首页 《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案

举报
开通vip

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案 第二章 参数估计 课后习题参考答案 2.1 设总体X服从二项分布为其子样,求N及p的矩法,,BN,p,1,p,1,X,X,?,X12n估计。 解: ,,,,,,EX,Np,DX,Np1,p ,X,Np,令 ,2,,,S,Np1,p, 解上述关于N、p的方程得: 2,XX ˆN,,,2,ˆpX,S ,2S,ˆp,,1 ,X, 2,,,(),0,xx,,,2fx(;),,,,2.2 对容量为n的子样,对密度函数 ,0,0xx,,:,, 其中参数的矩...

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案
《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 第二章 参数估计 课后习题参考答案 2.1 设总体X服从二项分布为其子样,求N及p的矩法,,BN,p,1,p,1,X,X,?,X12n估计。 解: ,,,,,,EX,Np,DX,Np1,p ,X,Np,令 ,2,,,S,Np1,p, 解上述关于N、p的方程得: 2,XX ˆN,,,2,ˆpX,S ,2S,ˆp,,1 ,X, 2,,,(),0,xx,,,2fx(;),,,,2.2 对容量为n的子样,对密度函数 ,0,0xx,,:,, 其中参数的矩法估计。 , ,2,,,,aExxxdx()()解: 12,0, ,222,,()xxdx 2,0,, 122123,,,,,,,,,, 2333,, ,1xxxxxxx,,,,??,,,33ax(),,,所以 其中为n个样本的观察值。 121,2nn1n 2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。 n1EX,X,X,232.4025,,,in,1i解: n212,,,,DX,X,X,S,0.0255,in,1i 12.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数的总,,fx,,,,0,,,1, 体,试用矩法估计总体均值、总体方差及参数。 ,解: n1总体均值:X,X,1.2,in1,i n212总体方差:S,X,X,0.407,,,in1,i 1,fx,,,,, ,,,x,,,,,EX,xfx,dx,dx,,X,,,200 ˆ参数:,,2X,2.4 22.5 设为的一个字样,求参数,的MLE;又若总体为的X,X,?,X,,N,,1N,,1,,12n MLE。 ,x,12解:(1) ,fx,e,2i,i,2,, ,,,x, n,n122,,,,fx,,Lx,e,,iiin,1i,12i,2,,,,, ,,nn21L,x,,,,,x,,ln,ln2ii,1,,,,22i n,L,xln,i,,,x,,,,0i,,,1,,i n1,,x,Xˆ,i,1ni (2) 2,,x1,i,,12,22,,fx,,e,,i2 n2,,1x,i,i,1n,12,,22,2,,,,fx,,Lx,,e,iinn,,i1,2,,2 nn122,,,,,,,lnLx,,,ln2,nln,x,1,ii2,i1,22 2,n,,,lnLx,n12i,,,,,x,1,0,i224,,,1i,,22 2n12ˆ,,,x1,,,ii1,n , 2.6 设总体X的密度函数为为其样本,求下列情况下的MLE。 fxXXX(;),,,,,?,12n x,,,,ex,0,1,2,,?,,,0(i) fx(;),,x!, ,0,其它, ,,1,,xx,01,,,,0fx(;), (ii) ,,0,其它, ,,,,,1x,(),0,,xex,, (iii) 已知 ,fx(;),,,0,其它,, rx,,1,,,,()/(),0xerx,,fx(;),(iv) r已知 ,,0,其它, x,,1,ex,0,,,,0(v) , fx(;),,, ,0,其它, nXi,,n,,1i,e()L,解:(i) ,!!!xxx?12n n ln()lnln(!!!)LXnxxx,,,,,,?,12in,1i ndLln()1,,,,Xn0,id,,,1i n1,,Xx,,in,1i nn,,,,11n(ii) Lxx(),,,,,,,ii,,11ii n ln()ln(1)lnLnx,,,,,,,i,1i ndLnln(),,,,ln0x,id,,,1i nn,1,,11,,,,nxx(ln)(ln),,,iin,,11ii n,n,,xi,1n,,,1i(iii) Lxe()(),,,,,i1i, nn, ln()ln()(1)lnLnxx,,,,,,,,,,,ii,,11ii nndLnln,,,,,,,,nxx0,,iid,,,,,,11ii n,1,1,,()x,,in,1i nn,,xi,1nrn,,1i (iv) Lxer()()/(()),,,,,,i1i, nnnr ln()ln(1)ln()Lrxxnr,,,,,,,,,,,ii,,11ii ndLnrln(),,,,x0,id,,,1i n, nrr1,,,,xX,,innxi,1x,i,1i n1,xi,1,,1i(v) Le,(),n, n1 Lnx,,,,,ln()ln(),i,,1i ndLnln()1,X0,,,,,i2d,,,i1, n,1,,xxX,,,ini1, ,2.7 设总体X的密度函数为,为其子样,求参数X,X,?,X,,,,fx,,,1x,0,x,112n的MLE及矩法估计。今得子样观察值为0.3,0.8,0.27,0.35,0.62,0.55,求参数的,, 估计值。 解: 极大似然估计: n1X,x,0.48,ini,1 nnn,fx,,,Lx,,,,1xiii,ii,,,,,,,1,1,, n lnL,x,,,nln,,1,lnx,ii,,,,i,1 n,lnL,x,ni,,,,lnx,0,i,,,,1i,1 ,1n1,,ˆ,,,1,lnx,0.234,,,ini,,,1 矩法估计: 11,,1,,ExxfxdxxxdxX,,,1,,,,,,,,,,,,200 1ˆ,,,2,,0.07 X1, 2.8 在处理快艇的6次实验数据中,得到下列的最大速度值(单位:m/s)27 ,38 ,30 ,37 ,35 .31, 求最大艇速的数学期望与方差的无偏估计。 ,,XEX,,解:是总体期望的无偏估计 n1,,?EX,,,X,33m/s ,in,1i 22是总体方差,,的无偏估计 SDX,,* n21222,,S,X,X,18.8m/s ,8in,1,1i 22.9 设总体,为其子样。 X,X,?,XX~N,,,,,12n 2n,1122(1)求k,使为的无偏估计; ˆ,,,,,X,X,i,i1ki,1 n1(2)求k,使为的无偏估计。 ˆ,,,X,X,ik,1i 解: 222111n,n,n,,,,,nn1,112,1,,2,,,,(1) EXXEXX,,,,,,,,,,,,,,,,,,11i,ii,i,,,,kknk,1111i,i,i,,,,, 即k=2(n-1) (2) n,11X,X,X,X ii,jnnj,i ,,n,11n,11n,11,,,,,,,,EX,X,EX,EX,EX,EX,,,n,1,,0,,,,iijij,,nnnnnn,,j,ij,i,, 2,,,,n,11n,11,,,,,,,,,,DXXDXDXDXDX,,,,,,,,,iijii22,,nnnn,,j,ij,i,, 2,,n,1n,1n,1222,,,,,,22nnn n,1,,2XXN所以 ,,~0,,,in,, n2,1EXX,?,, in, n,,1n2n,112nn,1: ,,,?E,EX,X,,,i,,kknk,1i ,,2nn,1?k, , XNXXX (,1),,,,2.10 设总体为一样本,试证明下述三个估计变量 123 131,,,,XXX11235102 115 ,,,XXX,21233412 111,,,XXX3123,362 都是的无偏估计量,并求出每一估计量的方差,问哪一个最小, , 131证: ,,,,EEXEXEX()()()()11235102 131 ,,,,,,()5102 115同理:,,,, EEXEXEX()()()()21233412 115,,,,,, ()3412 111,,,, EEXEXEX()()()()3123362 111,,,,,,() 362 是的无偏估计量。 ,,,,,,?123 由于 13119222,,,,,D()()()()1510250 11525222,,,,D()()()(),2341277 1117222,,,,D()()()(),336218?D(),最小。 2 22ˆˆˆ,,,,2.11 设是参数的无偏估计,且有,试证不是的无偏估计。 ,,D,,0 解: ˆˆ,,是参数的无偏估计,即 ,,E,,, 22ˆˆˆˆ,,,,,,,,,,D,,E,,E,,D,,0又因为 2222ˆˆˆˆ,,,,,,,,,,E,,D,,E,,,,D,,,所以 22ˆ,,综上所述:不是的无偏估计 n1,22.12设总体证明为的,XNXX ?(,),,,,,,已知,为一样本,X,,,ni1n2,1i 1无偏估计,且效率为。 ,,2 2证明:设 则 yx,,,yN (0,),iii ,, Eyyfydy()2(),iiii,0 2yi,,,122, ,yedy2ii,0,,2 2,, , n11,, EXEy,,()(),,iinn22,1i 12,,, n ,,n2,n1,即,为的无偏估计 ,X,,,in2,1i nn11,, DXDX,,, (),,,,ii2nn22,,11ii n2,2,,,,,,EXEX(),,,,,ii2,,2ni,1 n2,,,22,, ,,,,,22n,,i,1, (2),2,,,2n 2 由于 XN (,),, 2()x,,,122,fxe,,,(,,) 2,, 则, 2x,11(),,,,,(ln2ln),,2,fxln(,,),,222,,,,,, 21()x,,,,, 3,, 22,,ln(,,)13()fxx,,,,,224,,,, 2,ln(,,)132fx,,2IEEx()()(),,,,,,,,,2242,,,,, ,111 e,,,,()n,,,(2)22,,2DnI()(),, n,2n2,2.13设总体X服从几何分布: k,1 Pxkppkp()(1),1,2,,01,,,,?,, n1证明样本均值是的相合,无偏和有效估计量。 EX()XX,,in,1i 证明:(1)相合性 ,,,,kk11,, EXkpppkp()(1)(1),,,,,,kk11,, ,k1,Spkp()(1),,,k,1令 ,k1,Spdpkpdp()(1),,,,,k1, 0,,(1)1,pk ,,,,,,,(1)p,1(1),,ppk,0 11, EXp()(),,, pp 22DXEXEX()()(),, k,222221EXpppppkpp()2(1)3(1)(1),,,,,,,,,,,? 22221k, ,,,,,,,,,pppkp(12(1)3(1)(1))?? 21kk,,对上式括号中的式子,利用导数,并利用倍差法求和 kpkp(1)((1)),,,,22221k,12(1)3(1)(1),,,,,,,,ppkp?? 23k,,,,,,,,,,,((1)2(1)3(1)(1))pppkp?? 12,,pp,,,()23pp 因此, 22,,pp2EXp(),,,32pp 211,,pp222DXEXEX()()()(),,,,,22ppp ?DTXXX((,,))12n相合性: ?,,,,,PTXXXg(,,)(),,12n2, lim((,,,))0DTXXX?, 当 12n,,n 则是的相合估计。 TXXX(,,,)?g(),12n ,,11,p本题中, lim((,,,))lim0DTXXX?,,,,,12n2,,,,nnnp,, n1 是的相合估计。 EX()XX,?,in,1i (2)无偏性 nn111 EXEXEXEX,,,,()()()(),,iinnp,,11ii (3)有效性 nn111,p DXDXDX()()(),,,,,ii22nnnp,,11ii x,11ln(,)ln(1)ln(1)ln(1)Pxppppxp,,,,,,11 ,,ln(,)1Pxpx111,,,,ppp1 2,,ln(,)1Pxpx111 ,,,222,,ppp(1) 1,1x,111p1IpE()(),,,,,,2222pppp(1)(1),, 1 ,2pp(1), 112,(())4ppe,,,1 n,p11DXnIp()() n22nppp,(1)?XEX()是的有效估计。 22.14 设总体X服从泊松分布,为其子样,试求参数的无偏估计,,,X,X,?,X,,P,12n量的克拉美劳不等式下界。 解: ,X,,,1pXe1,,!X,,1 ln,,,,lnln,,,,pXXX111,, ln,,ln,,1,,pXpXX111,,,,,,,,22,,2,,2,, 22ln,,ln,,1,,pXpXX111,,,,,,,22234,,,4,2,, 2ln,,,,1,,,pX21,,,,,,,,,,IIe,,23,4,,,, 克拉美劳不等式的下界为: 23'3,,,,g,,1442,,,, 1,,nInn,n,34, ˆˆˆ,u,a,,b,2.15 设,是的有效估计量,试证明是的有效估计量。 ,,u,a,,ba,0u 解: :::: ,,,,,,,,E,,,,E,,Ea,,b,aE,,b,a,,b,, lnpxlnpx1,,,,,, ?,::,a,,, 22:,,,lnp(x)1,lnp(x)1:,,,,,,,,,,?,,,IEEI: ,,:22,,,aa,,,,,,, ,从而的无偏估计量C-R下界 :,1:,122 ,,,,,,,,,,,,nI,(),anI,,aD,,Da,,b,D, ::,是的有效估计量。 ?,,a,,b ,,,,,,X,Y,X,Y,?,X,Y,,X,Y2.16 设有二元总体,而为其样本,证明1122nn n1ˆ,,CovX,Y,,,,是的无偏估计。 C,X,XY,Y,ii1n,,1i 证明: nn:11,, ,,,,,,,,,,EC,EX,XY,Y,EX,XY,Y,,,,iiii11n,n,,1,1,,ii n,11n,11 ,,,,?X,X,X,X,X,EX,X,EXiijij,,nnnnj,ij,i同理 n,11 ,,,,Y,Y,Y,EY,Y,EY,iiknnk,i ,,,,?EX,XY,Yii 2,,,,n,1n,1,,,,,,,,X,EXY,EY,X,EXY,EY,,,iiik22nnk,i,,,E,,,,n,11,,,,,,,,,,,,,X,EXY,EY,X,EXY,EY,,,jijk22,,nn,,j,ij,ik,i,,,, 2,,,,,,n,11,,,,,,,,covX,YEXEXYEY,,,,,,,,jk22,,nnj,ik,i,,,,,, 2,,n,11,,,,,,,covX,Y,EX,XY,Y,jj22nnj,i 2,,n,1n,1,,,,,covX,Y,covX,Y22nn ,n1,,,covX,Yn nn:11n,1nn,1,,,,,,,,,,,,?EC,EX,XY,Y,covX,Y,covX,Y,covX,Y,,iin,1n,1nn,1n,1,1ii :?C为,,的无偏统计量。 covX,Y ˆˆˆˆ,2.17 设和是参数的两个独立的无偏估计量,且的方差为的方差的2倍,试确,,,,1212 ˆˆ,定常数C及C,使得为参数的无偏估计量,并且在所有这样的线性估计中方C,,C,211122 差最小。 ˆˆ,解:和是参数的两个独立的无偏估计量 ,,12 ˆˆˆˆC,C,1则即 ,,,,,,,,,,,,,,,ECCCECE1211221122 ˆˆ又 ,,,,?D,,D,12 2222ˆˆˆˆˆ ,,,,,,,,,,?DC,,C,,CD,,,CD,,C,CD,211221122122 22要使其最小,则要求最小。 2C,C12 212,,2222 2212,,C,C,C,,C,C,,,,1211133,, 21当时,取得最小值,此时 C,C,1233 2.18 设总体X服从指数分布,其密度函数为 ,,x,,e,x,0,, ,,,,,0fx,0,x,0, 为其样本,n>2。 X,X,?,X12n ˆ,(1)求的MLE,; *ˆˆˆ,(2)计算,求k,使得,,k,为的无偏估计; ,,,E *ˆ,(3)证明,是的渐进有效估计。 ,,n解:(1) xnfxLxe,,,,,,,iin,1,ii,1i,,,,,n Lxnx,,,,,,ln,lnii,1i,, nLxn,,ln,ix,,,,,,0 i,1i,,, n1ˆ,,,nXx,i,1i ::11,,,?E,E,,?(2) XX ,,x,,e,x,0,,~,,,,,,0Xfx ,i0,x,0, nn,n,1,,x的密度函数 xe,X,i(,1)!,1in n,,n,1,,x,xe,x,0 ,,fx,,,,,,0,n,2n,,,n,1!Xi,,0,x,0,1i, ,,,,nn,,:1n1nn,1,xn,2,x,,,?E,E,E,nxedx,xedx,,n,,xn,1!n,1,,,,~X00Xi,i,1 n,nn1,n,,,n,2!,,,,,n,1!n,1 9,2,,n,3,,,,n2n2,:2,,1nn,22n1xn3x2,,,,,,,,E,nxedx,xedx,,,,2,,2,n2,,,,,,,,n,1!n,1~n,1n,2x00,,n,4,,,,,,n,1n,2, 222:::22nnn222?D,E,E,,, ,,,,,,,,,,,,,,22,,,,n,1n,2,,,,,,n,1n,1n,2 ::::*nn,1*,EkEk?k,,,,,,,,,,,,若,,为的无偏估计,则 ,k,,,nn,111lnfX,,ln,X (3) ,1,lnLX,11,,X,,,,,2,,,1,lnLX,122,,,,,,,2,1,,,lnLX,1,22I,,E,,,,,,,,,,,, 2,*n,1,,,,ˆˆD,D,,,,,nn,2,, 11n,22e,,,,1*n,,,ˆ,,,,1nDnI,n,2,n,2 *ˆ,,由此可知,是的渐近有效估计。 ,X,X,?,X,,P,,,,02.19 设总体X服从泊松分布,为来自X的一个样本。假设有12n 先验分布,其密度为 ,,,,e,,0,,,,h, ,0,,,0, ,求在平方损失下的贝叶斯估计。 ,解:给定,样本的分布列为: xnXni,,,,,n,,,0,1,2,,,eei?,,n!,x,1ii,,,|,!,,gxx?xx,,12,ni ,1i, ,0,其它, nXn,,,1n,,样本的边缘分布列,其中 ,,?,,,gxxx,ed,X,X,12nin,0n,1I!x,i1i, ,,0时的联合密度函数: nX,,,1n,,,gx,x,,x,gx,x,,x|he,,,,,,?,?, ,,,1212nnn x!,i,1i,的后验密度为: nX,,,n1,,,,e,n,!x,i,,,,,,gxx?x,,12ni1,,,,0,1,2,,i?,,,,gxx?,,x,,,12n,|,,, ,,,hxx?x,,,12nnX,,,,,n,,,,,,,eddn,,00,,,!x,,,i,1i,,,, ,0,其它, ,,nX,1ˆ,,,,,,h,|x,x,?,xd,的贝叶斯估计:= 12n,0n,1 2.22 随机的从一批零件中抽取16个,测得长度(单位:cm)为: 2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11 , 以零件长度的分布为正态的,试求总体均值的90%置信区间。 (i)若,,0.01()cm; ,未知 (ii) 若。 解:求得: x,2.125 S,0.0166 S,0.0171, ,,,,?,,0.11.645,0.95,12 (i)若 ,,0.01()cm 则,的90%置信区间为: , ,,xnxn,,,,,,,,,,, 11,,,,22 带入数据 ,,2.1251.6450.01/16,2.1251.6450.01/16,,,,,, 得:2.121,2.129,, (ii)若未知 , tt(15)(15)1.7531,,,0.951,2 ,的的置信区间为:90% ,,SSxx,,,,tntn(1),(1),,,,11,,nn,,1122,, 或 ,,SS,,xx,,,,tntn(1),(1),,11,,,,nn22,, 计算得 2.11752.1325,,, 22.23 对方差已知的正态分布总体来说,问需抽取容量n为多大的样本,才能使总体均值,0 2,,,,的置信度为1001,,%置信区间的长度不大于。 证明: ,,X22,,,,,,,T~N0,1,且,0 ,/n ,,,,a,XbA,,, ,,,,,/n/n/n,, ,,估计区间: X,u,/n,X,u,/n,,,0,0,,1122,, 2u/n,2,,区间长度: ,01,2 2,u,,0,1,,,2n?, ,,,,,,, 2.24随机地从A批导线中抽取4根,并从B批导线中抽取5根测得其电阻()为 , A批导线 0.143 0.142 0.143 0.137 B批导线 0.140 0.142 0.136 0.138 0.140 22设测试数据分别服从正态分布 NN(,)(,),,,,,和且它们相互独立,12 2。 又未知,试求的置信区间,,,,0.9512 解:此题中,置信度0.95,即 ,,,,0.05,4,5nn12 查得 tnnt(2)(7)2.3646,,,,,120.975,12 2X,,0.1412,S6.1875e-006AA 2X 0.1392,S4.1600e-006,,BB nnnn(2),,45(452),,,,1212M,,,3.9 nn,,4512 22nSnS,,,,,,46.1875e-00654.1600e-0060.0067 AB12 代入下式得的的置信区间为,,,0.95 12 tnntnn(2)(2),,,,,,,,1212,,112222,,22 XYnSnSXYnSnS,,,,,,,ABAB1212,,MM,,,, 2.36462.3646,,0.14120.13920.0067,0.14120.13920.0067,,,,,,,,3.93.9 ,, ,-0.0021,0.0061 ,, ,,与无明显差异。因0含在此置信区间内,故认为 12 2.26 在一批货物抽100件检查,发现次品16件,求这批货物次品率的0.95置信区间。 u,u,1.96,n,100解:,100件产品中有16件次品,则 X,0.16,0.975,12 X,p使用棣莫弗——拉普拉斯中心极限定理,服从 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 正态分布,于是解下列不等 ,,p1,pn 式 2,,X,p2,u ,,1,,1/p,pn2 ,,,,2222,,,, n,up,2nX,up,nX,0,,,,,,,,1122,,,, 解上述不等式得:p=0.101,p=0.244,95%的置信区间[0.101 0.244] 2.25随机地取某种炮弹9发作试验,得炮口速度的样本标准差,设炮口速度服Sms,11(/)从正态分布,求这种炮弹炮口速度之标准差的0.95置信区间。 , 222222,,的点估计量为注意到考虑及Scd,0,01,,,,,S的邻域[cS,dS],使得 222P(A)=PcS,,,,dS1,,,, 变换事件A 111,,A,,,,,222cSdS,,,2,,nnSn =,,,,2cd,,,2nS22由T()= (1),()1,nPA,,,故为使通常取2,,,,nn22,,,,(1) (1)nn,,1,dc,,22解: 于是所求区间为 ,,22nSnS,, ,22,,(1)(1)nn,,,,,1,,-22,,, 2本题中,,,,nS9,121,0.05, 22(1)(8)17.535n,,,,,0.975,1,2 22(n-1)=(8) =2.1800.025,,,2 代入得: ,9*1219121,,,, =62.1044499.5413 ,,,,17.5352.180,, ,开根号得这种炮弹炮口速度之标准差的0.95置信区间为[7.8806, 22.3504]
本文档为【《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_682974
暂无简介~
格式:doc
大小:39KB
软件:Word
页数:15
分类:其他高等教育
上传时间:2017-09-30
浏览量:422