首页 天线原理与设计_讲义4

天线原理与设计_讲义4

举报
开通vip

天线原理与设计_讲义4天线原理与设计_讲义4 74 《天线原理与设计》讲稿 王建 第二章 天线的阻抗 本章的主要目的是要求天线的输入阻抗,它是天线的重要参数之一。因为知道天线的输入阻抗之后,就可以选择合适的馈电传输线与之匹配。 要严格计算天线的输入阻抗是困难的。工程上常采用一些近似方法。主要有三种方法,即坡印亭矢量法、等值传输线法和感应电势法。坡印亭矢量法是先求 2得天线的辐射功率Pr,然后由Pr=ImRr/2求得其辐射电阻Rr。这个方法前面已 经作了介绍。这里主要讨论等值传输线法和感应电势法。 2.1等值传输线法 坡...

天线原理与设计_讲义4
天线原理与 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 _讲义4 74 《天线原理与设计》讲稿 王建 第二章 天线的阻抗 本章的主要目的是要求天线的输入阻抗,它是天线的重要参数之一。因为知道天线的输入阻抗之后,就可以选择合适的馈电传输线与之匹配。 要严格计算天线的输入阻抗是困难的。工程上常采用一些近似方法。主要有三种方法,即坡印亭矢量法、等值传输线法和感应电势法。坡印亭矢量法是先求 2得天线的辐射功率Pr,然后由Pr=ImRr/2求得其辐射电阻Rr。这个方法前面已 经作了介绍。这里主要讨论等值传输线法和感应电势法。 2.1等值传输线法 坡印亭矢量法是由远区辐射场求得 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示功率密度的坡印亭矢量,然后在以天线中点为圆心,以远区距离为半径的一个球面上积分求得辐射功率,最后求得辐射电阻。该方法的缺点是: (1) 只能计算天线的输入电阻,不能计算输入电抗。 (2) 由于假定天线上电流为正弦分布,使得天线输入端为波节点时(如全波振子),不能求出输入电阻。 这里介绍一种可以计算天线输入阻抗(包括虚、实部)的等值传输——————————————————————————————————————————————— 线法。该方法所得公式简便,便于工程应用。 对称振子是由一段开路的双线传输线张开而成, 把它等效为传输线是很自然的,于是可用传输线理论来计算它的输入阻抗。设有一段长为l,特性阻抗为Zc的有耗开路传输线如图2-1(a)所示,由传输线理论可得其输入阻抗为 Zin=Z ccoth(γl)=Zccoth*(α,jβ)l+ (2.1) 式中,特性阻抗 Zc= (2.2) 传播常数 γ=α+jβ=β和α分别为相位常数和衰减常数, R1、G1、L1和C1为传输线的分布参数,分别代表单位长度上的电阻、电导、电感和电容。忽略并联电导G1,且假设传输线损耗小R1/ωL1<<1,可得 γ=j ?jR1=α,jβ (2.3b) 2ωL1 ?R1α==?2Z0 (2.4) ???β=Zc=Z0(1?jR1α)=Z0(1?j) (2.5) 2ωL1β 75 《天线原理与设计》讲稿 王建 (a) 开路传输线 (b) 对称振子 图2-1 开路传输线与对称振子 ——————————————————————————————————————————————— 传输线无耗时的特性阻抗 Z0= (2.6) 若已知双线传输线的特性阻抗Z0、分布电阻R1和分布电容C1,由式(2.1)就可确定一段长为l的有耗开路传输线的输入阻抗。显然这还不能用于对称振子天线,因为双线传输线与对称天线存在如下显著的差别 (1) 传输线是非辐射系统,线上损耗为导体的欧姆损耗。而对称振子天线是辐射 系统,电流从输入端到末端,其间的每一点都将产生能量辐射,可用单位长度上的能量损耗来表示传输线的分布电阻R1。 (2) 均匀双线传输线的两线距离恒定,其分布参数是均匀的。而对称振子天线的 两臂上对称点之间的距离是变化的,见图2-1(b),其分布参数是非均匀的。 但是,对称振子天线的输入阻抗仍然可用式(2.1)表示,但必须修改参数Zc、α和β。 1、修改特性阻抗Zc 在D??ρ的情况下,无耗双线传输线的特性阻抗为 Z0=120ln(D/ρ) (2.7) 式中D为两线间距,ρ为导线截面直径,见图2-1(a)。而对称振子两臂上的两个对称点之间的距离为D=2z,其特性阻抗在0?z?l内是变化的。可用如下方法求对称振子的平均特性阻抗 1l2z2l′=?120ln()dz=120[ln(?1] (2.8) Z0l0ρ——————————————————————————————————————————————— ρ ′与l/ρ的关系曲线,由此式可计算平均特性阻抗Z0见书上P32图2-7。由图可见, ′就小,由于是对数关系,Z0′对称振子的臂长l愈小或导线截面直径ρ愈大,则Z0 随l/ρ的变化较缓慢。 ′=Z0′(1?j′替代得 Zc把式(2.5)中的Z0用Z0α (2.9) β 76 《天线原理与设计》讲稿 王建 2、修改衰减常数α 在不计G1的情况下,传输线的衰减常数α是由传输线上单位长度的导体热损耗电阻R1产生的。对于对称振子天线来说,不计导体热损耗,R1由单位长度的辐 ′。 射电阻R1′取代,并假设R1′沿天线是均匀的。这际上就是确定α′=R1′/2Z0 设距离天线中心点z处的电流为I(z),该处线元dz的辐射功率为 1 dPr=I2(z)R1′dz (2.10) 2 辐射总功率为 1l2 Pr=?I(z)R1′dz (2.11) 20 ——————————————————————————————————————————————— 另一方面,对称振子的辐射功率可用其辐射电阻Rr表示 12Pr=ImRr 2 2Rr=?I2(z)R1′dz (2.12) 故 Im0l 设R1′沿线不变,即等效辐射损耗均匀地分布于振子臂上,并代入 I(z)=Imsinβ(l?|z|)后积分,得 R1′=2Rr (2.13) sin(2l)l*1?+2βl R1′Rr (2.14) =′2Z0Z′l[1?02βl因此 α′= 3、修改相位常数β 由于天线上每一点都产生辐射,即电流波在天线上一边传输一边辐射,使得电流有衰减,电流传播的相速减小,波长缩短,相位常数大于自由空间相位常数。另外,对称振子有一定直径,其馈电端和末端分布电容增大,末端电流实际不为零,振子愈粗,末端效应愈显著,这也将影响相位常数。 书上P33图2-8给出了天线上电流传播的相位常数β′与自由空间相位常数β的比值ξ=β′/β随l/λ的曲线,参变量为l/d,d为导线直径。由于影响相位常数改变的因素不止一个,要确定β′是较困难的。在大多数情况下β′与β接近,所以工程上一般取β′,β。 4、对称振子的输入阻抗Zin ——————————————————————————————————————————————— 由式(2.1)、(2.9)、(2.14)可得对称振子的输入阻抗 ′(1?jZin=Z0α′jβ+α′)l] (2.15) β 77 《天线原理与设计》讲稿 王建 =′Z0α′α′{[sinh(2α′l)?sin(2βl)]?j[sinh(2α′l)+sin(2βl)]} ββcosh(2α′l)?cos(2βl) 式中采用的是自由空间相位常数β。可以证明,当α′l??1时上式可简化为 Zin=′RrZ0sin(2βl) (2.16) ?j2222′)+sinβl′)+sinβl(Rr/Z02(Rr/Z0 ′)2??sin2βl时,上式又可简化为 当(Rr/Z0 Zin=Rr′cot(βl) (2.17) ?jZ0sin2βl 该式一般可应用于l?0.4λ的情况。 由式(2.16)计算的对称振子输入电阻和电抗随l/λ变化的曲线如图2-2所示, ′。 图中参变量为振子的平均特性阻抗Z0 图2-2 不同特性阻抗下对称振子输入阻抗随l/λ的变化曲线 由此图可 总结 初级经济法重点总结下载党员个人总结TXt高中句型全总结.doc高中句型全总结.doc理论力学知识点总结pdf 出对称振子天线输入阻抗的如下特点: ′愈小,(1) 对称振子的平均特性阻抗Z0输入阻抗Zin=Rin+jXin随l/λ的变化 就愈小,阻抗曲线就愈平缓,其频率特性就愈好。实际中常采用加大振子直径的办法来降低特性阻抗,以展宽工作频带。短波波段使——————————————————————————————————————————————— 用的笼形对称振子(P67)就是基于这个原理。 (2) 当l<λ/4时,输入阻抗呈容性,并有不大的输入电阻;当l??λ/4时(半波振子),输入电抗为零,对称振子就如一个串联谐振电路。此时Zin=Rin=Rr=73.1Ω;当λ/4<l<λ/2时,输入阻抗呈感性;当l??λ/2时(全波 振子),振子相当于一个并联谐振电路,输入电抗为零,输入电阻为最大值,此时由式(2.16)有 ′2Z0 Zin=Rin= (2.18) Rr 半波和全波振子的输入阻抗都是纯电阻,易于和馈线匹配。但是与全波振子相比,在半波振子长度附近其阻抗曲线要平缓的多,工作频带要宽的多。因此, 78 《天线原理与设计》讲稿 王建 在工程中大多采用半波振子。 (3) 对称振子谐振长度的缩短现象 对称振子的谐振长度是其输入阻抗的虚部为零时的长度。由前面图2-2可见,Xin=0对应的电长度l/λ略小于0.25 和略小于0.5。这一现象称之为缩短效应。 振子天线愈粗,缩短愈多。所以,实际使用的半波振子全长是小于半个波长的。产生缩短的原因大致有两点: ? 以上计算是取β′=β,但由于电流波沿振子边传输边辐射有衰减,使得相位 ——————————————————————————————————————————————— 常数变大β′>β,波长缩短λ′<λ。 ? 振子天线的“末端效应”。振子导体有一定直径,使振子馈电端和两个末端的 分布电容增大,馈电端的效应使得附加电容与天线输入阻抗一起并联在馈电传输线上,引起误差;两个末端的效应使得末端电流不为零,这将使振子的等效长度增大,造成谐振长度缩短,如图2-3所示。显然,振子愈粗,缩短效应愈明显。 图2-3对称振子的末端效应 因此,设计半波振子天线时要考虑缩短效应。 2.2感应电动势法求天线辐射阻抗 坡印亭矢量法是在以天线中心为球心,远区距离r为半径的一个球面上对坡印亭矢量(功率密度)积分求出辐射功率,然后求得天线的辐射电阻。坡印亭矢量法只涉及远场的实功率,不涉及近场的储能虚功率,因此它只能求电阻,不能求电抗。实际上,天线的辐射功率包括实功率和虚功率两部分,实功率是向空间辐射的有功功率,为坡印亭矢量法计算的部分,可由远场来计算;虚功率是存储于天线附近的无功功率,必须由近场来计算,这恰恰是计算天线输入电抗的部分。 2.2.1 单根圆柱对称振子的辐射阻抗 1. 圆柱对称振子的近区场 圆柱对称振子如图2-4所示,并建立坐标系。对问题的分析采用圆柱坐标,设近区场点P的坐标为(ρ,?,z),它与天线轴线上的中心点和上下端点的距离分别为 ——————————————————————————————————————————————— 79 《天线原理与设计》讲稿 王建 r=R1=,R2= (2.19) 式中,l为振子臂长。在求解这个问题之前我们作如下两点假设: ? 振子上电流为正弦分布,由于振子截面半径a 很小a/l??1,电流在圆柱表面是均匀的,因此可看作电流集中在振子轴线上,其表示为: I(z)=Imsin*β(l?|z|)+ ? 馈电间隙δ很小,δ/l??1,其影响可忽略。 图2-4圆柱对称振子的近场计算图示 由振子上的电流分布可求得矢量磁位为 ?μ0l R A=z?e?jβ4π?lI(z′)Rdz′ =z μβR0?0e?jle?jβR?4πI?? m???lsin[β(l+z′)]Rdz′+?0sin[β(l?z′)]Rdz′?? sin[β(l?z′)]=ejβ(l?z′)?e?jβ(l?z′) 利用欧拉公式2j 和磁场与矢量磁位的关系 H= 1 μ?×A=? ?1[? ——————————————————————————————————————————————— ?Az ],并考虑到 0μ0 ?ρ ?e?jβ(R?z′)??ρR?z′ρe?jβ(R?z′) [=R[R?(z′?z)] 可得 HR?=j Im*e?jβR1 ,e?jβ24πρ ?2cos(βl)e?jβr] 再由麦氏方程 ?×H=jωε0E,可得 (2.20) (2.21) (2.22) (2.23) 80 《天线原理与设计》讲稿 王建 η0Ime?jβRe?jβRe?jβr Eρ=j*(z?l),(z,l)?2zcos(βl)+ (2.24) 4πρR1R2r12 η0Ime?jβRe?jβRe?jβr和 Ez=?j[+?2cos(βl) (2.25) 4πR1R2r12 圆柱对称振子的近区电磁场只有三个分量H?、Eρ和Ez,而且它们的表示式 (2.23)、(2.24)和(2.25)并不复杂。这三个场分量的最后一项在振子——————————————————————————————————————————————— 臂长恰好为λ/2的奇数倍时为零。 圆柱对称振子的近场是假设电流沿振子轴上流动时得到的,即假设振子为无限细。但是,对于圆柱截面半径a很小时(a/l??1),这三个近场表示是很好的近似公式。当ρ=a时,这三个近场分量就是振子圆柱表面的场。 2. 感应电动势法求圆柱对称振子的辐射阻抗 假如我们把坡印亭矢量法中的大球面缩小,直到缩小到天线的圆柱表面,通过这一封闭柱面的总功率表示为 1* Pr=??E×Hids (2.26) 2??s ?s,n?为圆柱表面的外法线单位矢量,ds为积分面式中,s为圆柱表面,ds=nd 元。从形式上看,式(2.26)与坡印亭矢量法求辐射功率的表示相同,但其中的电磁场已经不同。坡印亭矢量法中所用的电磁场是远区场,这里的积分面在天线表面,式中的电磁场必须是近场。 ?Eρ+zE?H?,则 ?z 和 H=?式(2.26)中的电磁场矢量分别为 E=ρ ,,?EzH??ρH?E×H,=zE?ρ (2.27) 式中,近区电磁场分量H?、Eρ和Ez由式(2.23)、(2.24)和(2.25)表示。当振子半 径很小时,封闭柱面的上下底面的积分可忽略不计,只考虑圆柱侧面的积分。此 ?ds=ρ?ad?dz,时ds=ρ并把式(2.27)代入(2.26),并注意到近场各——————————————————————————————————————————————— 分量与坐标?无关,得 l12π1l** Pr=??d??Ez(a,z)H?(a,z)adz=??Ez(a,z)H?(a,z)2π adz (2.28) ?l202?l 由安培环路定律 2πaH?(a,z)=I(z),则得 1lPr=??Ez(a,z)I*(z)dz (2.29) 2?l 式中,[?Ez(a,z)dz]表示振子dz小段上驱动电流I(z)流动的感应电 动势,故此法称之为“感应电动势法”。由 11*Pr=|Im|2Zr=ImImZr (2.30) 22 可得归算为波腹电流的辐射阻抗Zr为 81 《天线原理与设计》讲稿 王建 Zr=?1 *ImIm?l?lEz(a,z)I*(z)dz (2.31) 把式(2.25)表示的Ez(a,z)及电流分布I(z)=Imsin[β(l?|z|)]代入式 (2.31)得 ηZr=j04πe?jβR1e?jβR2e?jβr??lsinβ(l?|z|)[R1+R1?2cos(β l)rdz l =Rr+jXr (2.32) 式中,r=R1=R2=,a为振子截面半径,β=2π/λ,η0=120π。 经一系列运算后,上式的实部电阻Rr和虚部电抗Xr可用正、余弦积 分表示如下 ——————————————————————————————————————————————— Rr=30,2*C,ln(2βl)?Ci(2βl)+,cos(2βl)*C,ln(βl),Ci(4βl)?2Ci(2βl)+ ,sin(2βl)*Si(4βl)?2Si(2βl)+- (2.33) Xr=30,2Si(2βl),cos(2βl)*2Si(2βl)?Si(4βl)+ ?sin(2βl)[2Ci(2βl)?Ci(4βl)?Ci(2βa2/l)]} (2.34) 式 (2.33)表示的辐射电阻Rr与坡印亭矢量法所得结果完全相同,因为在无耗空间 中,通过包围辐射源的任意封闭面的实功率是一样的。 由式(2.33)和(2.34)可计算并并绘出辐射电阻和电抗随l/λ变化的曲线如图2-5所示,参变量为a/λ=10?2,10?3,10?4,10?5。 图2-5对称振子的辐射自阻抗 当电流采用近似的正弦分布时,所得辐射电阻与振子的截面半径无关,但辐射电抗的值却随振子截面半径的增大而减小。因此宽频带天线往往采用粗振子,粗振子天线有较小的电抗。 对常用的半波振子,其辐射阻抗为 Zr|l=λ/4=73.1,j42.5(Ω) (2.35) 82 《天线原理与设计》讲稿 王建 在式(2.30)中,如果波腹电流Im换成输入电流Iin=Imsinβl,则得“归算于 输入电流的辐射阻抗”,即输入阻抗 2?Zr?Rin=Rr/sin(βl) Zin=,则输入电阻和电抗为? ——————————————————————————————————————————————— (2.36) 2sin2βl??Xin=Xr/sin(βl) 对半波振子(βl=π/2),其输入阻抗就是其辐射阻抗。 至此,我们讨论了单个振子天线的辐射阻抗,和输入阻抗的分析方法。但对于由若干天线组成的阵列天线,各天线之间相距很近,互相耦合很强,不容忽略。下面我们讨论二元对称振子的相互耦合问题。 2.2.2 二元耦合对称振子的互阻抗 相距较近的天线之间将发生很强的电磁耦合,它们周围空间的电磁场要发生变化,每个天线上的电流、辐射功率和输入功率也将改变。因此,与电流、功率相联系的辐射阻抗和输入阻抗也将发生变化。我们将相互靠得较近的那些天线称为耦合天线。 1. 二元耦合振子天线的阻抗方程 任意排列的二元对称振子如图2-6所示。当振子1单独存在时,它在电源的激励下产生电流I1,并建立满足本身边界条件的电磁场,设其表面的切向电场为 Ez11。然后在振子1的附近放置振子2,此时振子2上的电流I2将在振子1的表 面产生切向电场Ez12(称为感应电场)。此时振子1表面上的总切向电场为 Ez1=Ez11+E z12 (2.37) 图2-6二元耦合振子 由前面式(2.29)可得在振子2影响下的振子1的总辐射功率为 ——————————————————————————————————————————————— 1l11l1 Pr1=??Ez1I1*dz1=??(Ez11+Ez12)I1*dz1 2?l12?l1 =P11+P12 (2.38) 1l1式中, PEz11I1*dz1 (2.39) 11=??2?l1 83 《天线原理与设计》讲稿 王建 1l1 P12=??Ez12I1*dz1 (2.40) 2?l1 P11是振子1单独存在时的辐射功率,称为自辐射功率;由振子 2的影响,在振 子1上的感应电动势[?Ez12dz1]产生的功率P12称为感应辐射功 率。 同理,可得在振子1影响下振子2的总辐射功率为 Pr2=P21+P22 (2.41) 式中, P21=?1l2*EIdz2 (2.42) 212z?l?22 1l2* P22=??Ez22I2dz2 (2.43) 2?l2 P22是振子2的自辐射功率;P21是由振子1的影响,在振子2 上的感应电动势 ——————————————————————————————————————————————— [?Ez21dz2]产生的感应辐射功率。 设对称振子1和2上电流的波腹值分别为I1m和I2m,由式(2.38) 和(2.41)可得 2P2P?2Pr11112=+?|I|2|I|2|I|2?1m1m1m (2.44) ?2P2P2P2122?r2=+222?|I||I||I|2m2m?2m I2m?=+ZZZ1211?r1I?1m (2.45) 则 ?I?Z=1mZ+Zr22122?I2m? 式中,Zr1=2Pr1为振子1的总辐射阻抗; (2.46a) |I1m|2 2Pr2为振子2的总辐射阻抗; (246b) 2|I2m|2P11为振子1单独存在时辐射阻抗,简称自阻抗; (2.46c) |I1m|2 2P12为振子2对振子1影响的感应辐射阻抗,简称互阻抗;(2.46d) *I1mI2m 2P22为振子2单独存在时辐射阻抗,为自阻抗; (2.46e) 2|I2m| 2P21为振子1对振子2影响的感应辐射阻抗,为互阻抗。 (2.46f) *I2Im1mZr2=Z11=Z12=Z22=Z21= 根据互易原理 Z12=Z21 (2.47) 84 《天线原理与设计》讲稿 王建 ——————————————————————————————————————————————— 如果振子1和振子2的几何尺寸相同,则Z11=Z22 对式(2.45)的第一和第二式两边分别乘以I1m和I2m,并记U1=I1mZr1, U2=I2mZr2,则得阻抗方程 ?U1=I1mZ11+I2mZ12 (2.48) ? ?U2=I1mZ21+I2mZ22 由此关系可以得到二元耦合振子天线的等效电路,如图2-7所示。 图2-7二元耦合振子的等效电路 对于二元耦合振子,振子的自阻抗前面式(2.32)已经求得,根据互易原理,我们只需计算互阻抗Z12即可。把前面式(2.40)代入(2.46d)得 1 Z12=?* I1mI2m ? l1 ?l1 Ez12I1*dz1 (2.49) 要计算任意排列的二元耦合对称振子之间的互耦电场Ez12是较复杂的,然而,在实际应用中,如对称振子组成的阵列中,各振子均是平行排列的,且几何尺寸相同(即l1=l2=l)。这种情况下的计算是较——————————————————————————————————————————————— 容易的。 2. 平行等长对称振子二元阵的互阻抗 平行二元耦合对称振子如图2-8所示。原则上可导出不等长的互阻抗计算公式,但其推导过程和最终结果都很复杂,在此只考虑两振子等长的情况。耦合对称振子的互阻抗可由式(2.49)计算,此式中的互耦电场Ez12是振子2在振子1的表面产生的切向电场,它可由前面式(2.25)计算,即 Ez12 ηI2me?jβRe?jβRe?jβr =?j*,?2cos(βl) (2.50) 4πR1R 2r 1 2 在z′坐标系下,式中 r=R1=,R2=。 振子1上电流分布为 I1(z)=I1msinβ(l?|z′|) (2.51) 把式(2.50)和(2.51)代入(2.49)得 jη Z12= ——————————————————————————————————————————————— 4π e?jβR1e?jβR2e?jβr ??lsinβ(l?|z′|)[R1+R2?2cos(βl)r]dz′ l =R12+jX12 (2.52) 85 《天线原理与设计》讲稿 王建 图2-8平行耦合对称振子的互阻抗计算 此式的计算过程较繁,但最后也可用正余弦积分表示,其电阻和电抗分别为 ′)?Si(w2)+Si(w2′)?Si(w3)+Si(w3′)] R12=15{sin(w0)[2Si(w1)?2Si(w1 ′)+Ci(w2)+Ci(w2′)+Ci(w3)+Ci(w3′)]} (2.53) ?cos(w0)[?2Ci(w1)?2Ci(w1 ′)?Ci(w2)+Ci(w2′)?Ci(w3)+Ci(w3′)] X12=15{sin(w0)[2Ci(w1)?2Ci(w1 ′)?Si(w2)?Si(w2′)?Si(w3)?Si(w3′)]} (2.54) ?cos(w0)[2Si(w1)+2Si(w1 式中,w0=βH (2.55a) w1=β,H) (2.55b) ——————————————————————————————————————————————— ′=β?H) (2.55c) w1 w2=β(H?2l)+ (2.55d) ′=β(H?2l)] (2.55e) w 2 w3=β,(H, 2l)] (2.55f) ′=β?(H+2l)] (2.55g) w3 由式(2.53)、(2.54)和(2.55)可计算错位平行排列的等长二元耦合对 称振子之间的互阻抗,并可得到书上P369,386的半波对称振子互阻 抗表。 当H=0,d?0(平行排列)时,式(2.53)和(2.54)可简化为 R12=30[2Ci(u0)?Ci(u1)?Ci(u2)] (2.56a) X12=?30[2Si(u0)?Si(u1)?Si(u2)] (2.56b) 式中,u0=βd,u1=β+2l],u2=β?2l] 86 《天线原理与设计》讲稿 王建 当d=0,H?0(共轴排列)时,式(2.53)和(2.54)的简化形式为 R12=15{sin(v0)[2Si(2v0)?Si(v1)?Si(v2)] +cos(w0)[2Ci(2v0)?Ci(v1)?Ci(v2)+ln(v3)]} (2.57a) ——————————————————————————————————————————————— X12=15{sin(w0)[2Ci(2v0)?Ci(v1)?Ci(v2)?ln(v3)] ?cos(w0)[2Si(v0)?Si(v1)?Si(v2)]} (2.57b) 式中,v0=βH,v1=2β(H+2l),v2=2β( H?2l),v3=[H2?(2l)2]/H2。 由式(2.56)可计算并绘出平行排列时二元耦合半波振子的互阻抗;由式(2.57)可计算并绘出共轴排列时二元耦合半波振子的互阻抗。如图2-9所示。 图2-9两种典型排列的耦合对称振子的互阻抗曲线 两个耦合振子之间的互耦强弱,主要反映在互阻抗值上。由上面两种情况的互阻抗随间距的变化可见: ? 互阻抗值随间距的变化呈波动变化,而且间距愈大,互阻抗值逐渐变小,呈 “震荡衰减状”,这说明两振子之间的互耦随间距增大而减小; ? 平行排列的两个振子之间的互阻抗的变化幅度比共轴排列的要大些,说明前 者的互耦要强些。 ? 互阻抗的实部R12有正有负,它表示另一根振子在这根振子上附加的感应电动 势源而产生的;而自辐射阻抗的实部为大于零的正数,它表示振子单独存在时全部辐射的有功功率均由它吸收。 【例2.1】如图2-10为两种情况的半波振子组成的二元阵,查表计算各振子的辐射阻抗Zr1和Zr2。 ——————————————————————————————————————————————— 解:已知半波振子的自阻抗为 Z11=Z22=73.1,j42.5(Ω) ?图(a):d/λ=0.25,H/λ=0 表中无d/λ=0.25对应的值,可查得前后两个值取平均。得互阻抗 87 《天线原理与设计》讲稿 王建 Z12=Z21=43.1+38.526.8+29.8=40.8-j28.3(Ω) ?j22 (a) (b) 图2-10 两种情况的耦合对称振子 则 Zr1=Z11+I2mZ12=73.1+j42.5,j(40.8-j28.3)/2=87.25+j62.9 (Ω) I1m Zr2=I1mZ12+Z22,-j2(40.8-j28.3)+ 73.1+j42.5=16.5-j39.1 (Ω) I2m ?图(b):d/λ=0.24,H/λ=0.5 查表得 Z12=Z21=11.7?j11.9(Ω) 则 Zr1=Z11+Z12=84.8+j30.6(Ω), Zr2=Zr1 2.3无源振子 前面讨论的二元耦合振子,是每个振子单元都加激励的情况,各自的输入端电压分别为U1和U2。若两个耦合振子中有一个不加激励,这个不加激励的振子就称作无源振子,或寄生振子。无源振子广泛应用于短波和超短波波段中。例如, 就是由一个无源反射器,一个激励振子和多个无八木天线(见书——————————————————————————————————————————————— 上P131图6-12), 源引向器振子组成的。 要计算由一个激励振子和一个无源振子组成的二元阵的方向图、辐射阻抗等参量,首先要确定无源振子上的电流分布及其与激励振子上电流分布之间的关系。如果能调节无源振子上的电流幅度和相位,就能得到二元阵所需要的方向图。 无源振子上的电流幅度和相位的调节,大致可用如下两种方法: ? 改变无源振子的长度,及两振子间距,以改变其自阻抗和互阻抗; ? 在无源振子上接入可变电抗,电抗是一段短路传输线做成,调节短路点位置, 可改变接入电抗的大小和相位。 含无源振子的二元阵如图2-11所示。有两种情况,即无源振子接入电抗和 88 《天线原理与设计》讲稿 王建 无源振子短路。 (a) 无源振子接可调电抗 (b) 无源振子短路 图2-11 含无源振子的二元阵 1. 无源振子和激励振子上的电流比 设无源振子2接有可变电抗XL。并设振子1的激励电压为U1,所激励的电流为I1。由于振子1 的作用,在无源振子2上将感应电流I2。 ——————————————————————————————————————————————— 由于有无源振子2的作用,振子1的辐射功率为 Pr1=P11+P12 (2.58) 无源振子2从振子1吸收的功率P21与感应电流I2产生的自辐 射功率P22及负载XL所消耗的功率之和为零,即 1 0=P21+P22+j|I2in|2XL (2.59) 2 式中,I2in为无源振子2中点的电流。在式(2.58)等号两端同乘以 2/|I1in|2,并在式(2.59)中乘以2/|I2in|2可得 2P2P?2Pr11112=+?|I|2|I|2|I|2?1in1in1in ? (2.60) ?0=2P21+2P22+jXL?|I2in|2|I2in|2? I2in?=+ZZZ12in11in?1inI?1in (2.61) 上式可写作: ?I?0=1inZ+Z+jX21in22inL?I2in? 式中,Z1in=2Pr1为归算于输入电流的辐射阻抗,若振子无耗 Pr1=P1in,它就是|I1in|2 2P2P1112为振子1归算于输入电流的自阻抗; Z=12in2|I1in||I1in|2 2P21为归算于输入电流I2in的互阻抗;|I2in|2振子1的输入阻 抗;Z11in=为归算于输入电流I1in的互阻抗;Z21in= 89 《天线原理与设计》讲稿 王建 Z22in=2P22为振子2归算于输入电流的自阻抗。如果记归算于 波腹电流的自阻2|I2in|抗和互阻抗为Z11m、Z22m、Z12m和Z21m, 则两种不同归算电流的阻抗关系为 ——————————————————————————————————————————————— Zkpin=IkmI* pm *IpinIkinZkpm, k=1,2;p=1,2 (2.62) *I1mI2m=Z12m *I2inI1in例如,k=1, p=2时,Z12in 对于半波振子情况,Z12in=Z12m 当阵列中的振子长度有大于半波长的情况,或无源振子的中点接 有电抗的情况最好采用归算于输入电流的阻抗方程。由式(2.61)得 ?U1=I1inZ11in+I2inZ12in (2.63) ?=++0IZI(ZjX)?1in12in2in22inL 当XL=0时即为书上式(2.58)。若U1和XL已知,归算于波腹电流 的各阻抗也可算得,此式可解出振子1和2上的输入电流。假设振子 上的电流为正弦分布 Ik(z)=Ikmsinβ(lk?|z|) ,k=1,2 则 Ikin=Ikmsinβlk 就可采用前面的方法求得二元阵的辐射方向图。由前面介绍的知 识,这个计算过程是可以做的。为简单起见,这里只求无源振子和激 励振子上的电流比。由式(2.63)的第二式可得 I2inZ12inR12in+jX12in (2.64) =?=?I1inZ22in+jXLR22in+j(X22in+XL) 式中用了关系Z21in=Z12in。令I2in/I1in=mejα,得 m= (2.65) α=π,arctan(X12inX,XL)?arctan(22in) (2.66) R12inR22in ——————————————————————————————————————————————— 由式(2.61)可得振子1的输入阻抗(或叫归算于输入电流的辐射阻抗)为 Z1in=Z11in,mejαZ12in (2.67) 如果振子1为半波振子,则输入电流就是波腹电流。 两个振子的电流幅度比m和相位差α,取决于无源振子的自阻抗Z22(与l2/λ 90 《天线原理与设计》讲稿 王建 和a2/λ有关)、互阻抗Z12(与d/λ,l1/λ,l2/λ有关),以及接入无源振子的可调电抗XL。改变m和α ,都会引起二元阵方向图的变化。因此可以采用改变无源振子长度、两振子间距和可调电抗的办法,来调整二元阵的方向图。 书上P41图2-17给出了半波振子二元阵的H面方向图随无源振子的阻抗相角arctan[(X22in+XL)/R22in]及间距d的变化。 若将无源振子的可调电抗短路XL=0,则 (2.68) m= α=π,arctan( X12inX )?arctan(22in) (2.69) R12inR22in 2. 无源振子可作引向器和反射器 调节无源振子的长度及两振子间距及可变电抗,如果使0<α——————————————————————————————————————————————— <π,则二元阵 的方向图最大值指向激励振子方向,无源振子就为反射器;若使π<α<2π,则二元阵方向图最大值指向无源振子方向,无源振子就为引向器。若不计可变电抗,这时的电流幅度比和相位差见式(2.68)和(2.69),则 (1) 当无源振子臂长l2>λ/4时(大得不多):有X22m>0,arctan(X22m/R22m)>0, 若间距d=(0.15~0.4)λ,由前面“平行排列半波对称振子互阻抗”图有 X12m<0,R12m>0,arctan(X12m/R12m)<0,则0<α<π,即无源振子上的电流相位超前于激励振子的电流相位,此时无源振子起反射器作用。 (2) 当l2<λ/4时(小得不多):有X22m<0, arctan(X22m/R22m)<0,若间距 d=(0.15~0.4)λ,使arctan(X12m/R12m)?arctan(X22m/R22m)>0,则π<α<2π,即无源振子上的电流相位滞后于激励振子的电流相位,此时无源振子起引向器作用。 总之,在间距d=(0.1~0.4)λ内,无源振子作为反射器时的长度l2,应略大于串联谐振长度,作为引向器时的长度l2,应略小于串联谐振长度。实际中应综合调整间距和振子长度,以便使无源振子具有良好的反射或引向作用。 从含无源振子的二元阵,可以引伸出方向性较强的含多个无元振——————————————————————————————————————————————— 子组成的端射直线阵天线。例如八木天线。 2.4 对称振子阵的阻抗 1. 阵列中各振子的辐射阻抗 设天线阵中有n个单元,二元阵的耦合振子阻抗方程式(2.48)可 推广到n元阵。即: 91 《天线原理与设计》讲稿 王建 Ui=?ImjZij, j=1ni=1,2,??,n (2.70) 可写成矩阵形式 [U]=[Z][I] 式中,[U]=(U1,U2,??,Un)T,[I]=(Im1,Im2,??,Imn)T,[Z]为方阵。即 ?U1??Z11Z12??Z1n??Im1??U??ZZ??Z??I?221222n??m2? ??=?????????????????????????UZZZnn1n2nn?????Imn? 方阵中的各元素Zij,i,j=1,2,??,n。当j=i时Zii表示第i个振子的自 阻抗,当j? i时Zij表示第j个振子对第i个振子的互阻抗。 由式(2.70)等号两边同除以Imi可得阵列中各振子的辐射阻抗 n Zri=?j=1ImjImiZij=Zii+j=1,j?i?n′Zij,i=1,2,??,n (2.71) ′=式中,ZijImjImiZij 称为第j个振子对第i个振子的感应辐射阻 抗。当Imj=Imi时, ——————————————————————————————————————————————— 感应辐射阻抗就等于互阻抗。 对于电流等幅同相且单元几何尺寸相同的天线阵,式(2.71)可简 化为 Zri=?Zij, j=1ni=1,2,??,n (2.72) 上面各式中的辐射阻抗、自阻抗和互阻抗均是归算于波腹电流的。 假如阵列中有部分单元为无源振子,则在式(2.70)中相应的U为 零。 2. 天线阵的总辐射阻抗 天线阵的总辐射功率PΣ,等于各单元辐射功率的总和,即 1n1n2 PΣ=?Pri=?|Iim|Zri=? |Iim|2[Zii+2i=12i=1i=1nj=1,j?i?n′] (2.73) Zij 于是,归算于第k个振子波腹电流Iim的总辐射阻抗为 n|Iim|22PΣ=?Zri (2.74) Z Σ=22|Ikm|i=1|Ikm| 若是由半波振子组成的阵列,且电流等幅同相,则有 ZΣ=?Zri (2.75) i=1n 即等幅同相的半波振子阵列的总辐射阻抗为各单元辐射阻抗之 和。 92 《天线原理与设计》讲稿 王建 ——————————————————————————————————————————————— 3. 天线阵的方向性系数 由阵列的总辐射阻抗取其实部,可得阵列天线的总辐射电阻RΣ=Re(ZΣ),若求得阵列的总场方向图函数fT(θ,?)及最大指向(θm,?m),对称振子阵列的方向 性系数可由下式计算 120fT2(θm,?m) (2.76) D=RΣ 【例2.2】在下图2-12中,图(a)为全波振子,图(b)为等幅同相的半波振子三元阵。求其总场方向图函数fT(θ,?),总辐射阻抗ZΣ和方向性系数D。 图2-12 含无源振子的二元阵 解:图(a). 一个全波振子可以看作是一个共轴半波振子二元阵。已知二元阵的垂直间距H/λ=0.5,平行间距d/λ=0。 (1) 二元阵总场方向图函数fT(θ,?) fT(θ,?)=f0(θ,?)fa(θ,?) 式中,单元方向图函数:f0(θ,?)=cos(πcosθ/2) sinθ βH 二元阵因子:fa(θ,?)=2cos(cosθ)=2cos(πcosθ/2) 2 2cos2(πcosθ/2)cos(πcosθ)+1则 fT(θ,?)== sinθsinθ 直接由公式:fT(θ,?)=cos(βlcosθ)?cosβl,并代入l=λ/2也可得到这个结果。 sinθ (2) 总辐射阻抗ZΣ 单元1的辐射阻抗为:Zr1=Z11+Z12 ——————————————————————————————————————————————— 单元2的辐射阻抗为:Zr2=Z21+Z22 因 Z22=Z11,Z21=Z12,则 Zr2=Zr1,因此,只须求出Z11和Z12即可 半波振子自辐射阻抗: Z11=73.1+j42.5(Ω) 互阻抗可查表(H/λ=0.5,d/λ=0)求得: Z12=26.4+j20.2(Ω) 93 《天线原理与设计》讲稿 王建 Zr1=Z11+Z12=99.5+j62.7(Ω) 由式(2.75)得二元阵(即全波振子)的总辐射阻抗为 ZΣ=Zr1,Zr2=2Zr1=199,j125.4(Ω) (3) 方向性系数D 总辐射电阻为:RΣ=Re(ZΣ)=199(Ω),全波振子的最大辐射方向在其侧向θm=π/2,则fT(θm)=2,由式(2.76)得 120fa2(θm,?m)120×4 = D==2.412 RΣ199 注:把全波振子拆分为两个半波振子组成的二元阵,就可以方便地利用书上P369 的“半波振子的互阻抗表”及已知的半波振子辐射阻抗值,计算全波振子的辐射阻抗及方向性系数。 图2-12 含无源振子的二元阵 ——————————————————————————————————————————————— 图(b). (书上P42例2.4)已知垂直间距H/λ=0,振子1和2之间的平行间距d12/λ=0.5,振子1和3之间的平行间距d13/λ=1。 (1) 半波振子三元阵总场方向图函数fT(θ,?) fT(θ,?)=f0(θ,?)fa(θ,?) 式中,单元方向图函数:f0(θ,?)= cos(πcosθ/2) sinθ3 sin(βdsinθsin?) 三元阵因子:fa(θ,?)= sin(βdsinθsin?) 2 (2) 总辐射阻抗ZΣ 振子1的辐射阻抗为:Zr1=Z11+Z12+Z13 振子2的辐射阻抗为:Zr2=Z21+Z22+Z23 振子3的辐射阻抗为:Zr2=Z31+Z32+Z33 由于结构的对称性,则振子3的辐射阻抗与振子1的相同即 Zr3=Zr1 半波振子自辐射阻抗:Z11=73.1+j42.5(Ω) 94 《天线原理与设计》讲稿 王建 互阻抗可查表求得:(H/λ=0,d12/λ =0.5),Z12=Z21=Z23=?12.5?j29.9(Ω) (H/λ=0,d13/λ=1),Z13=4,j17.7(Ω) Zr1=Z11,Z12,Z13=64.6,j30.3(Ω) Zr2=Z21,Z22,Z23=48.1?j17.3(Ω) 三元阵的总辐射阻抗为 ZΣ=Zr1,Zr2,Zr3=2Zr1,Zr2=177.3,j43.3(Ω) ——————————————————————————————————————————————— (3) 方向性系数D 总辐射电阻为RΣ=Re(ZΣ)=177.3(Ω),三元阵的最大辐射方向在其侧向θm=π/2,?m=0,则fT(θm,?m)=3,得 120fa2(θm,?m)120×9= D==6.09 RΣ177.3 另外,见书上P43例2.5。 *2.5阵列中对称振子天线的输入阻抗 当振子天线组成阵列之后,由于互耦的影响使得其输入阻抗与其单独存在时是不同的。但是阵列中单元天线输入阻抗的计算仍然可采用两种近似方法,一种是等值传输线法,一种是直接归算法。 1、直接归算法(感应电动势法) 前面我们采用感应电动势法计算了单个对称振子和耦合二元阵及n元阵列的辐射阻抗问题。振子天线的辐射阻抗采用的定义为: Zr=2Pr/|I|2 (2.76) 式中,Pr为振子天线的辐射功率;I为振子天线上的电流,这个电流通常可以选 择为波腹电流和馈电点的输入电流。如果选择波腹电流,上式就表示“归算于波腹电流的辐射阻抗”,如果选择输入电流,则上式表示“归算于输入电流的辐射阻抗”,即输入阻抗。 如果天线无欧姆损耗,则Pin=Pr,即 |Im|2Zr1122Z= (2.77) |Iin|Zin=|Im|Zr Zin=r22|Iin|2sin2βl 式中用了关系Iin=I(z)|z=0=Imsinβl。当输入点电流为波节点时上——————————————————————————————————————————————— 式无效。因此 上式只适合于长度为l<0.5λ的振子。 对于n元阵,第k个振子归算于波腹电流的辐射阻抗为 Zrk=?i=1nImiZki,k=1,2,??,n (2.78) Imk 95 《天线原理与设计》讲稿 王建 由式(2.77)可得第k个振子天线的输入阻抗为 Zin,k=Zrk sin2βlk,k=1,2,??,n (2.79) 式中,lk为第k个振子的半长度。 2、等值传输线法 阵列中振子单元上的电流分布仍然近似为正弦分布,因此仍然可采用等值传输线方法。这种方法适合于任何长度的对称振子,但等效传输线中的参数因互耦影响应重新计算。 由书上式(2.35),阵列中第k个对称振子的输入阻抗仍然可写作 ′,k(1?jαk′/β)cot[(αk′+jβ)lk] (2.80) Zin,k=Zc ′分别为第k个振子的特性阻抗和衰减常数,β=2π/λ为相位常′,k和αk式中,Zc 数。若为孤立振子时,特性阻抗可由书上式(2.23)或(2.31)计算,衰减常数可由书上式(2.33)计算。但是在阵列中,第k个振子要受其它振子的互耦影响,其特性阻抗和衰减常数应该修正。 (1) 特性阻抗的修正 ——————————————————————————————————————————————— ′为除本振子以外的其它振子对此振子的感应电抗的总和 设Xrk n′=Im( Xrk i=1,i?k?′) (2.81) Zki 式中求和部分为下式中除自阻抗之外的部分。 nImi′ (2.82) Zrk=?Zki=Zkk+?Zki i=1Imki=1,i?kn ′=ZkiImiZki 为第i个振子对第k个振子的感应辐射阻抗。 Imk ′均匀分布在整个振子上。做法是设单位长度上的附加电抗为X1,则 把Xrk 1l212′ ()IzXdz=ImkXrkk1?022 代入Ik=Imksinβ(l?z),积分后得 X1=′2Xrk (2.83) klk*1?+2βlk 由书上P31式(2.24),在分布电感的感抗上加上X1得 ′,k= Zc′k (2.84) =Z0 96 《天线原理与设计》讲稿 王建 ′k==120[ln(2lk/ρk)?1]为对称振子的平均特性阻抗。 式中,Z0 (2) 衰减常数的修正 ′改成Zc′,k,l改成lk即可,即 把书上式(2.33)中的Rr改成Rrk,——————————————————————————————————————————————— Z0 ′=αkRrk (2.85) sin(2lk)′,klk[1?Zc]2βlk 式中,Rrk是式(2.82)的实部,即Rrk=Re(Zrk)。 同样,当振子长度lk<0.4λ时,可由下式计算输入阻抗 Zin,k=Rrk′,kcot(βlk) (2.86) ?jZc2sinβlk 2.6地面对天线阻抗的影响 前面我们讨论了地面对天线方向图的影响,这里讨论地面对天线阻抗的影响。天线方向图及阻抗的改变将直接影响到天线的方向性系数、增益等。地面的影响这里采用镜像法分析。 近地天线常见的有三种情况,即近地水平天线、近地垂直天线和垂直接地天线,如下图2-13所示。也可以是由它们组成的近地阵列天线。 (a) 水平天线 (b) 垂直天线 (c) 垂直接地天线 图2-13 几种典型的近地天线 1、垂直接地天线 如上图(c)所示。垂直接地天线考虑镜像之后,其总场就是一个自由空间对称振子的贡献,但只有上半空间有辐射场。此时由坡印亭矢量法求得的辐射电阻,只需对上半空间积分,即 π/2302π2 Rr=d?f(θ,?)sinθdθ ——————————————————————————————————————————————— (2.87) ??π00 可以证明:长为l的垂直接地天线的辐射电阻Rrg,是全长为2l 的自由空间 对称振子辐射电阻Rr的一半。即 1 Rrg=Rr (2.88a) 2 97 《天线原理与设计》讲稿 王建 如用感应电动势法求其辐射阻抗,也可以证明:长为l的垂直接 地天线的辐射阻抗Zrg,是全长为2l的自由空间对称振子辐射阻抗Zr的一半。即 1 Zrg=Zr (2.88b) 2 自由空间半波振子(2l=λ/2)的辐射阻抗为:Zr=73.1+j42.5(Ω) 则 长为l=λ/4的垂直接地天线的辐射阻抗为:Zrg=36.55+j21.25(Ω) 若用等效传输线法求其输入阻抗,其平均特性阻抗应为 ′=60[ln( Z0 2l ρ ?1] (2.89) 此时按书上P33式(2.36)计算的输入阻抗也为自由空间全长为2l——————————————————————————————————————————————— 的对称振子的输 入阻抗的一半。垂直接地天线后面还将详细介绍。 2、近地垂直和水平天线 ′,镜像 设近地天线上的波腹电流为Im,自阻抗为Z11,镜像电流波腹值为Im ′,则近地天线的辐射阻抗为 天线与原天线的互阻抗为Z11 Zr=Z11+ ′Im ′ (2.90) Z11 Im (1) 近地垂直天线 ′=Im,则此天线的辐见图2-13(b)。其镜像天线为正像,正像的波腹电流Im 射阻抗为: ′ (2.91) Zr=Z11+Z11 (2) 近地水平天线 ′=?Im,则此天线的辐见图2-13(a)。其镜像天线为负像,负像的波腹电流Im 射阻抗为: ′ (2.92) Zr=Z11?Z11 3、近地垂直和水平二元阵情况 近地二元阵考虑镜像之后,可看作是四元阵,如图2-14所示。——————————————————————————————————————————————— 二元阵各单 元的辐射阻抗为 Zr1=Z11+ I2mI′I′ ′+2mZ1′2 (2.93a) Z12+1mZ11 I1mI1mI1m Zr2= I1mI′I′ ′+2mZ22′ (2.93b) Z21+Z22+1mZ21 I2mI2mI2m ′m分别为镜像天线1′和式中,I1m、I2m分别为天线1和2上的波腹电流,I1′m、I2 98 《天线原理与设计》讲稿 王建 2′上的波腹电流。Z11,Z22分别是天线1和2 的自辐射阻抗;Z12,Z21是天线1和2 ′、Z21′为天线1′,Z22′分别是天线1和2与其镜像间的互阻抗;Z12的互阻抗;Z11 与天线2的镜像间的互阻抗。 (a) 近地水平二元阵 (b) 近地垂直二元阵 图2-14 近的水平和垂直二元阵 (1) 近地水平二元阵 ′m=?I2m,由式(2.93a)和(2.93b)得 有I1′m=?I1m,I2 ——————————————————————————————————————————————— ′+ Zr1=Z11?Z11I2m′) (2.94a) (Z12?Z12I1m Zr2=I1m′)+Z22?Z22′ (2.94b) (Z21?Z21I2m 若二元阵中有一个天线无源,如设天线2无源,Zr2=0,则 ′=Z21′,得 ′?Z22)/(Z21?Z21′),又因 Z21=Z12,Z21I1m/I2m=(Z22 ′)2(Z12?Z12′? (2.95) Zr1=Z11?Z11′Z22?Z22 (2) 近地垂直二元阵 ′m=I2m,则得 有I1′m=I1m,I2 ′+ Zr1=Z11+Z11I2m′) (2.96a) (Z12+Z12I1m Zr2=I1m′)+Z22+Z22′ (2.96b) (Z21+Z21I2m 如果近地二元阵各单元电流等幅同相I1m=I2m,则上面的表达式 就简单了。 各阻抗元素可查表求得,从而可计算各单元的辐射阻抗,近地二 元阵的总辐射阻抗就可确定(ZΣ=Zr1+Zr2),若已知近地二元阵的方向 图函数,就可由式(2.76) 计算近地二元阵的方向性系数。 书上2.8节“圆柱天线理论”不作要求。 ——————————————————————————————————————————————— ———————————————————————————————————————————————
本文档为【天线原理与设计_讲义4】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_153723
暂无简介~
格式:doc
大小:74KB
软件:Word
页数:38
分类:
上传时间:2017-10-08
浏览量:56