首页 试用频率法设计串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。

试用频率法设计串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。

举报
开通vip

试用频率法设计串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。试用频率法设计串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。 成 绩 题 目 用频率法设计串联超前校正装置 课 程 名 称 自动控制原理 院 部 名 称 机电工程学院 专 业 自动化 班 级 12自动化2班 学 生 姓 名 学 号 课程设计地点 C214 课程设计学时 1周 指 导 教 师 陈丽换 金陵科技学院教务处制 目录 一、设计目的…………………………………………………………1 二、设计的内容、题目与要求………………………………………1 2.1 设计的内容……………...

试用频率法设计串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。
试用频率法 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。 成 绩 题 目 用频率法设计串联超前校正装置 课 程 名 称 自动控制原理 院 部 名 称 机电 工程 路基工程安全技术交底工程项目施工成本控制工程量增项单年度零星工程技术标正投影法基本原理 学院 专 业 自动化 班 级 12自动化2班 学 生 姓 名 学 号 课程设计地点 C214 课程设计学时 1周 指 导 教 师 陈丽换 金陵科技学院教务处制 目录 一、设计目的…………………………………………………………1 二、设计的内容、题目与要求………………………………………1 2.1 设计的内容…………………………………………………1 2.2 设计的条件…………………………………………………1 2.2 设计的要求…………………………………………………1 2.2 设计的题目…………………………………………………2 三、设计原理…………………………………………………………2 四、设计的方法与步骤………………………………………………3 4.1 分析校正前的传递函数……………………………………3 4.1.1 求开环增益………………………………………3 K0 4.1.2 求校正前闭环系统特征根…………………………3 4.1.3 绘制校正前Bode图判断系统稳定性…………… 3 4.2 求解串联超前校正装置……………………………………4 4.2.1 一次校正系统分析…………………………………4 4.2.2 二次校正系统分析…………………………………6 4.3 分析校正后的传递函数……………………………………6 4.3.1 求校正后闭环系统特征根…………………………6 4.3.2 绘制校正后的Bode图判断系统稳定性 …………7 4.4 求校正前后各种响应………………………………………8 4.5 求校正前后的各种性能指标 ……………………………13 4.6 绘制系统校正前后的根轨迹图 …………………………14 4.7 绘制系统校正前后Nyquist图判断系统稳定性 ………16 五、课程设计心得体会 ……………………………………………18 六、参考文献 ………………………………………………………19 \ 一、设计目的 1、掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 2、学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。 二、设计内容、题目与要求 2.1设计内容: 1、查阅相关书籍 材料 关于××同志的政审材料调查表环保先进个人材料国家普通话测试材料农民专业合作社注销四查四问剖析材料 并学习使用Mutlab软件 2、对系统进行稳定性分析、稳态误差分析以及动态特性分析 3、绘制根轨迹图、Bode图、Nyquist图 4、设计校正系统以满足设计要求 2.2设计条件: 已知单位负反馈系统被控制对象的传递函数为 mm1m2,,bbbbsss,,,,?012mGs(),nn1n2,,asasasa,,,,?nm,012n ()。 参数a,a,a,?a和b,b,b,?b以及性能指标要求 012n012m 2.3设计要求: 1、首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环 ,传递函数,校正装置的参数T,等的值。 2、利用MATLAB函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? 3、利用MATLAB作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系,求出系统校正前与校正后的动态性能指标σ%、tr、tp、ts以及稳态误差的值,并分析其有何变化, 4、绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点 ,,KK的坐标和相应点的增益值,得出系统稳定时增益的变化范围。绘制系统校正前与校正后的Nyquist图,判断系统的稳定性,并说明理由, 1 5、绘制系统校正前与校正后的Bode图,计算系统的幅值裕量,相位裕量,幅 值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由, 2.4设计题目: K0, 试用频率法设计串联超前校正装置,使系统的G(S),S(0.0625S1)(0.2S1),, 0,11012,dB相角裕量为30,静态速度误差系数,幅值裕量。 K40s,v 三、设计原理 无源超前网络的电路图如下图所示 R其中复阻抗 Z,,Z,R1221,RCS1 超前校正装置的传递函数为: U(s)ZR1,RCs11,aTsc221G(s),G(s),,,,,, cRRU(s)Z,ZR,Ra1,Ts121212r1,CsR,R12 R,RRRC1212(a,,T,令1,) RRR212 无源超前网络对数频率特性如下 \ 2 显然超前网络对频率在1/aT到1/T之间的输入信号有明显的微分作用。用频率响应发设计无源超前网络可归纳为以下几个步骤: (1) 根据系统稳态误差要求,确定开环增益K (2)根据已确定的开环增益K,计算未校正系统的相角裕度和幅值裕度 (3)根据已校正系统希望的截止频率计算超前网络参数a和T。 四、设计方法与步骤 4.1分析校正前传递函数 ,1 4.1.1静态速度误差系数可求得 KK,40s0V ,1limsG(s),40K,40s 由 解得 s,00 4.1.2利用MATLAB编程求校正前闭环特征系统特征根,并判断其稳定性。 40因为系统开环传递函数为 G(S),S(0.0625S,1)(0.2S,1) 32得到闭环系统特征方程为0.0125S,0.2625S,S,40,0 运行程序:>> clear >> a=[0.0125 0.2625 1 40] >> p=roots(a) 得到结果:p = -23.4187 1.2094 +11.6267i 1.2094 -11.6267i 由编程结果知,存在S右半平面的闭环特征根,所以校正前系统不稳定。 4.1.3利用MATLAB编程得到校正前Bode图、计算系统的幅值裕量,相位裕量,幅值裕量、穿越频率和相位穿越频率。判断系统的稳定性。 运行程序:>> a=[40] >> b=[0.0125 0.2625 1 0] >> sys=tf(a,b) >> [Gm,Pm,Wcp,Wcg]=margin(sys) >> margin(sys) \ 3 得到校正前系统的Bode图 即校正前系统幅值裕量 -π穿越频率 L,,5.6dB,,8.9443rad/sgk o 相角裕量r,,14.78 剪切频率 ,,12.1343rad/sc oor,,14.78,30因为相角裕量且幅值裕量 ,都不满L,0.5250dB,10dBk 足要求所以原系统不稳定,待校正。 4.2求解串联超前校正装置 4.2.1一次校正系统分析 由相角裕量、幅值裕量和设计条件确定串联超前校正转置的参数,从而得到 串联超前网络传递函数和校正后开环传递函数。 ,m由期望的相角裕量r,计算校正系统应提供的超前角最大值 ,,r,r,,m1 (因为未校正系统的开环对数幅频特性在剪切频率处的斜率为-40dB/dec ,一 o0,,5~10般取) ooooo所以 ,,30,14.78,(5~10),54.78m a,1a,9.923,arcsin,又因为 解得 ma,1 ',',19.6rad/s10lga,20lgA(,),0 由未校正bode图得 cc \ 4 11则 T,,,0.0162 ,,a'amc 400.1608s,1所以校正装置传递函数 G(S)G(S),cs(0.0625s,1)(0.2s,1)0.0162s,1校正后系统的开环传递函数为 400.1608s,1 G(S)G(S),cs(0.0625s,1)(0.2s,1)0.0162s,1 运行程序:>> clear >> a=40 >> b=[0.0125 0.2625 1 0] >> s1=tf(a,b) >> c=[0.1608 1] >> d=[0.0162 1] >> s2=tf(c,d) >> s=s1*s2 >> [Gm,Pm,Wcp,Wcg]=margin(s) >>margin(s) 得到系统校正后的Bode图如下 ,,29.9rad/sL,6.76dB即校正后系统幅值裕量 -π穿越频率 gk or,18.2,,19.7rad/s 相角裕量 剪切频率 c\ 5 4.2.2二次校正系统分析 综上可知,相角裕度和幅值裕度不符合要求,所以考虑再次加入串联超前校正系统进行二次校正。 ooooo故需加入 ,,30,18.2,(5~10),21.8m a,1a,2.1816,arcsin又因为 解得 ,ma,1 ' 由一次校正后bode图得 ,'',24.4rad/s10lga,20lgA(,),0cc 11T,,,0.0277则 ,,a''amc 0.0604s,1G'(S),所以校正装置传递函数 c0.0277s,1 校正后系统的开环传递函数为 400.1608s,10.0604s,1 G(S)G(S)G'(S),ccs(0.0625s,1)(0.2s,1)0.0162s,10.0277s,14.3分析校正后传递函数 4.3.1利用MATLAB编程求校正后闭环特征系统特征根,并判断其稳定性。 运行程序:>>clear >> g=[0.3885 8.848 40] >> h=[5.609e-006 0.0006665 0.02447 0.6949 9.848 40] >> sys=tf(a,b) >> z=roots(g) >> p=roots(h) 得到结果:z = -16.5558 -6.2190 p = -80.5802 -7.5494 +27.6907i -7.5494 -27.6907i -16.7238 \ 6 -6.4240 可知闭环特征根全部在左半平面,所以系统稳定。 4.3.2利用MATLAB编程得到校正后系统的Bode图、计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性. 运行程序:>> clear >> a=40 >> b=[0.0125 0.2625 1 0] >> s1=tf(a,b) >> c=conv([0.1608 1],[0.0604 1]) >> d=conv([0.0162 1],[0.0277 1]) >> s2=tf(c,d) >> s3=s1*s2 >> [Gm,Pm,Wcp,Wcg]=margin(s3) >>margin(s3) 得到二次校正后系统的Bode图 ,,45.4rad/sL,9.23dB即二次校正后系统幅值裕量 -π穿越频率 gk or,30.7,,24.4rad/s 相角裕量 剪切频率 c 所以系统稳定。 \ 7 4.4利用MATLAB作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线 (1)校正前单位脉冲响应 运行程序:>> a=40 >> b=[0.0125 0.2625 1 0] >> s1=tf(a,b) >> s2=feedback(s1,1) >> impulse(s2) >> xlabel('时间/s') >> ylabel('幅值') >> title('校正前系统单位脉冲响应') 得到系统校正前的单位脉冲响应曲线 分析:校正前系统不稳定,其单位脉冲响应发散,稳态误差为无穷大 (2)校正后单位脉冲响应 运行程序:>> a=40 >> b=[0.0125 0.2625 1 0] >> c=conv([0.1608 1],[0.0604 1]) >> d=conv([0.0162 1],[0.0277 1]) >> s1=tf(a,b) >> s2=tf(c,d) \ 8 >> s3=feedback(s1*s2,1) >> impulse(s3) >> xlabel('时间/s') >> ylabel('幅值') >> title('校正后系统单位脉冲响应') 得到系统校正后的单位脉冲响应曲线 分析:校正后系统稳定,其单位脉冲响应的稳态误差几乎为零 (3)校正前单位阶跃响应 运行程序:>> a=40 >> b=[0.0125 0.2625 1 0] >> s1=tf(a,b) >> s2=feedback(s1,1) >> step(s2) >> xlabel('时间/s') >> ylabel('幅值') >> title('校正前系统单位阶跃响应') 得到系统校正前的单位阶跃响应曲线 \ 9 分析:校正前系统不稳定,其单位阶跃响应发散,稳态误差为无穷大 (4)校正后单位阶跃响应 运行程序:>> a=40 >> b=[0.0125 0.2625 1 0] >> c=conv([0.1608 1],[0.0604 1]) >> d=conv([0.0162 1],[0.0277 1]) >> s1=tf(a,b) >> s2=tf(c,d) >> s3=feedback(s1*s2,1) >> step(s3) >> xlabel('时间/s') >> ylabel('幅值') >> title('校正后系统单位阶跃响应') 得到系统校正后的单位阶跃响应曲线 \ 10 分析:校正后系统稳定,其单位阶跃响应误差为零 (5)校正前单位斜坡响应 斜坡响应没有直接的函数,但可以通过阶跃信号积分得到,因此相当于将原来的 闭环传递函数乘以一个积分环节再对其求阶跃响应。 运行程序:>> a=40 >> b=[0.0125 0.2625 1 0] >> s1=tf(a,b) >> s2=feedback(s1,1) >> e=1 >> f=[1 0] >> s3=tf(e,f) >>s4=s2*s3 >> step(s4) >> xlabel('时间/s') >> ylabel('幅值') >> title('校正前系统单位斜坡响应') 得到系统校正前的单位斜坡响应曲线 \ 11 分析:校正前系统不稳定,其单位斜坡响应发散,稳态误差为无穷大。 (6)校正后单位斜坡响应 运行程序:>> a=40 >> b=[0.0125 0.2625 1 0] >> c=conv([0.1608 1],[0.0604 1]) >> d=conv([0.0162 1],[0.0277 1]) >> e=1 >> f=[1 0] >> s1=tf(a,b) >> s2=tf(c,d) >> s3=feedback(s1*s2,1) >> s4=tf(e,f) >> step(s3*s4) >> xlabel('时间/s') >> ylabel('幅值') >> title('校正后系统单位斜坡响应') \ 12 分析:校正后系统稳定,其单位斜坡响应的稳态误差几乎为零。 4.5利用MATLAB编程求系统校正前后的动态性能指标 因为系统校正前不稳定,不好求其动态性能指标,因此只分析校正后的系统动态性能指标。 运行程序:>>a=[0.3885 8.8480 40.0000] >> b=[5.609e-006 0.0006665 0.02447 0.6949 9.848 40] >>[y,x,t]=step(a,b) %求单位阶跃响应 >> final=dcgain(a,b) %求响应的稳态值 >> ess=1-final %求稳态误差 >> [ym,n]=max(y) %求响应峰值和对应下标 >> chaotiao=100*(ym-final)/final %求超条量 >> tp=t(n) %求峰值时间 >> n=1 >> while y(n)<0.1*final n=n+1 End >> m=1 >> while y(m)<0.9*final m=m+1 End \ 13 >> tr=t(m)-t(n) %求上升时间 >> k=length(t) >> while(y(k)>0.98*final)&(y(k)<1.02*final) k=k-1 end >> ts=t(k) %求调节时间 t,0.1266s,峰值时间,t,0.0492s得到校正后系统的性能指标:上升时间pr t,0.4923s(,2%)调节时间,超调量,稳态误差 ,%,43.3432%ess,0s 4.6绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点 ,,的坐标和相应点的增益值,得出系统稳定时增益的变化范围。 KK (1)校正前根轨迹图 运行程序:>> a=[1] >> b=[0.0125 0.2625 1 0] >> rlocus(a,b) >> title('校正前根轨迹') >> rlocfind(a,b) selected_point = -2.2514 ans =1.0635 得到校正前根轨迹图 \ 14 分析: ?求分离点和汇合点: 将根轨迹放大,移动十字架,将十字架中心移动到分离点和汇合点出,按回车键, ,得到分离点和汇合点坐标为(-2.2514,0),此时 K,1.0635?求与虚轴交点 在MATLAB图像趋于中点出根轨迹与虚轴的交点,图像上会显示出该点的坐标和对应增益值,由图像可知根轨迹与虚轴的交点为,对应增益 (0,,8.87i) ,,,可以得出当时,不存在右半平面得特征根,因此,使闭0,K,20.6K,20.6 ,,环系统稳定的增益变化范围为 0,K,20.6K (2)校正后根轨迹分析 运行程序:>>a=1 >> b=[0.0125 0.2625 1 0] >> c=conv([0.1608 1],[0.0604 1]) >> d=conv([0.0162 1],[0.0277 1]) >> s1=tf(a,b) >> s2=tf(c,d) >> s3=s1*s2 >> rlocus(s3) >> title('校正前根轨迹') >> rlocfind(s3) selected_point = -3.1788 ans =2.0318 得到校正后根轨迹图 \ 15 分析: ?求分离点和汇合点: 将根轨迹放大,移动十字架,将十字架中心移动到分离点和汇合点出,按回车键, ,得到分离点和汇合点坐标为(-3.1788,K,2.03180),此时 ?求与虚轴交点 在MATLAB图像趋于中点出根轨迹与虚轴的交点,图像上会显示出该点的坐标和 ,对应增益值,由图像可知根轨迹与虚轴的交点为,对应增益 ,K,114(0,,45i) ,可以得出当时,不存在右半平面得特征根,因此,使闭环系统稳定0,K,114 ,,的增益变化范围为 K0,K,114 4.7绘制系统校正前与校正后的Nyquist图,判断系统的稳定性,并说明理由, (1)校正前Nyquist图 运行程序:>> a=[40] >> b=[0.0125 0.2625 1 0] >> nyquist(a,b) >> title('校正前Nyquist曲线') 得到校正前Nyquist曲线 \ 16 分析:由开环传递函数看出没有开环极点在右半平面,故P=0,又因为存在一个 ,,积分环节,因此要从,,0处向上补画,最后从图中可以得R=-1,因为R=P-Z,2 所以Z=2。根据奈氏判据得校正前闭环系统不稳定。 (2)校正后Nyquist图 运行程序:>> a=[40] >> b=[0.0125 0.2625 1 0] >> c=conv([0.1608 1],[0.0604 1]) >> d=conv([0.0162 1],[0.0277 1]) >> s1=tf(a,b) >> s2=tf(c,d) >> s=s1*s2 >> nyquist(s) >> title('校正后Nyquist曲线') 得到校正后Nyquist曲线 \ 17 ,,分析:由于开环有一个积分环节,需要从相频特性曲线处向上补画,由,,02开环传递函数可知P=0。由二次校正后bode图可知,在范围内,对L(,),0dB PN,N,N,0,0,应的相频特性对-π没有穿越,即,,,所以闭N,0N,0,,,,2环系统稳定。 五、课程设计心得体会 通过这次课程设计,我进一步了解了自动控制原理中校正系统的基本概念和如何加入校正装置来使不稳定的系统变得稳定,并对自动控制原理中的很多基础知识有了更加深刻的理解。这次课程设计使用了许多的MATLAB知识,面对一个陌生的程序,开始的时候都无从下手。然后自己在图书馆借了一些关于MATLAB的资料,在网上查阅了许多MATLAB在自控中的应用,才慢慢熟悉运用MATLAB,并且能初步使用MATLAB软件编程来画出传递函数的Nyquist图、bode图来判断一个系统的稳定性。 本次课程设计让我加深了对自动控制理论知识的理解和认识,同时初步掌握了课程设计的方法和步骤。在实践中体会、理解高阶系统的动态性能。同时通过编程,加强了我对MATLAB的掌握程度,学会了通过用MATLAB的变成来解决一些综合性的问题,同时我也发现了MATLLAB十个很有用的软件,用它来解决一些 数学 数学高考答题卡模板高考数学答题卡模板三年级数学混合运算测试卷数学作业设计案例新人教版八年级上数学教学计划 问题或者画图问题会显得很方便。 在这次课程设计中,我通过查阅资料,自学没有学过的语言和程序,来拓展自我的课程知识,通知通告自我独立思考,锻炼了我发现问题和解决问题的逻辑\ 18 思维能力,和敢于尝试的勇气。相信以后还会有很多课程设计等着我们,我一定会以同样认真的心态对待他们,努力做到更好。 六、参考文献: 1、程 鹏 .自动控制原理[M] .北京:高等教育出版社, 2009 2、隋思涟,王岩.MATLAB语言与工程数据分析.北京.清华大学出版社,2009 3、徐薇莉. 自动控制理论与设计[M] 上海:上海交通大学出版社,2001 4、欧阳黎明. MATLAB控制系统设计[M]. 北京: 国防工业出版社,2001 \ 19
本文档为【试用频率法设计串联超前校正装置,使系统的相角裕量为,静态速度误差系数,幅值裕量。】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_083599
暂无简介~
格式:doc
大小:153KB
软件:Word
页数:21
分类:
上传时间:2017-11-14
浏览量:84