首页 3第一讲__数列的极限典型例题

3第一讲__数列的极限典型例题

举报
开通vip

3第一讲__数列的极限典型例题3第一讲__数列的极限典型例题 第一讲 数列的极限 一、内容提要 1.数列极限的定义 limx,a,,,,0,,N,,,,n,N,有. x,a,,nn,,n 注1 的双重性.一方面,正数具有绝对的任意性,这样才能有 ,, 无限趋近于 a,x,a,,(n,N),,xnn 另一方面,正数又具有相对的固定性,从而使不等式.还表明数列无限趋近x,a,,,,x,nn于的渐近过程的不同程度,进而能估算趋近于的近似程度. ,,xaan limxNN注2 若存在,则对于每一个正数,总存在一正整数与之对应,但这种不是,n,...

3第一讲__数列的极限典型例题
3第一讲__数列的极限典型例 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 第一讲 数列的极限 一、内容提要 1.数列极限的定义 limx,a,,,,0,,N,,,,n,N,有. x,a,,nn,,n 注1 的双重性.一方面,正数具有绝对的任意性,这样才能有 ,, 无限趋近于 a,x,a,,(n,N),,xnn 另一方面,正数又具有相对的固定性,从而使不等式.还表明数列无限趋近x,a,,,,x,nn于的渐近过程的不同程度,进而能估算趋近于的近似程度. ,,xaan limxNN注2 若存在,则对于每一个正数,总存在一正整数与之对应,但这种不是,n,,n NN唯一的,若满足定义中的要求,则取,作为定义中的新的一个也必须N,1,N,2,? NN满足极限定义中的要求,故若存在一个则必存在无穷多个正整数可作为定义中的( 注3 的几何意义是:对的预先给定的任意邻域,在中(n,,),,x,axa,,U(a,,)nn至多除去有限项,其余的无穷多项将全部进入( U(a,,) limx,a,,,,0,,N,,,,n,N注4 ,有x,a,,. 00nn00,,n 2. 子列的定义 ,,,,在数列x中,保持原来次序自左往右任意选取无穷多个项所得的数列称为x的子列,nn k,,xx记为,其中n表示在原数列中的项数,表示它在子列中的项数( nnkkk k注1 对每一个n,k,有( k h,kh,kn,nn,n注2 对任意两个正整数,如果,则(反之,若,则( h,khkhk limx,a,,,,0,,K,,,,k,Kx,a,,注3 ,有. nnkk,,n limx,a,,,,,xxa注4 的任一子列收敛于. nnnk,,n 3.数列有界 ,M,0,n,Nx,M,,,,xx对数列,若,使得对,有,则称数列为有界数列( nnn4.无穷大量 ,G,0x,G,,,,xx,N,,,,n,N对数列,如果,,有,则称为无穷大量,记nnn 1 limx,,作( nn,, limx注1 只是一个记号,不是确切的数(当为无穷大量时,数列是发散的,即,,,,xx,nnnn,, 不存在( limx,,注2 若,则无界,反之不真( ,,xnnn,, 注3 设与为同号无穷大量,则为无穷大量( ,,,,,,xyx,ynnnn 注4 设为无穷大量,有界,则为无穷大量( ,,,,,,xyx,ynnnn ,,,0注5 设为无穷大量,对数列,若,使得对,n,N,有,y,,,,,,xy,N,,,nnn 则为无穷大量(特别的,若,则为无穷大量( ,,,,xyy,a,0xynnnnn5.无穷小量 limx,0若,则称为无穷小量( ,,xnnn,, limx,0limxy,0注1 若,有界,则( ,,ynnnnn,,n,, 1limx,,limx,0,n,N注2 若,则;若,且使得对,,x,0lim,0,N,,,nnnn,,n,,n,,xn 1lim则( ,,n,,xn 6.收敛数列的性质 ,,,,(1)若x收敛,则x必有界,反之不真( nn ,,(2)若x收敛,则极限必唯一( n limx,alimy,ba,b,N,,n,N(3)若x,y,,且,则,使得当时,有( nnnn,,n,,n 注 这条性质称为“保号性”,在理论 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 论证中应用极普遍( limx,alimy,b,N,,a,bn,Nx,y(4)若,,且,使得当时,有,则( nnnn,,n,,n 注 这条性质在一些参考书中称为“保不等号(式)性”( ,,,,,,,,xyx,yx,y(5)若数列、皆收敛,则它们和、差、积、商所构成的数列,,nnnnnn ,,xnlimy,0,,xy,()也收敛,且有 ,,nnnn,,yn,, ,,limx,y,limylimx, , nnnnn,,n,,,,n 2 limx,y,limx,limy , nnnnn,,n,,n,, limxnxn,,nlimy,0 ()( lim,nn,,n,,limyynnn,, 7. 迫敛性(夹逼定理) ,limz,alimx,a,N,,limy若,使得当n,N时,有,且,则( y,x,znnnnnnn,,,,,,nn 8. 单调有界定理 单调递增有上界数列必收敛,单调递减有下界数列必收敛( ,,,,xxnn9. Cauchy收敛准则 数列收敛的充要条件是:,有( x,x,,,,x,,,0,,N,,,,n,m,Nnmn 注 Cauchy收敛准则是判断数列敛散性的重要理论依据(尽管没有提供计算极限的方法, 但它的长处也在于此――在论证极限问题时不需要事先知道极限值( 10.Bolzano Weierstrass定理 有界数列必有收敛子列( n1,, 11. lim1,,e,2.7182818284?,,,,nn,, 12.几个重要不等式 22a,b,2ab, sinx , 1. sinx , x .(1) (2) 算术,几何,调和平均不等式: , 对 记 ,a,a,?,a,R,12n na,a,?,a112n (算术平均值) M(a), , a,,iinn,1i 1nn,,n G(a),aa?a,a, (几何平均值) ,,,i12ni,,,,,i1 nn1Ha(),,,. (调和平均值) inn111111?,,,,,aaanaa,1,112iinii H(a) , G(a) , M(a),a,a,?,a有均值不等式: 等号当且仅当时成立. iii12n(3) Bernoulli 不等式: (在中学已用 数学 数学高考答题卡模板高考数学答题卡模板三年级数学混合运算测试卷数学作业设计案例新人教版八年级上数学教学计划 归纳法证明过) 对,,x0, 由二项展开式 nnnnn(1)(1)(2),,,nn23(1)1,,,,,,,,xnxxxx? 2!3! n ,(1,x),1,nx,(n,1) 3 (,)Cauchy,Schwarz 不等式: (),有 ,a,bk,1,2,?,nkk 22nnnn,,,,22ab,ab, ,,,, ab,,kkkk,,kkk,1k,1,,,,k,1k,1 111,n,N,ln(1,),(,), n,1nn 13. O. Stolz公式 二、典型例题 ,,NG,N1(用“”“”证明数列的极限((必须掌握) 例, 用定义证明下列各式: 2nn3,5,1(,); lim,12n,,nn3,,6 limx,alimx,a(,)设,,则;(97,北大,10分) x,0nnn,,n,,n nlnlim,0(,) (,,0),n,,n ,,,0证明:(,),欲使不等式 23n,5n,16n,56n6n6,1,,,,,, 2222n3n,n,63n,n,63n,nn 66,,,0n,Nn,N,[],1成立,只须,于是,,取,当时,有 ,, 23n,5n,16,1,,, 2n3n,n,6 2nn3,5,1lim,1即 ( 2n,,nn3,,6 limx,a(,)由x,0x,a,a,,,知,有,则 ,,,0,,N,,,,n,Nnnn,,n x,ax,ann x,a,,,,nx,aan x,anx,a,于是,,,,0,,N,,,,n,N,有, ,,na limx,a即 ( n,,n n,lnn(,)已知,因为 4 ,,,,,,,,,,,,2222,,,,,22lnn,1n,122,,,,lnn,2[n],,,,2,,lnn44n,,,,,,,,,,,,,,0,,, ,,,,,,,,,,nnnnnn2,n 2 ,44lnnnln,,,,,,,0所以,,欲使不等式成立,只须( ,n,,0,,,,,,n,,n,,2n, 2,,,4,,,,,1,,,0N,n,N 于是,,取,当时,有 ,,,,,,,,,, 4lnnnln,, ,, ,0,,,,nn2n, nln即 lim,0( ,n,,n x,ax,a,g(n),,评注, 本例中,我们均将做了适当的变形,使得,从而从解不nn Nx,a等式g(n),,中求出定义中的(将放大时要注意两点:?g(n)应满足当n,,n g(n),0g(n),,g(n)g(n),,时,(这是因为要使,必须能够任意小;?不等式容易求解( ,,,0(n,,)评注, 用定义证明x,a,对,只要找到一个自然数,使得当N(,)n x,a,,时,有即可(关键证明的存在性( n,N(,)N(,),,n 评注, 在第二小题中,用到了数列极限定义的等价命题,即: Mx,a,M,(,),有(为任一正常数). ,,,0,,N,,,,n,Nn kx,a,,(,),有. ,,,0,,N,,,,n,N(k,N)n 例, 用定义证明下列各式: nlimn,1(,);(92,南开,10分) n,, knlim,0(,)(a,1,k,N) nn,,a nnn,1,,0n,1n,1,,证明:(,)(方法一)由于(),可令(),则 5 n(1),(1)nnnn,n2n2n(1)1n,2() ,,,,,,,,,,,,?,,,,nnn22 nn,2当时,,有 n,1,2 22(1)nn,nn222n ,,,,(n,1)n,244 2n即 ( n0,,1, n 42nn,,,0,欲使不等式成立,只须( n,1,n,n,,,,12,n ,,4,,,,,0n,N,max,1,2于是,,取,当时,有 N,,2,,,,,,, 2nn,1, ,,, n nlimn,1( 即 n,, (方法二)因为 n,2个1,,,,,nnnn,,,,,,1?1222nnnnn,,,,,,,,,,,, 1(11?1)1nnn 2nn,1,所以, n 42nn,,,0n,n,1,,欲使不等式成立,只须( n,,,,12,n 4,,,,,0n,N于是,,取,当时,有 N,,12,,,,, 2nn,1,,,, n nlimn,1即 ( n,, k,1a,1a,1,,,,0(,)当时,由于,可记(),则 (1),(1)nnnn,nn2n2(1)1n,2,,,,,,,,,?,,,,an() 22 nn,2n,1,当时,,于是有 2 6 nn4 ( 0,,,n2nn,(1)an,2, 2 n44n,,,0 ,欲使不等式 成立,只须( ,,,,n,,0n22nna,,,a ,,4,,,,,0n,N 对,取,当时,有 ,max,1,2N,,2,,,,,,,, n4n ( ,,,,,0n2nna,a k,,1knn,,kk,1a,1当时,a,1(),而( ,1n,,ank,,(a),, n则由以上证明知,有,即 0,,,0,,N,,,,n,N,,,1nk(a) knk0,,, , na knlim,0故 ( nn,,a ,,,0Nx,a,,评注, 在本例中,,要从不等式中解得非常困难(根据的特征,xnn ,,利用二项式定理展开较容易(要注意,在这两个小题中,一个是变量,一个是定值( 评注, 从第一小题的方法二可看出算术,几何平均不等式的妙处( 评注, 第二小题的证明用了从特殊到一般的证法( naa,0lim,0例 用定义证明:()(山东大学) ,,nn! 0,a,1证明:当时,结论显然成立( n,,aaaaaaaaaa,10??,,,,,,,,,,,,当时,欲使成立, ,,,,,,!121!naa,nan ,,a,1,,a,1,,aa,1,,,0N,n,N只须n,(于是,取,当时,有 ,,,,a!,,,a!,,, n,,aaaa,0,,,, ,,n!a!n 7 na即 ( lim,0,,nn! ,,lim[(n,1),n],0,,1,,N例 设,用“”语言,证明:( n,, ,,0证明:当时,结论恒成立( 0,,,1,,,0当时,,欲使 111,,,,,nnn(,1),,0,[(1,),1],,,,,,n(11) 1,,nnn ,,11,,,1,,,0N,n,N只须(于是,取,当时,有 n,11,,1,,1,,,,,, 1,,,,(n,1),n,0, 1,,n ,,lim[(n,1),n],0即 ( n,, 2.迫敛性(夹逼定理) 项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理( n ,,有界,但不能说明有极限(使用夹逼定理时,y,x,zy,bz,c,{x}xnnnnnnn要求趋于同一个数( y,znn nalim,0例 求证:(为常数)( a,,nn! naaaaaaa,,,,?,,,?,分析:,因为固定常数,必存在正整数,使amnmmn!123,1 aaaam,a,m,1,因此,自开始,,, ,且n,,,1,1?,,1m,1m,2m,1n a时,( ,0n n,m,1a,m,1am证明:对于固定的,必存在正整数,使,当时,有 nmaaaaaaaaa0,,,,,?,,,?,,,, mn!n!123mm,1n 8 mnaaalim由于,由夹逼定理得, ,,0lim,0n,,,,nnm!n! na即 ( lim,0,,nn! 评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得 的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果( aana,2,,?12n例 若是正数数列,且,则 {a}lim,0n,,nn nlimn,a,?,a,0 ( n1n,, aana,2,?,12nn证明:由,知 ,,,,,,1a,2a,?,na,12nn aana,2,?,12nnn n!,a,a,?,a,12nn a2ana1,,?,n12n即 ( a,a,?,a,,12nnnn! a2ana1,,?,n12n于是,,而由已知 0,na,a,?,a,,12nnnn! aana,2,,?112nlim及 ,0lim,0nn,,,,nn!n aa?na,2,,1n12lim故 ,,0nn,,nn! nlimn,a,?,a,0由夹逼定理得 ( n1n,, 评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各 变量的极限存在,且在商的运算中,分母极限不为0( 评注2 对一些基本结果能够熟练和灵活应用(例如: 1nlimq,0a,0lim,0q,1(1)() (2)() an,,n,,n nnlima,1a,0limn,1(3)() (4) n,,n,, na1a,0limlim,0,0(5)() (6) nn,,,,nn!n! limx,aa例 证明:若(有限或),则 ,,n,,n 9 x,x,,x?12nlim,a(有限或)( a,,,,nn ,limx,ax,a,证明:(,)设为有限,因为,则,有. a,,,0,,N,,,,n,Nnn11,,n2 xaxaxax,x,,x,,,,,,?,,,,?,,12n12n于是 ,a,nn xaxax,a,x,a,,x,a?,,?,,12NN,1n11 ,,nn n,NAA,1,,,,( ,2nnn 其中为非负数( A,x,a,x,a,?,x,a12N1 ,AA,lim,0因为,故对上述的,有( ,,0,,N,,,,n,N22n,,n2n n,N当时,有 取N,max{N,N}12 x,x,,x?,,12n ,a,,,,n22 x,x,,x?12nlim,a即 ( ,,nn limx,,,(,)设,因为,则,有x,2G,a,,,,G,0,,N,,,,n,Nnn11n,, x,x,?,x,0且(于是 12N1 xxx,x,,x?,?,x,x,,x?N,1n12N12n11,, nnn x,,x?Gn,NN2()2N,1n111,,,G,G2 nnn 2N1n,NG,GN,2N取,当时,,于是 1n x,x,,x?12n,2G,G,G( n 10 xxx,,,?12n即 lim,,, ,,nn (,)时证法与(,)类似( a,,, 评注, 这一结论也称Cauchy第一定理,是一个有用的结果,应用它可计算一些极限,例 如: 111,,,?1n2lim,0(,)(已知); lim,0n,,n,,nn 3nn1,2,3,,?nlimn,1(,)lim,1(已知)( n,,,,nn 评注, 此结论是充分的,而非必要的,但若条件加强为“为单调数列”,则由{x}n x,x,,x?12nlimx,alim,a可推出( n,,n,,nn 评注, 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任 意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如: 0,,,1lima,a若,(为有限数),证明: an,,n a2n,,,lim(,,,,),?( aaaa,1,20nnn,,n1,, 2n分析:令,则 x,a,,a,,a,?,,a,1,20nnnn 21nn,( (1,,)x,a,,(a,a),,(a,a),?,,(a,a),,a121010nnn,nn,n, 2n只须证 () n,,,(a,a),,(a,a),?,,(a,a),0,1,2,101nnnn lima,aa,a,,由于,故,有(于是 ,N,,,,n,Nnnn,1,,n 2n,(a,a),,(a,a),?,,(a,a) ,1,2,101nnnn 2,1NNn,,a,a,,a,a,?,,a,a,,a,a,?,,a,a,1,2,1,,1,,,,101nnnnnNnNnNnN n0,,,1lim,,0再利用()即得( n,, 例 求下列各式的极限: n12,,,lim(?)(,) 222n,,n,n,n,n,n,n,n12 11n?lim1,,,(,) n,,2n 11 1,3,5,?,(2n,1)nlim(,) ,,n2,4,6,?,2n 12?121,2,?,n,,,nn?解:(,) ,,,,,2222212n,n,1n,n,nn,n,n,n,n,n,n (1)nn, ,,,n112?2lim,lim?, ,22n,,n,,n,n,n2n,n,n (1)nn, 1,2,?,n12lim,lim, ,22n,,n,,n,n,121n,n, 由夹逼定理, 12n1lim()?,,?,, 222n,,2nn1nn2nnn,,,,,, 11nnn1,1,,?,,1,1,?,1,n(,) 2n nlimn,1?,由夹逼定理, n,, 11nlim1,,?,,1( ?n,,n2 1352n,111,3,5,?,(2n,1)132n,1,,,?,,,,,,?,,1(,)?, 2n242n,22n2,4,6,?,2n242n ?n11,3,5,,(2,1)n?( ,,1nn?n2,4,6,,2n2, 1lim,1?,由夹逼定理, nnn,,n2, ?n1,3,5,,(2,1)nlim,1?( n,,?n2,4,6,,2 2n,1评注 的极限是,,用此法体现了“,”的好处,可以放前,也可放后(若极限不2n 是,,则不能用此法,例如: 2,3,?,(n,1)limxx,,求( nn,,n3,5,?,(2n,1) ,,,,x,0xx解:?,单调递减,单调递减有下界,故其极限存在( nnn n,2limx,ax,x,令,? nn,1n,,n2n,3 12 1n,2limx,limxlim?, , a,an,1n,,n,,n,,n2n,32 a,0?, limx,0即 ( nn,, 11,,?,(中科院) lim(1)n,,,,,?,1212n 111评注 拆项:分母是两项的积, ,,n(n,1)nn,1 nn,1,11,,1, 插项:分子、分母相差一个常数时总可以插项( n,1n,1n,1 ,单调有界必有极限 x,1n常用方法:?;?;?归纳法;?导数法( x,xn,1nxn , 单调递增 x,f(x)f(x),0f(x)n,1n x,xx,xf(x),f(x)322121 x,xx,xf(x),f(x)322121 , 单调递减 f(x),0f(x) x,xx,xf(x),f(x)322121 x,x不解决决问题( x,xf(x),f(x)322121 ,,命题:x,f(x),若单调递增,且(),则x单调递增(单调x,xx,xf(x)n,1nn2121递减)( 例 求下列数列极限: A1A,0x,x,(1)设(),x,0,;(98,华中科大,10分) n,1n1x2n 3,3xnx,x,0(2)设,;(04,武大) n,113,xn x,xn,1n,2x,x,ax,b(3)设,,(n,2,3,?)((2000,浙大) n012 1A1Ax,(x,),,2x,,A,,x解:(1)首先注意,所以为有下界数列( n,1nnn2x2xnn 13 另一方面,因为 1A1A ( x,x,(x,),x,(,x),0n,1nnnn2x2xnn A1,2x1A,,An,1(或) ,(1,),,1222xxnn limx故为单调递减数列(因而存在,且记为( ,,xann,,n A1 由极限的四则运算,在两端同时取极限,得x,x,()n,,n,1nx2n1Aa,(a,)(并注意到,解得( a,Ax,A,0n2a xx3,33(1,)nnx(2)注意到,于是为有界数列( 0,,,,3,,xn,1nxx3,3,nn 另一方面,由 2,,3,3xn,1,,3,,,223,x3,3x3,x2(3,x)n,1,,nnn,1x,x,,x,,, n,1nn3,3x3,x3,x(3,x)(4,2x)n,1nnn,1n,13,3,xn,1 23,xn,1, (3,x)(2,x)n,1n,1 2x3,n,1 xx,xx(3,)(2,)1n,1nn,1n,1,知( ,,02xx,x2,3,xnn,1n,1n,1 x3,n,1 limx,,x,xx,xx即与保持同号,因此为单调数列,所以存在(记为)( ann,1nnn,1n,,n 3,3x3,3ana,x, 由极限的四则运算,在n,,两端同时取极限,得(并注n,13,a3,xn a,30,x,3意到,解得( n ,,,,,xxxxxxxxbann,nn,111021,,,,,,,,,?xxx(3)由于, n,nn1n,nn1,,,22(2)(2)(2) 14 1n1(),,n,1,1n12又, ()()x,(x,x),x,x,b,a,a,b,a,a,,nm,1m0nm1(2),,0m,0m1(),,2 1n1(),,2(ba)2ba,,2limx所以 ( (ba)limaa,,,,,,n,,n,,n1331(),,2 评注, 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性(在说明递归数列单调性时,可用函数的单调性(下面给出一个重要的结论:设(),若在区间上单调递增,Ix,f(x)x,In,1,2,?f(x)n,1nn 且(或),则数列单调递增(或单调递减)( ,,xx,xx,xn2121 评注2 第三小题的方法较为典型,根据所给的之间的关系,得到与x,x,xx,xn,1nn,1n,1n 的等式,再利用错位相减的思想,将数列通项写成级数的表达式( x,xxnn,1n ab2n,1n,1为任意正数,且,设a,,(),例 设b,aba,ba,bn,2,3,?nnn,1n,11111a,bn,1n,1 则,收敛,且极限相同( ,,,,abnn ab22abn,1n,1n,1n,1证明:由a,,,知 ,ab,bnn,1n,1nab,2abn,1n,1n,1n,1 b,ab,bb,b( nn,1n,1n,1n,1n,1 ,,则0,b,b,即b为单调有界数列( n1n 又0,a,b,b,且 nn1 2abaababaab(,)2,,2n,1n,1n,1n,1n,1n,1n,1n,1n,1n,1a,a,,a,,0,, nn,1n,1ababa,b,,n,1n,1n,1n,1n,1n,1 ,,a所以亦为单调有界数列( n limalimbba由单调有界必有极限定理,与存在,且分别记为与(在nn,,,,nn ab22abn,1n,1a,b,aba,b,abn,,与两端同时取极限,得与( nnn,1n,1a,ba,bn,1n,1 0,a,a,b,ba,b考虑到为任意正数且( 1nn111 15 a,b,0即得( 1limx例 (1)设,,求; x2,,x,2nn,11,,nxn limx(2)设,,且(),求( 3x,x,2x,0x,0x,2n,2,3,?nn,1nn,112,,n 1limx解:(1)假设存在且等于,由极限的四则运算,在两端同时取极限x2,,ann,1,,nxn 1,得a,2,,即( a,1,2n,,a 又,故( a,1,2x,2n 下面只须验证数列趋于零()(由于 ,,x,an,,n nx,a,,1111,,,,n,,, 022,x,a,,,,,,x,a,?,x,a,,,,n,1n1,,4xaxa4,,,,nn,, n1,,limlimx,,由夹逼定理得a,1,2( 而x,a,0,,n1n,,n,,4,, (2)由,知 3x,x,2x,0n,1nn,1 , 3x,2x,3x,2x,3x,2x,?,3x,2x,6n,1nnn,1n,1n,221 2x,,x,2则 ( n,1n3 6limxa,假设存在且等于,由极限的四则运算,得( an,,n5 6,,下面只须验证数列趋于零(n,,)(由于 ,x,,n5,, n,1n,1262626626,,,,,,,,,,x,,,,x,,?( 2x,,,x,,,,,,,,,,,n,11nn,1353535535,,,,,,,, n,1626,,limlim,x显然,由夹逼定理得( ,,0,,nn,,n,,535,, 评注, 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有 limx,a,,x,aa极限定理时,可以先假设,由递归方程求出,然后设法证明数列趋于nn,,n 零( 0,k,1,,xx,a,kx,an,2,3,?评注, 对数列,若满足(),其中,则必有nnn,1 16 limx,a(这一结论在验证极限存在或求解递归数列的极限时非常有用( n,,n 评注, 本例的第二小题还可用Cauchy收敛原理验证它们极限的存在性( a1n设>0,,,,证明,1(04,上海交大) limaaan,1n1n,,a2nn 2aann 证 (1)要证,1 ,只要证, limlim1,n,,n,,2n2n 22aa,22nn,1lim1即只要证,,即证 lim()2aa,,nn,1n,,n,,(22)2nn,, 1a11n,1(2)因,,,故, aa,,,,,1a0an,1nnn,12aaaannnn aa,1122nn,1 aaaaaa,,,,,,,,,,()()112nnnnnn,,,11122aaannn 1因此只要证,即只要证 ,lim0lima,,n2n,,,,nan 1(3)由aa,,,知,单调增加,假如有上界,则0{}a{}a{}ann,1nnnan 111必有极限,由,,知,,,,因此,矛盾. aaaaa,0n,1naaan 这表明单调增加、没有上界,因此. (证完) lima,,{}ann,,n , 利用序列的Cauchy收敛准则 2xxxn,10,x,1limxx,,,x例 (1)设(),,求; n1n,,n222 xnx,x,2yy,x,y(2)设x,y,1,,,求; limn,1nnn,1nn11n,,yn 11x120,x,1,x,xx,x,解:(1)由(),得(假设,则(有 11kk2224 2xx11k2x,,,x,x, k1,k2222 1,x由归纳法可得 ( n2 17 22x,,xxx,,np1,n1,,于是 ,,,,,xx,npn,,2222,, x,xx,x1n,p,1n,1n,p,1n,1 ,,x,xn,p,1n,122 11 ()( ,?,x,x,,0n,,p,11n,1n,122 2xxn,1limx由Cauchy收敛准则知:存在并记为,由极限的四则运算,在两端,,xann,,n22 2同时取极限,得( a,2a,x,0n,, 1limx,a,,1,1,x,注意到x,故( nn,,n2 xn(2)设,显然. a,a,1nnyn xx,2y1n,1nna,,,1,,则 由于n,1yx,y1,an,1nnn 11a,a,, n,1n1,a1,ann,1 aa,11nn,1a,a,?,,aa . ,,nn,121n,144,,,,1a1a,,nn,1 a,a,a,a,?,a,aa,a,于是 n,pn,p,1n,p,1n,p,2n,1nn,pn ,a,a,a,a,?,a,a n,pn,p,1n,p,1n,p,2n,1n 11,p111,,4aa aa ,,,,,?,,,,2121,1n,p,n,21n1444,,1,411,,a,a,0n,, (). 21n,134 limxa由Cauchy收敛准则知:存在并记为. n,,n 12a,1,a,2n,,由极限的四则运算,在两端同时取极限,得( n,11,an xnlima,2a,1lim注意到,故,( nnn,,n,,yn 18 评注1 Cauchy收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性. 本例两小题都运用了Cauchy收敛准则,但细节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列有界,因此有,,xn .保证了定义中的N仅与有关. x,x,x,x,1,p,11p,11 ,,limx,x,0评注2 “对有”这种说法与Cauchy收敛准则并不一致(这里,p,Nn,pnn,, x,x,,n,N要求对每个固定的,可找到既与又与的关的,,当,有(而pp,n,pnCauchy收敛准则要求所找到的,只能与任意的有关( , , 利用Stolz定理计算数列极限 例 求下列极限 333,,12,,,?nn,,lim(1), 3,,n,,4n,, 19 aana,,,2...a12n(2)假设(00,大连理工,10)(04,上海交lim,limaa,,证明:n2,,,,nnn2大) 证明:Stolz公式 aanaaananaaana,,,,,,,,,,,,2...(2...(1))(2...)1212112nnnn,limlim,222nn,,,,nnn(1),, (1)na,an,1,,limn,,212n, 111,,,?2n(3) limn,,lnn n3,1?2,,,n2(4) limn,,n 2na,1(5)() limn,,na , 关于否定命题的证明 (书上一些典型例题需背) limx,a n,,n 发散 ,,xn 111例 证明:x发散( ,1,,,?,nn23 an,1lima,0l,1例 设a,0(),且,若存在极限,则((北大,n,1,2,?lim,lnnn,,n,,an20) 20 , 杂例 111(1) lim,,,?n,,1,22,3n(n,1) (2) (04,武大) 12nlim(...),(1),,,,a2nn,,aaa 1n 1(),1naa,,,lim()n2n,,1aaa,,1(1)1,a 22nlim(1,x)(1,x)?(1,x)x,1(3) (); ,,n 2(4)设,(),求: a,3a,a,an,1,2,?1n,1nn ,,111,,llim?,,,,( ,,n,,1a1a1a,,,12n,, 21 22
本文档为【3第一讲__数列的极限典型例题】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_212655
暂无简介~
格式:doc
大小:105KB
软件:Word
页数:0
分类:生活休闲
上传时间:2017-12-19
浏览量:116