୁৈྺ 20Aă၎Բ 40-A ڇ၎ݛ݆Ljᆯ ᇀೝ਩ۉୁࢅԏࢅۉୁ߸گLjۉߌࢅۉߌഗ ༹ओۼٷٷ३ၭă ๼؜࿖հۉუ ๼؜୳հഗपዐڦ࿖հۉୁڸၩ੗ټઠԲڇ ၎ገ࣑ഗ߸گڦ๼؜ۉඹഗ࿖հۉუăኄ৽ ๟ܠ၎ገ࣑ഗྺ๊஺๟๯჋ڦᇱᅺăݛײ๕ 1 ࢅݛײ๕ 2 ऺ໙؜କ௅߲ۉߌዐ໯ڸၩڦ ࿖հۉୁӥݴԲă ཮ 1 ܾ၎ইუገ࣑ഗ ཮ 2 ၎ 1 ࢅ 2 ڦবۅհႚ Texas Instruments Incorporated 9 Analog Applications Journal 1Q 2012 www.ti.com/aaj High-Performance Analog Products where D is the duty cycle, IRip_norm is the nor- malized ripple current as a function of D, and mp is the integer of m. Figure 3 plots these equations. For example, using two phases at a 20% duty cycle (D) yields a 25% reduction in ripple current. The amount of ripple volt- age the capacitor must tolerate is calculated by multiplying the ripple current by the capac- itor’s equivalent series resistance. Clearly, both maximum current and voltage requirements are reduced. Figure 4 shows the simulation results for a two-phase buck converter at a duty cycle of 25%. The inductor ripple current is 2.2 A, but the output capacitor sees only 1.5 A due to ripple-current cancellation. With a duty cycle of 50% and two phases, the capacitor sees no ripple current at all. Load-transient performance Load-transient performance is improved due to the reduction of energy stored in each out- put inductor. The reduction in ripple voltage as a result of current cancellation contributes to minimal output-voltage overshoot and under shoot because many cycles will pass before the loop responds. The lower the ripple current is, the less the perturbation will be. Power Management 0 10 20 30 40 50 60 70 80 90 100 Duty Cycle, D (%) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 N o rm a li z e d R ip p le C u rr e n t Figure 3. Normalized capacitor ripple current as a function of duty cycle 4.463 4.464 4.465 4.466 Time (ms) 4.467 4.468 4.469 O u tp u t C a p a c it o r C u rr e n t ( A ) In d u c to r C u rr e n t ( A ) 24 22 20 18 16 14 12 10 8 6 4 2 6 4 2 0 –2 –4 Phase 1 Phase 2 Figure 4. Cancellation of inductor ripple current with D = 25% Cancellation of input RMS ripple current The input capacitors supply all the input current to the buck converter if the input wire to the converter is induc- tive. These capacitors should be carefully selected to satisfy the RMS-ripple-current requirements to ensure that they ഄዐLjD ྺ቞੣ԲLjIRip_norm ྺՔጚࣅڦ ࿖հۉୁLjഄྺ D ڦࡧຕLjܸ mp ྺm ڦ ኝຕă཮ 3 ྺኄၵݛײ๕ڦ൸၍཮ă૩සLj 20% ቞੣Բ (D) ้๑ᆩ 2 ߲၎Lj੗ইگ 25% ࿖հۉୁăۉඹഗՂႷ׶๴ڦ࿖հۉ უٷၭLj੗ཚࡗ࿖հۉୁױᅜۉඹഗڦڪၳ ز૴ۉፆऺ໙ڥڟă࢔௽၂Ljፌٷۉୁࢅۉ უᄲ൱ۼইگକă ཮ 4 ၂๖କ 25% ቞੣Բူᅃ߲ܾ၎ইუገ ࣑ഗڦݠኈ঳ࡕăۉߌ࿖հۉୁྺ2.2ALjڍ ๟๼؜ۉඹഗۉୁৈྺ 1.5ALjᇱᅺ๟࿖հۉ ୁڸၩă50% ቞੣Բူ๑ᆩܾ၎้Ljۉඹ ഗྜඇுᆶ࿖հۉୁă ޶ሜຨༀႠీ ᆯᇀ௅߲๼؜ۉߌዐ٪ئڦీଉইگLj޶ሜ ຨༀႠీໜኮ༵ߛăۉୁڸၩټઠڦ࿖հۉ უইگLjӻዺํ၄କፌၭ๼؜ۉუࡗ؋ࢅူ ؋Ljᅺྺሞ࣍ୟၚᆌᅜമႹܠዜ೺ۼᅙ঳ຐă࿖հۉ ୁሁگLj߅ඡሁၭă ๼෇ RMS ࿖հۉୁڸၩ සࡕ૶থገ࣑ഗڦ๼෇၍٪ሞۉߌၳᆌLjሶ๼෇ۉඹഗ ॽ໯ᆶ๼෇ۉୁࠃߴইუገ࣑ഗăᄲጮဦ჋ስኄၵۉඹ ഗLjᅜ஢ፁRMS࿖հۉୁᄲ൱Ljඓԍ໲்փࣷ؜၄ࡗ ඤጒༀă࢔௽၂Ljܔᇀᅃ߲ 50% ቞੣Բڦڇ၎ገ࣑ഗ ཮ 3 Քጚࣅۉඹഗ࿖հۉୁྺ቞੣Բڦࡧຕ ཮ 4 D=25% ้ۉߌ࿖հۉୁڸၩ Texas Instruments Incorporated 10 Analog Applications JournalHigh-Performance Analog Products www.ti.com/aaj 1Q 2012 Power Management Table 1. Operating conditions of LM3754 evaluation board Input voltage 10.8 to 13.2 V Output voltage 1.2 V ± 1% Output current 40 A (max) Switching frequency 300 kHz Module size 2 × 2 inches Circuit area 1.4 × 1.3 inches Module height 0.5 inches Air flow 200 LFM Number of phases 2 do not overheat. It is well understood that, for a single- phase converter with a duty cycle of 50%, the worst-case input RMS ripple current is typically rated at 50% of the output current. Figure 5 and Equation 3 indicate that, for a two-phase solution, the worst-case RMS ripple current occurs at duty cycles of 25 and 75% and is only 25% of the output current. Input _ norm mp(D) mp(D) 1 I (D) D D Phases Phases �� � � � � �� � � � � � (3) The value of a multiphase solution as compared to a single-phase solution is clear. Less input capacitance can be used to satisfy the RMS-ripple-current demands of the buck stage. Application example The LM3754 high-power-density evaluation board delivers 1.2 V at 40 A from a 12-V input supply. The board is 2 × 2 inches, and the area covered by the components is 1.4 × 1.3 inches. The switching frequency of each phase is set to 300 kHz. Table 1 provides a summary of these and other operating conditions. The components are placed on a 4-layer board, with 1 oz. of copper on all layers. Additional pins are included on this board for remote sensing, and a pin is used for margining the output voltage. Because the LM3754 evaluation board is designed to operate in high-power-density configurations, it utilizes the optimized input capacitors to provide the reduced RMS ripple current that is required. The evaluation board also has a low ripple voltage and good transient perform ance. The board layout shown in the LM3754 application note1 should be followed as closely as possible. However, if this is not possible, close attention should be paid to these considerations. Several more layout considerations will now be described, followed by the test results from a test board using the LM3754. These results are presented in Figures 6–11 on pages 12–13. They are typical of what one can expect to achieve or even improve upon in making the necessary modifications. Layout considerations High-current traces require enough copper to minimize voltage drops and temperature rises. The general rule of using a minimum of 7 mils per ampere was applied for the 2 oz. of copper used, and 14 mils per ampere for the inner layers for the 1 oz. of copper used. The input capacitors of each phase were placed as close as possible to the top MOSFET drain and the bottom MOSFET source to ensure minimal ground “bounce.” 0 10 20 30 40 50 60 70 80 90 100 Duty Cycle, D (%) 0.250 0.225 0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 0 N o rm a li z e d I n p u t R M S R ip p le C u rr e n t Figure 5. Normalized input RMS ripple current as a function of duty cycle ઠຫLjट၌๼෇ RMS ࿖հۉୁᅃӯࠦۨྺ 50% ๼؜ ۉୁă཮ 5 ࢅݛײ๕ 3 ՗௽Lj๑ᆩܾ၎঴ਦݛӄ้Lj 25% ࢅ 75% ቞੣Բ้؜၄ट၌ RMS ࿖հۉୁLjഄৈ ྺ 25% ๼؜ۉୁă ၎Բڇ၎঴ਦݛӄLjܠ၎঴ਦݛӄڦኵ߸௽ඓăኻႴ ๑ᆩ߸ၭڦۉඹLjՍ੗஢ፁইუपڦ RMS ࿖հۉୁ Ⴔ൱ă ᆌᆩํ૩ LM3754 ߛࠀ୲௢܈ೠࠚӱཚࡗᅃ߲ 12-V ๼෇ۉᇸ ࠃۉLj༵ࠃۉუྺ 12VLjۉୁྺ 40Aă޿ೠࠚӱ༹ ओٷၭྺ 2 × 2 ᆈ٫Ljፇॲ቞ᆩ௬ओྺ 1.4 × 1.3 ᆈ ٫ă௅߲၎ڦਸ࠲ೕ୲ยۨྺ 300kHză՗ 1 ܔฉຎ तഄ໱߾ፕཉॲ৊ႜକ߁ઔăፇॲݣዃሞᅃ߲ 4 ֫ӱ ฉLj֫ฉཟྺ 1 Ӈິăӱฉ࣏ᆶᅃၵᆅগLjᆩᇀᇺײ ॠ֪Ljଷᆶᅃ߲ᆅগᆩᇀइڥ๼؜ۉუᇆଉă ߵ਍ยऺLjLM3754 ೠࠚӱᅜߛࠀ୲௢܈ದዃ߾ፕLj ᅺُ໲૧ᆩঢ়ࡗᆫࣅڦ๼෇ۉඹഗLjഄᄲ൱ڦRMS࿖ հۉୁ߸گăଷྔLjೠࠚӱ࣏ᆛᆶডگڦ࿖հۉუࢅ ডߛڦຨༀႠీăᆌ৑੗ీںፏთ LM3754 ᆌᆩຫ ௽঻ถڦӱքਆăڍ๟LjසࡕփీፏთኄዖքਆLjᆌ ௢ൎጀᅪฉຎ੊୯ᅺ໎ă၄ሞLj࿢்࣏ॽྺ౞ຫ௽ഄ ໱ᅃၵ੊୯ᅺ໎Ljኮࢫ๟๑ᆩ LM3754 ڦ֪๬ӱ֪ ๬঳ࡕăڼ 12-13 ᄻڦ཮ 6-11၂๖କኄၵ঳ࡕăሞ ৊ႜՂᄲڦႪ߀้Ljኄၵ঳ࡕՍ๟౞ႴᄲڥڟڦLjई ኁຫႴᄲ߀৊इڥڦణՔă ۉୟӱքਆ੊୯ ഽۉୁڞ၍ᄲ൱ᆶፁࠕڦཟLj֍ీፌၭࣅუইࢅ࿒ืă ᅃӯᇱሶ๟Lj2 Ӈິཟፌณ௅Ҿಢ 7 ௢ܺLjాև֫ 1 Ӈ ິཟፌณ௅Ҿಢ 14 ௢ܺă௅߲၎ڦ๼෇ۉඹഗۼᆌ৑ ੗ీں੍ৎۥև MOSFET ୑टࢅڹև MOSFET ᇸटݣ ዃLjᅜඓԍፌၭথںĐཌۯđă ૶থ዁ IC ڦ႑ࡽፇॲ ໯ᆶ૶থ዁ IC ڦၭ႑ࡽፇॲ਩৑੗ీں੍ৎ IC ݣዃă VREF ࢅ VCC ᳘ࢇۉඹഗᄺᄲ৑੗ీں੍ৎ ICăܔ႑ ๼෇ۉუ 10 .8 ڟ13 .2 V ๼؜ۉუ 1 .2 V ± 1% ๼؜ۉୁ 40 A (ፌٷ) ਸ࠲ೕ୲ 300 kHz ఇ੷༹ओ 2 × 2؅٫ ۉୟ௬ओ 1 .4 × 1 .3؅٫ ఇ੷ߛ܈ 0.5؅٫ ഘୁ 200 LFM ၎ຕ 2 ՗ 1 LM3754 ೠࠚӱ ߾ፕཉॲ ཮ 5 Քጚࣅ๼෇RMS࿖հۉୁྺ቞੣Բڦࡧຕ Texas Instruments Incorporated 11 Analog Applications Journal 1Q 2012 www.ti.com/aaj High-Performance Analog Products Power Management Signal components connected to the IC All small-signal components that connected to the IC were placed as close to it as possible. Decoupling capacitors for VREF and VCC were also placed as close as possible to the IC. The signal ground (SGND) was configured to ensure a low-impedance path from the ground of the signal compo- nents to the ground of the IC. SGND and PGND connections Good layout techniques include a dedicated ground plane; this board dedicated as much of inner-layer 2 as possible for the ground plane. Vias and signal lines were strategi- cally placed to avoid high-impedance points that could pinch off wide copper areas. The power ground (PGND) and SGND were kept separate, only connected to each other at the ground plane (inner layer 2). Gate drive The designer should ensure that a differential pair of traces is connected from the high-gate output to the top MOSFET gate and the return, which is the switch node. The distance between the controller and the MOSFET should be as short as possible. The same procedure should be followed for the LG and GND pins when the traces for the low-side MOSFET are routed. A differential pair of traces must also be routed from the CSM and CS2 pins to the RC network located across the output inductor. Notice in the layout in Reference 1 that, in order to provide additional noise suppression, the filter capacitor is split into two capacitors—one positioned by the inductor and the other close to the IC. These sense lines should not be run for long lengths in close proximity to the switch node. If possible, they should be shielded by using a ground plane. Minimizing the switch node To follow the common rules of keeping the switch-node area as small as possible but large enough to carry high currents, the switch node was built on multiple layers. Because the small evaluation board essentially folds back on itself from input to output, the switch node naturally sits on the outer layer, and the IC sits directly underneath the switch node. Therefore, it is essential to keep the switch node well away from the sense lines and also from the IC. Hence, the switch node was strategically placed facing outwards toward the edge of the board. Conclusion There are a number of benefits to using multiphase buck converters, such as higher efficiency from lower transi- tional losses; lower output ripple voltage; better transient performance; and lower ripple-current-rating requirements for the input capacitor. Some examples of multiphase buck converters that can deliver the full benefits described herein are the LM3754, LM5119, and LM25119 families. Reference 1. Robert Sheehan and Michael Null, “LM3753/54 evalua- tion board,” National Semiconductor Corp., Application Note 2021, Dec. 15, 2009 [Online]. Available: http:// www.national.com/an/AN/AN-2021.pdf Related Web sites power.ti.com www.ti.com/product/partnumber Replace partnumber with LM3754, LM5119, or LM25119 ࡽথں (SGND) ৊ႜದዃLjඓԍ႑ࡽፇॲথںڟICথں ኮक़ᆶᅃཉگፆੇཚୟă SGND ࢅ PGND ૶থ ডࡻڦքਆݛ݆Ԉઔጆᆩথں֫Ǘۉୟӱ৑੗ీܠںॽ ాև֫ 2 ጆᆩፕথں֫ăᆌٗࢢ࠵ฉܔཚ੥ࢅ႑ࡽ၍ ୟ৊ႜքਆLjՆ௨؜၄੗ీഞۖ੻ཟ൶ᇘڦᅃၵߛፆੇ ۅăඟۉᇸথں (PGND) ࢅ SGND ݴ૗ਸLjৈሞথں֫ DŽాև֫ 2Dž၎ࢻ૶থă ቆटൻۯ ยऺටᇵᆌඓԍߛቆट๼؜ڟۥև MOSFET ቆटڦ ઠ࣮ມၠֶۯܔڞ၍૶থLjഄྺਸ࠲বۅă੦዆ᇑ MOSFET ኮक़ڦਐ૗ᆌ৑੗ీں܌ăܔگ֨ MOSFET ڞ၍৊ႜքਆ้LjLG ࢅ GND ᆅগڦքਆᆌፏთ၎ཞڦ ߾ፕײႾă CSM ࢅ CS2 ᆅগڟحࡗ๼؜ۉߌڦ RC ྪஏኮक़Ljᄺ ՂႷ৊ႜֶۯܔք၍ăጀᅪĖ֖੊࿔၅ 1ėዐ঻ถڦք ਆLjྺକइڥ߸ߛڦሯำᅞ዆ႠీLj୳հഗۉඹԥݴָ ׯ 2 ߲ۉඹഗĊᅃ߲ݣዃᇀۉߌಖՉLjଷᅃ߲ሶ੍ৎ ICă੍ৎਸ࠲বۅ้Ljኄၵॠ֪၍ୟڦᆶၳ׊܈ড܌ă සࡕ੗ీLjᆌ๑ᆩᅃ߲থں֫ܔ໲்ํแೡԸă ፌၭࣅਸ࠲বۅ ᅃӯᇱሶ๟Ljඟਸ࠲বۅ௬ओ৑੗ీںၭLjڍᄲీࠕد ๼ഽۉୁLjᅺُਸ࠲বۅᄲ࿋ᇀܠ߲֫ฉăᆯᇀኄዖၭ ႙ೠࠚӱԨว੗ᅜٗ๼෇ڟ๼؜ችഐઠLj໯ᅜਸ࠲বۅ Ս࿋ᇀྔ֫ฉLjܸ IC ኱থ࿋ᇀਸ࠲বۅူ௬ăᅺُLj ՂႴඟਸ࠲বۅᇺ૗ॠ֪၍ୟLjཞ้ᄺᇺ૗ ICăኄᄣLj ਸ࠲বۅՍڥڟࢇ૙քਆLjၠྔוၠۉୟӱڦՉᇹă ঳ஃ ๑ᆩܠ၎ইუገ࣑ഗᆶႹܠࡻتLj૩සǖگࡗ܉໦ࡼټ ઠڦߛၳ୲Ăگ๼؜࿖հۉუĂߛຨༀႠీᅜत߸گڦ๼ ෇ۉඹഗ࿖հۉୁܮۨᄲ൱ڪăీࠕྺ౞ټઠฉຎዮܠࡻ تڦᅃၵܠ၎ইუገ࣑ഗ૩ጱԈઔ LM3754ĂLM5119 ࢅ LM25119 ဣଚׂ೗ă ֖੊࿔၅ ĐLM3753/54ೠࠚӱđLjፕኁǖRobert Sheehan ࢅ Michael NullLjெࡔࡔॆӷڞ༹ࠅິLj݀՗ᇀ 2009 ౎ 12ሆ਽ሞ၍ӲĖᆌᆩ๮֩2021ėLjူሜں኷ྺǖhttp:// www.national.com/an/AN/AN-2021.pdf ၎࠲ྪበ power.ti.com www.ti.com/product/partnumber ᆩ LM3754ĂLM5119 ईኁ LM25119 ༺࣑ں኷ዐڦ Đpartnumberđ Texas Instruments Incorporated 12 Analog Applications JournalHigh-Performance Analog Products www.ti.com/aaj 1Q 2012 Power Management Test results 4 8 12 I (A)OUT 16 20 24 28 32 36 40 90 85 80 75 70 65 E ff ic ie n c y ( % ) V = 1.2 VOUT V = 0.9 VOUT Figure 6. Efficiency plot with 12-V input 9.65 8.65 7.65 6.65 5.65 4.65 3.65 2.65 1.65 0.65 4 8 12 16 20 I (A)OUT 24 28 32 36 40 P o w e r L o s s ( W ) V = 1.2 VOUT V = 0.9 VOUT Figure 7. Power loss with 12-V input Figure 8. Switch-node voltages VIN = 12 V, VOUT = 1.2 V at 40 A ཮ 7 12-V ๼෇ࠀࡼ ཮ 8 ਸ࠲বۅۉუ ཮ 6 12-V ๼෇ၳ୲൸၍཮ Texas Instruments Incorporated 13 Analog Applications Journal 1Q 2012 www.ti.com/aaj High-Performance Analog Products Power Management Figure 9. Output voltage ripple VIN = 12 V, VOUT = 1.2 V at 40 A Figure 10. Transient response: 20 μs with 10-A load step (undershoot/overshoot ~ 27 mV) Figure 11. VOUT start-up for 1.2-V output with 40-A load ཮ 9 ๼؜ۉუ࿖հ ཮ 10 ຨༀၚᆌǖ10-A޶ሜօ׊20 μs DŽࡗ؋/ူ؋ሀ 27 mVDž ཮ 11 40-A ޶ሜ 1.2-V ๼؜ Vout ഔۯ཮ ZHCT153 重要声明 德州仪器(TI)及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息 ,并验证这些信息是否完整且是最新的。所有产品的 销售都遵循在订单确认时所提供的TI销售条款与条件。 TI保证其所销售的硬件产品的性能符合TI 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 保修的适用 规范 编程规范下载gsp规范下载钢格栅规范下载警徽规范下载建设厅规范下载 。仅在TI保证的范围内 ,且TI认为有必要时才会使用测试或其它质 量控制技术。除非政府做出了硬性规定 ,否则没有必要对每种产品的所有参数进行测试。 TI对应用帮助或客户产品 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 不承担任何义务。客户应对其使用TI组件的产品和应用自行负责。为尽量减小与客户产品和应用相关 的风险,客户应提供充分的设计与操作安全措施。 TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI产品或服务的组合设备、机器、流程相关的TI知识产权中授予的直接 或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从TI获得使用这些产品或服务的许可、授 权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI的专利权或其它知识产权方面的许可。 对于TI的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制 信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI对此类篡改过的文件不承担任何责任。 在转售TI产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI产品或服务的明示或暗示授权,且这是非法的、 欺诈性商业行为。TI对此类虚假陈述不承担任何责任。 TI产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI产品故障将预计造成重大的人员伤亡),除 非各方官员已经达成了专门管控此类使用的 协议 离婚协议模板下载合伙人协议 下载渠道分销协议免费下载敬业协议下载授课协议下载 。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业 技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI提供,但他们将独力负责满足在关键安全应用中使用其产品及TI 产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI产品而对TI及其代表造成的损失。 TI产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI特别注明该产品属于“军用”或“增强型塑料”产品。只有TI 指定的军用产品才满足军用规格。购买者认可并同意,对TI未指定军用的产品进行军事方面的应用,风险由购买者单独承担, 并且独力负责在此类相关使用中满足所有法律和法规要求。 TI产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI特别注明该产品符合ISO/TS 16949要求。购买者认可并同意, 如果他们在汽车应用中使用任何未被指定的产品,TI对未能满足应用所需要求不承担任何责任。 可访问以下URL地址以获取有关其它TI产品和应用解决 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 的信息: 产品 应用 数字音频 www.ti.com.cn/audio 通信与电信 www.ti.com.cn/telecom 放大器和线性器件 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/computer 数据转换器 www.ti.com.cn/dataconverters 消费电子 www.ti.com/consumer-apps DLP® 产品 www.dlp.com 能源 www.ti.com/energy DSP -数字信号处理器 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/industrial 时钟和计时器 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/medical 接口 www.ti.com.cn/interface 安防应用 www.ti.com.cn/security 逻辑 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/automotive 电源管理 www.ti.com.cn/power 视频和影像 www.ti.com.cn/video 微控制器 (MCU) www.ti.com.cn/microcontrollers RFID系统 www.ti.com.cn/rfidsys OMAP机动性处理器 www.ti.com/omap 无线连通性 www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址:上海市浦东新区世纪大道 1568号,中建大厦 32 楼邮政编码: 200122 Copyright © 2012 德州仪器半导体技术(上海)有限公司
本文档为【使用多相降压转换器的好处】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_413466
暂无简介~
格式:pdf
大小:788KB
软件:PDF阅读器
页数:7
分类:互联网
上传时间:2013-04-21
浏览量:22