首页 微积分习题答案

微积分习题答案

举报
开通vip

微积分习题答案微积分习题答案 微积分(?) 极限习题解答 第 1 页 共 10 页 极限习题解答 1( 试写出一个由到(0,1)的一一对应映射( [0,1] 解: ,1,0x,,2,1,,1x,,fx(), 3,11,,2,3,4xn,,,nn,2,x,其他, 2(求极限 ,其中( a,a,?,a,0lim(an,1,an,2,?,an,m)12m12m,,n 解: mm ,,limank=limankan1 ,,,,,,kkkn,,n,,k,1k,1 mk1,lima ==0( ,kn,,nkn1,,,k,1 3(用...

微积分习题答案
微积分习题答案 微积分(?) 极限习题解答 第 1 页 共 10 页 极限习题解答 1( 试写出一个由到(0,1)的一一对应映射( [0,1] 解: ,1,0x,,2,1,,1x,,fx(), 3,11,,2,3,4xn,,,nn,2,x,其他, 2(求极限 ,其中( a,a,?,a,0lim(an,1,an,2,?,an,m)12m12m,,n 解: mm ,,limank=limankan1 ,,,,,,kkkn,,n,,k,1k,1 mk1,lima ==0( ,kn,,nkn1,,,k,1 3(用极限定义证明 (1) lim(n,1,n),0n,, 证明:,欲使 (由于 |n,1,n|,,,,,0 11|n,1,n|,,, n,1,nn 11,,故只需 ,,,即 便可( n,,,2n,,, 1,,取 ,则当n>N时,有 ( |n,1,n|,,N,,1,,2,,, 故 ( lim(n,1,n),0n,, n(2) lim(n),1n,, nnn证明: 因为 ,令,则a,0,且等价于lima,0( n,1,amil(n),1n,1nnnn,,n,, 由于 11nn22, n,(1,a),1,na,n(n,1)a,?,a,n(n,1)annnnn22 微积分(?) 极限习题解答 第 2 页 共 10 页 2所以 ( 0,a,nn,1 2,,因此 ,取 ,则当 时,有 ,,,0,,n,NN1,,2,,, , 0,a,,n n故 (从而 ( lima,0lim(n),1nn,,n,, 4(利用夹逼定理求极限 1,3,5,?,(2n,1)(1); limn,,2,4,6,?,(2n) 解法1:因为 1,33,5,,…,2,,1,34,,3,522 (2n,1),(2n,1), 2n,,(2n,1)(2n,1)2 所以 1,3,5,?,(2n,1)1,3,5,?,(2n,1)10,,,, 2,4,6,?,(2n)1,3,3,5,5,7,?,(2n,1)(2n,1))2n,1 ?n1,3,5,,(2,1)1由于lim,0,所以lim,0( n,,n,,?n2,4,6,,(2)n2,1 1,3,5,?,(2n,1)a,解法2:令,则 n2,4,6,?,(2n) 13355(2n1)(2n1)2n1,,,,,?,,,,,20a, ,,,n22222246(2n)(2n),,,?, ?n1,3,5,,(2,1)lim,0易知 ( n,,?n2,4,6,,(2) 2,,1,3,5,?,(2n,1)1,3,5,?,(2n,1)2462n1,,,?,解法3:由,可知 ,进而得,,2,4,6,?,(2n)2n,12,4,6,?,(2n)3572n,1,, ?n1,3,5,,(2,1)lim,0到( n,,?n2,4,6,,(2) 11,,mmnn,,,,n,n,,,(2),其中( ,,,,a,0(k,1,2,?,m)limaa,,kkkn,,,,k,k,,,,,11,,,, 微积分(?) 极限习题解答 第 3 页 共 10 页 解:令,则 a,min{a},A,max{a}kk1,k,m1,k,m 11mmnn,,,,11,,,nnn, AaamA,,,,,,,,,,,,,kkaa,,,,kk,,,,11 11,,mmnn,,,,1,nnn,,由于,所以( aaAlimm,1,,,lim,,,,,,kkn,,,,n,,a,,kk,,,,11,,,, 1n,15(设(易知数列收敛于e)( {}uu,,(1)nnn (1)研究数列的单调性; {}un 111(2)利用(1)的结果证明对于任意正整数都成立( n,,,ln(1)nnn,1 解:(1) 1n,1u,,(1)nn 11n,,(1)1unn1nnn,1nn,,11,,,,,,()(1) 211unnn,,,111n,1n(1)1,,nn 32nnnnn,,,,,,,(1)1232nnnnn,,,,,111 所以数列单调减( {}un (2) 1111nn,1n,1n ,且单调减,,单调增, ,,,,e,(1)(1)lim(1)lim(1)xx,,,,nnnn 11n,1n? , ,,e,,e(1)(1)nn 分别两边取对数 111(1)ln(1)1ln(1)n,,,,,,nnn,1 111ne,,,,,,ln(1)ln(1)nnn 111所以 ,,,ln(1)nnn,1 6(证明:若单调数列具有收敛的子列,则此单调数列收敛( 证明:不妨设为一单调增加数列,为的一个子列,且( aalimaA,a,,,,,,nnnnkk,,k , limaA,,,,,,nk,,k 微积分(?) 极限习题解答 第 4 页 共 10 页 ( ?,,,,N0k>N,当时,有aA,00nk ank单增,且,,,nk ?,,,,当时,有nnNaaA-,Nnn00N0 对于,总存在使nnknn,,Nnk0n ?,aannk 又有极限,则有界a,,nk ?,aAa为有界单增列,其极限值sup,,,,nnkk ?,,aaAnnk ?,,,当时,有nnaAA-Nn0, 即aA,limnk,, pppn127(设,其中,,是一有界非负数列,试证数列收p,,aa,,,?,(n,1,2,?)nkn2n101010 敛( 证法1:单调有界收敛定理( 设,则 0,p,Mk 11,nppp1111M,,1012n, 0,a,,,?,,M,,?,,,M,,n22nn1101010910101010,,1,10 即数列有界(又易知数列单增,所以数列收敛( ,,,,,,aaannn证法2:Cauchy收敛准则( 11,mppp1MM10n,1n,2n,m由于,所以任给,由,,0,,,,?,,,aan,mnn,1n,2n,mn,1n1910101010101,10 M1M得 ( n,log,,n9,910 1MM,,aa取,则对于任意的,均有,即数列,,a,log,1,,,,n,N,m,0Nn,mnn,,n,9910,, 是一Cauchy列,所以收敛( 2n,,,,8(设,其中q,1且数列a有界,试证数列b收敛( b,a,aq,aq,?,aqknn012n 证明:Cauchy收敛准则(设a,M,则 k m1,qMn,1n,1n,2n,mn,1,,,,,,,( bbaqaq?aqMqqn,mnn,1n,2n,m1,1,qq 由此易证数列,,是一Cauchy列,所以收敛( bn 微积分(?) 极限习题解答 第 5 页 共 10 页 9(若数列满足 ,其中,试证数列a,a,qa,a(n,1,2,?)0,q,1{a}{a}n,1nnn,1nn 收敛( 证明: ,因为 ,,,0 a,an,mn ,a,a,a,a,,a,a?n,mn,m,1n,m,1n,m,2n,1n m,1m,2 ,,,q,q,,q,a,a?1n,1n ma,a,q121n,1n,1n,qa,a,q,Mq,21,q,q11 ,,,所以当取 ,且时,有对任意的都成立( N,log,1a,a,,n,Nm,0qn,mn,,M,, 即数列为柯西列,所以收敛( {a}n 10(设,,且数列单调减,证明an,,0(){}alim()aaa,,,,,,nn12n,,n aaa,,,1321n,( lim1,n,,aaa,,,242n 证明:容易看出数列有界(,单调减)( {}aan,,0()nn 1aaaaaaaaa,,,,,,,,,()242224422nnn2 1,,,,,,aaaaaa(),2345221nn2 lim()aaa,,,,,,12n,,n ? lim()aaa,,,,,2321n,n,, ? lim()aaa,,,,,,242n,,n 同样 lim()aaa,,,,,,1321n,n,, 因为数列单调减,于是: aaaaaaaaa,,,,,,,,,()()1321123452nn,01,,,aaaaaa,,,,,,242242nn a1,,0aaa,,,242n 微积分(?) 极限习题解答 第 6 页 共 10 页 aaa,,,1321n,由夹逼定理 , lim(1)0,,n,,aaa,,,242n aaa,,,1321n,所以 ( lim1,n,,aaa,,,242n 11(证明Stolz定理:设和为两个数列,若单调增加,且,,,,,ab{b}limb,,,nnnnn,,a,aan,1nn,则( lim,Alim,An,,,,nbb,bnn,1n a,ann,1证法1:令,则,即对,,当时,,N,0limc,0c,,A,,,0n,Nnnn,,b,bnn,1 ( c,,n 由于 a,a,(c,A)(b,b)nn,1nnn,1 ,a,(c,A)(b,b),(c,A)(b,b)n,2n,1n,1n,2nnn,1 ,? ,a,(c,A)(b,b),?,(c,A)(b,b),(c,A)(b,b)NN,1N,1Nn,1n,1n,2nnn,1 ,a,c(b,b),?,c(b,b),c(b,b),A(b,b),NN,1N,1Nn,1n,1n,2nnn,1nN所以 cb,b,?,cb,b,cb,baa,AbN,1N,1Nn,1n,1n,2nnn,1nNN,A,,bbbnnn aAbbb,,NNnN,,, bbnn aAb,NN,,,,bn aAb,NN因为 ,所以对于上述,,当时,( limb,,,,N,0n,N,,0,,n11n,,bn aann取,则当时,,即( N,max{N,N}n,N,A,2,lim,A212,,nbbnn xx,nn,1证法2:,因为 ,所以 ,有: ,,N,,,nN,,,0lim,A33n,,yy,nn,1 xx,nn,1, 即 ,,,Ayy,nn,1 微积分(?) 极限习题解答 第 7 页 共 10 页 xx,nn,1 ,,AA,,,,yy,nn,1 取,进行递推 nN,,1 xx,NN,,21,即 ,,AA,,,,yy,NN,,21 ()()()()AyyxxAyy,,,,,,,,,NNNNNN,,,,,,212121 ()()()()AyyxxAyy,,,,,,,,,NNNNNN,,,,,,323232 ()()()()AyyxxAyy,,,,,,,,,nnnnnn,,,111 以上各式相加,得: ()()()()AyyxxAyy,,,,,,,,,nNnNnN,,,111 即: ()()()()AyyxxAyyx,,,,,,,,,,nNNnnNN,,,,1111 同除以y则: n yxxyxNNnNN,,,,1111 ()(1)()(1),,,,,,,,,,AAyyyyynnnnn 即: yxxyxNNnNN,,,,1111 ()()()(),,,,,,,,,,,,,,,AAAyyyyynnnnn 因为: limy,,,nx,, yN,1?,lim0 x,,yn xN,1lim0,x,,yn yN,1所以,,时 , ,,,NnN0,,,,0,,,,,,,,()()A11yn xN,1,时 , ,,,NnN0,,,,0,,,,,22yn xn取,则对于,时, NMaxNNN,(,,),,,NnN0,,,,0,,,,33,,A123yn 微积分(?) 极限习题解答 第 8 页 共 10 页 xn所以: lim,A,,nyn 12(利用Stolz定理求下列极限 a,2a,?,na12n(1),其中( lima,alimn2,,,,nnn 2解:令,,则 v,nu,a,2a,?,nann12n (1)(1),,,uunanaan,1nn,1n,1limlimlim, ,,,22n,,n,,n,,212,,vvn(1),,nnn,1n 2,,,?aanaa12nlim所以 ( ,2,,2nn mmm?n1,2,,(2),为正整数( mlimm,1n,,n 解: mmmm?12(1),,,nn,limlim,m,1m,1m,1n,,n,,(1)nn,,n m(1)n, lim,n,,(1)m,mmm,1?(1)1m,n,n,,2 1.,1m, 111nn,2,21n,1222,,,,222,,,,,,(3)( lim?,,n23,,,,n,,212121,,,,,,,,, 111nn,2,21n,1222,,,,222,,,,,,解:令,则 ,a?,,nn23,,,,212121,,,,,,,,, 2n,1,,1222n,2,,lnln2ln2ln, ,,,,a?n,,n,123n2212121,,,,, 所以 n,12n,22lnn,1n2121,limlnlimlimlnln, a,,,nn,1n,2nn,,n,,n,,22221,, 111nn,2,21n,1222,,,,2221,,,,,,从而 lim( ?,,,n23,,,,n,,2212121,,,,,,,,, 微积分(?) 极限习题解答 第 9 页 共 10 页 13(设 证明数列发散( ,,,k,{sin}n, 证明:因为 所以 假设数列收敛,记 ,,,k,sin0,cos1.,,,,{sin}n,limsin.nA,,n,, 则 limsin(1).nA,,,n,, 展开: 所以数列也收敛( {cos}n,lim(sincoscossin).nnA,,,,,,n,, 记 则 即 ABAcossin,,,,,AB(1cos)sin.(1),,,,limcos,nB,,n,, 再将展开: 两边取极限: cos(1)n,,coscossinsin.nnB,,,,,, 即 BABcossin,,,,,,,,ABsin(1cos).(2),, 22 (1)sin(2)(1cos):0(sin(1cos))2(1cos).,,,,,,,,,,,,,,BB 从而有 代入(1), AA1cos)0,0.(,,,,B,0. 2222在恒等式 两边取极限: 矛盾~ AB,,,1,01,sincos1nn,,,, xn14(已知,证明存在( ,,,,mnxxx,0limmnmn,,,nn xxnn证明:,所以,所以数列有0,,,,,,,,xxxxxxnx0{},,,nxnnn111121,,1nn xxnn界(记(下面证明 inf{}lim.,AA,,,nnn xn因为A是下界,所以 .,,nAn x,N1因为是下确界,所以 A,,,0,,,,.NA12N1当时,记,记 则 nN,nqNrrN,,,,,0x,0.1110 qxxxNn1r ,,,,,,.xxqxx,nqNrNr11nnn a,记axx,max(,,). ,,,,NnN.11N,221n2令 则 有 NNN,max(,),,,nN12 qxqxx,,xaNNn11r,,,,,,,,,.AA,22nnnqNn1 微积分(?) 极限习题解答 第 10 页 共 10 页
本文档为【微积分习题答案】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_682974
暂无简介~
格式:doc
大小:67KB
软件:Word
页数:11
分类:企业经营
上传时间:2017-12-28
浏览量:208