首页 关于泊松分布及其应用

关于泊松分布及其应用

举报
开通vip

关于泊松分布及其应用关于泊松分布及其应用 论文提要: 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的...

关于泊松分布及其应用
关于泊松分布及其应用 论文提要: 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 摘 要 泊松分布做为概率论中的一种重要分布,在管理科学、运筹学及自然科学的某些实际问题中都有着广泛的应用。本文对泊松分布产生的过程、定义和性质做了简单的介绍, 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 了泊松分布在生物学研究中的应用。 关键词 泊松过程泊松分布应用 摘要:泊松分布作为大量试验中稀有事件出现的频数的概率分布的数 学模型, 它具有很多性质。研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松分布; 定义;定理;应用;例题;指数失效律; 数学期 望; 方差 一、 泊松分布的概念: X定义1 设随机变量的可能取值为且0,1,2,?, kx,,,,PX,k,e,k,0,1,2,?,,,0为常数。 k! 则称X服从参数为λ的泊松分布,记作X , D(λ) 。 it,( t) ,,e (-,,t,,,) 定义2 设ε是任意一个随机变量,称是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 2E{ [ X - E( X) ] , 证明 设X 是一随机变量,若存在,则称它为X的方差, 2D( X) ,E{ [ X - E( X) ] , 记作D( X) ,即。设X服从泊松分布D ( X) ,即有: ,k,, P{ X , k} ,e,k , 0 ,1 ,2 , ?,, , 0k! kk1,,,,,,,,,,,,则,, EX,ek,,e,,e,e,,,,,,!1!kk,k0k1,, kkk,2,,,,,,22,,,,,,2E,,Xkeee,,,,,,,从而 ,,,,,,,k!k2!k1!,,kkk,0,2,1 2222D( X) , E( X ) - E( X) , , ,,- , , ,故 定理2 设随机变量服从二项分布,其分布律为 x ( n , 1 ,2 , ?)n kkn,k,,Px,k,Cp(1,p),k,0,1,2,?,n。 nnnn k,,,np,,,0lim,,又设是常数,则Px,k,e。 nn,,n!k np,,证明 由得: n kn,k,,nnnk,1?,,1,,,,,,,,Pxk,,,1,,,,,,nknn!,,,, n,k,nkn,k,12,1,,,,,,,,,,111?11,,,,,,,,,,,,,,,,,,,,knnnn!,,,,,,,,,, -,P{ x , k} ,e显然,当k = 0 时,故。当k ?1 且k ? ?时,有 n ,nk,nn12k,1,,,,,,,,,,, 1,1,,1,,?,1,,1,1,,e,,,,,,,,nnnn,,,,,,,, kk,,,,,,,,lim,,Px,k,ePx,k,e从而,故。 nn,,n1!kk 定理3 设p,是服从参数为λ的泊松分布的随机向量,则: 2t,x,,1p,,,2lim P,x,edt ,,,,,,,,,2,,, it,1,,,e,,,,,,,,,,证明 已知,,的特征函数为,t,e,故的特征函,,, 数为: it,,,,1t,t,t,e ,,gt,,,,e,e,,,,,,, it2itt1,,,,,对任意的t ,有,,,,;,,,。 e1,,2!,,,,, it22,,1tt,,,,,1于是。 ,,,,,,,,,,,;,,,,,eit,,,,22,,,,, 2t,2,,从而对任意的点列,,,,有limgt,e。 n,n,,,n 2t,2,,,,Fx但是是N (0 ,1) 分布的特征函数,由于分布函数列弱收敛于en分布函数F( x)的充要条件是相应的特征函数列{Φn ( t) } 收敛于F( x) 2t,,,x,,,,1,,nn2的特征函数Φ( t)。所以成立;又因为limP,x,,edt,,,,,,,,n2,,,,n,, 2t,x,,1,,p,2,是可以任意选取的,这就意味着成立。 limP,x,edt,,n,,,,,,,2,,, 二、 计数过程为广义的泊松过程 1.计数过程 设X , {N ( t) , t,T , [ 0, ,)}为一随机过程, 如果是取非负整数N ( t)T 值的随机变量,且满足s < t时,,则称X , {N ( t) , t,T ,[ 0, ,)}N ( s), ( t) T 为计数过程。 N ( t) - N ( t ) ,,N ( t , t) , 0,t, t[ t, t)将增量,它 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示时间间隔内出现000 0 [ t, t){N ( t , t) , k}的质点数。“在内出现k个质点”,即是一随机事件,0 0 P ( t , t) , P{N ( t , t) , k} , k , 0,1, 2?其概率记为总之,对某种随机事件的K00 来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程{N ( t) , t,0}称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)N (0) , 0; P ( t, t ,,t) , P{N ( t, t ,,t) , 1} ,,,t ,O (,t) ,(3)对于充分小的其中常数1 ,称为过程N(t)的强度。 ,,0 (4)对于充分小的Δt ,, ,,,,,,P(t,t,,t),PNt,t,,t,j,;,t ,,jj2j2,, ,,t,t,,t亦即对于充分小的,在或2个以上质点的概率与出现一个质,t 点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔 内出现质点数目的计数。 三、 泊松分布及泊松分布增量 1.泊松分布产生的一般条件 在自然界和人们的现实生活中,经常要遇到在随机时刻出现的某种事件,我们把在随机时刻相继出现的事件所形成的序列,叫做随机事件流。若事件流具有平稳性、无后效性、普通性,则称该事件流为泊松事件流(泊松流) 。 例如一放射性源放射出的α粒子数;某电话交换台收到的电话呼叫数;到某机场降落的飞机数;一个售货员接待的顾客数; 一台纺纱机的断头数;等这些事件都可以看作泊松流。 2.泊松分布及泊松分布增量的概率 (1)泊松分布的概率: 对泊松流,在任意时间间隔(0, t)内,事件出现的次数服从参数为λt的泊松分布,λ称为泊松流的强度。 设随机变量X所有可能取的值为0, 1, 2, ?,且概率分布为: k,,-P (X , k) , e, k , 0, 1, 2?其中是常数,则称X服从参数为λ的泊,,0k! 松分布,记作X,P (λ)。 (2)泊过分布增量的概率: k[( t - t ) ],-( t - t),00P ( t , t) , P {N ( t , t) , k } ,e,t , t , k , 0, 1, 2? k000k! N ( t , t) ,N ( t) - N ( t ),( t - t )由上式易知增量的概率分布是参数=的000 t,t泊松分布,且只与时间有关。 0 3.泊松分布的期望和方差: E[N ( t) - N ( t ) ] ,D [N ( t) -N ( t) ] ,,( t - t )由泊松分布知 00 0 t,0特别地,令,由于假设N (0) = 0,故可推知泊松过程的均值函数和0 方差函数分别为: E[N ( t) ] ,,t ,D [N ( t) ] ,,t, 泊松过程的强度λ(常数)等于单位长时间间隔内出现的质点数目的期望值。即对泊松分布有:E (X) ,D (X) ,, 四、 泊松分布的特征 (1)泊松分布是一种描述和分析稀有事件的概率分布。要观察到这类 事件,样本含量n必须很大。 (2) 是泊松分布所依赖的唯一参数。值愈小,分布愈偏倚,随着的,,,增大,分布趋于对称。 (3)当= 20时分布泊松分布接近于正态分布;当= 50时,可以认为泊,, 松分布呈正态分布。在实际工作中,当?20时就可以用正态分布来, 近似地处理泊松分布的问题。 五、 泊松分布的应用 1) 二项分布的泊松近似常常被应用于研究稀有事件,即每次试验中事件出现的概率p很小,而贝努里试验的次数n很大时,事件发生的概率。 例1 通过某路口的每辆汽车发生事故的概率为p = 0.0001 ,假设在某路段时间内有1000 辆汽车通过此路口,试求在此时间内发生事故次数X的概率分布和发生2次以上事故的概率。 分析 首先在某时间段内发生事故是属于稀有事件,观察通过路口的1000辆汽车发生事故与否,可视为是n = 1000次伯努里试验,出现事故的概率为p = 0.0001 ,因此X是服从二项分布的,即。 X~B(1000 ,0.0001) 1000999Q , p ( x ,2, , 1 - p{ x , 0, - p{ x , 1, , 1 - 0.9999 - 1000 ,0.0001 ,0.9999) 由于n = 1000很大,且p = 0.0001很小,上面的式子计算工作量很大,则可以用: mnpmmn- m-npp{ v , m} , Cp(1 - p) , e ( m , 0 ,1 , ?, n) nnnm! 求近似.注意到np , 1000,0.0001 , 0.1,故有 00.10.1- 0.1- 0.1p{ x,2, , 1 -e -e , 0.0045 . 0!1! 2) 泊松分布可以计算大量试验中稀有事件出现频数的概率。这里的 频数指在相同条件下, 进行大量试验,在这大量试验中,稀有事件发生的次数。 例2 已知患色盲者占0.25 %,试求: ?为发现一例色盲者至少要检查25人的概率; ?为使发现色盲者的概率不小于0.9 ,至少要对多少人的辨色力进行检查? 分析 设X表示恰好发现一例患色盲者所需要检查的人数,则 。 X ~ G(0.0025) 25k,,2424解 ,,,,,,p{ x, 25, , p1-p,1,p,0.9975,0.94,k25, 设至少对n 个人的辨色能力进行检查,于是p{ x?n}?0.9。从而: kk,1,1,,n ,,,,,,p{ x,n} , p1-p,1,p1,p,1,1,p,,knk,1,,1 lg0.1nn,,919.88271 - (1 - p) ,0.9由,得.因此至少要检查920人。 lg0.9975 参考文献 [ 1 ]魏宗舒等. 概率论与数理统计教程[M ]. 高等教育出版社. 1983. 10. [ 2 ]复旦大学编. 概率论(第一册) . 概率论基础[M ]. 人民教育出版 社. 1979. [ 3 ]王梓坤. 概率论基础及应用[M ]. 科学出版社1976. 9. [ 4 ] 潘孝瑞, 邓集贤1 概率引论及数理统计应用[M] 1 北京: 高等教 育出版社, 19861
本文档为【关于泊松分布及其应用】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_447713
暂无简介~
格式:doc
大小:22KB
软件:Word
页数:7
分类:生活休闲
上传时间:2018-01-12
浏览量:50