首页 中考数学定值问题专题复习(含答案)

中考数学定值问题专题复习(含答案)

举报
开通vip

中考数学定值问题专题复习(含答案)中考数学定值问题专题复习(含答案)中考数学定值问题专题复习课前演练:一、选择题1.如图,直线l是一条河,A,B两地相距5km,A,B两地到l的距离分别为3km,6km,欲在l上的某点M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()2.如图,A,B两个电话机离电话线l的距离分别是3米,5米,CD=6米,若由l上一点分别向A,B连线,最短为(  )A.11米B.10米C.9米D.8米(第2题图)(第3题图)3.如图,AC⊥BC于C,连接AB,点D是AB上的动点...

中考数学定值问题专题复习(含答案)
中考数学定值问题专题 复习 预应力混凝土预制梁农业生态学考研国际私法笔记专题二标点符号数据的收集与整理 (含 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 )中考数学定值问题专题复习课前演练:一、选择题1.如图,直线l是一条河,A,B两地相距5km,A,B两地到l的距离分别为3km,6km,欲在l上的某点M处修建一个水泵站,向A,B两地供水,现有如下四种铺设 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 ,图中实线 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示铺设的管道,则铺设的管道最短的是()2.如图,A,B两个电话机离电话线l的距离分别是3米,5米,CD=6米,若由l上一点分别向A,B连线,最短为(  )A.11米B.10米C.9米D.8米(第2题图)(第3题图)3.如图,AC⊥BC于C,连接AB,点D是AB上的动点,AC=6,BC=8,AB=10,则点C到点D的最短距离是()A.6  B.8  C.D.(第4题图),第5题图),第6题图)4.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2  D.2+2二、填空题5.如图,从直线外一点A到这条直线的所有线段中,线段____最短.6.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是__   _ _.7.如图,在等腰三角形△ABC中,∠ABC=120°,P是底边AC上的一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值是2,则△ABC的周长是____.,第7题图),第8题图)8.如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是____.9.如果P是边长为2的正方形ABCD的边CD上任意一点且PE⊥DB,PF⊥CA,垂足分别为E,F,则PE+PF=____.,第9题图),第10题图)10.如图,∠ABC=45°,BC=4,BD平分∠ABC交AC于点D,M,N分别是BD和BC上的动点(M与B,D两点不重合,N与B,C两点不重合),则CM+MN的最小值是____.典型例题:例1.小虎家新建一间房子,要在屋外的A处安装水表,从大路边到A处怎样接水管最近?把最短的线段画出来,并简要说明道理.例2.等边△ABC的边长是8,AD⊥BC,E是BD的中点,M,N分别是AB,AD上的动点,求MN+EN的最小值.例3.如图,∠AOB=45°,P是∠AOB内一定点,PO=10,Q,R分别是OA,OB上的动点,求△PQR周长的最小值.(要求画出示意图,写出解题过程)例4.如图,在菱形ABCD中,AB=4,∠A=135°,点P,M,N分别为对角线BD及边BC,CD上的动点,求PM+PN的最小值.例5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,求DQ+PQ的最小值.巩固练习:一、填空题1.在半⊙O中,点C是半圆弧AB的中点,D是弧BC上距离点B较近的一个三等分点,点P是直径AB上的动点,若AB=10,则PC+PD的最小值是___.(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为7,则GE+FH的最大值为___.3.如图,在反比例函数y=上有两点A(3,2),B(6,1),在直线y=-x上有一动点P,当P点的坐标为___时,PA+PB有最小值.二、解答题4.已知点M(3,2),N(1,-1),点P在y轴上,求使得△PMN的周长最小的点P的坐标.5.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB  上的一动点.若MN=1,则△PMN周长的最小值为多少.6.如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴与x轴交于点H.(1)求抛物线的解析式;(2)若点P是该抛物线的对称轴上的一个动点,求△PBC周长的最小值.7.小明在学习轴对称的时候,老师留了一道思考题:如图1,若点A,B在直线m的同侧,在直线m上找一点P,使得AP+BP的值最小,小明通过独立思考,很快得出了解决这个问题的正确方法,他的做法是这样的:(a)作点B关于直线m的对称点B′,(b)连接AB′与直线m交于点P,则点P为所求.请你参考小明的做法解决下列问题:(1)如图2,在等边△ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P(尺规作图,保留作图痕迹,不写作法),使得BP+PE的值最小,并求出最小值;(2)如图3,在矩形ABCD中,AB=4,BC=6,G为边AD上的中点,若E,F为AB边上的两个动点,点E在点F的左侧,且EF=1,当四边形CGEF的周长最小时,请你在图3中确定点E,F的位置(尺规作图,保留作图痕迹,不写作法),并求出四边形CGEF的周长的最小值.8.如图,抛物线y=-x2+4x+5与x轴交于A,B两点,与y轴交于点C.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.△PCM是以CM为底的等腰三角形.(1)求点P的坐标;(2)当a为多少时,四边形PMEF周长最小.拓展提高:1.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?2.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1﹣S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.分类练习一、定值问题解1、如图,在平面直角坐标系O中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=.(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?(第1题图)2、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.(2题图)(3题图)二、由运动产生的线段和差问题(最值问题)3、如图所示,已知A,B为反比例函数图像上的两点,动点P在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是【】A.     B.     C.      D.4、如图,抛物线l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C(0,﹣3).将抛物线l沿y轴翻折得抛物线l1.(1)求l1的解析式;(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;5、如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.压轴题训练1、如图,已知抛物线经过A(4,0),B(2,3),C(0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.2.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.3.如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.参考答案:课前演练:1.B;2.B;3.D;4.C;5.AD;6.垂线段最短;7.4+2;8.6;9.;10.4;2.典型例题:例1.解:如图所示:沿AB线段接水管最近,因为直线外一点与直线的所有连接线段中,垂直线段最短(例1答图)(例2答图)(例3答图)例2.解:作点E关于AD的对称点H,过点H作HG⊥AB于G,则MN+EN的最小值是HG,Rt△HBG中,sin60°=,解得,GH=3。例3.解:分别作点P关于OA,OB的对称点M,N,连接OM,ON,MN,MN交OA,OB于点Q,R,连接PR,PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN==10,即△PQR周长的最小值等于10。例4.解:过点M作关于BD的对称点M1,连接M1N交BD于点P,连接PM, 则PM+PN的最小值就是M1N,过点C作CH⊥AB于点H,则M1N>CH,∵∠A=135°,∴∠HBC=45°,∵四边形ABCD是菱形,∴AB=BC=4,由三角函数的定义有,sin45°=,∴=,解得,CH=2,即PM+PN的最小值为2。(例4答图)(例5答图)例5.解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2巩固练习:1._5;2._;3.(,-)_点拨:设A点关于直线y=-x的对称点为A′,连接A′B,交直线y=-x为P点,此时PA+PB有最小值,∵A点关于直线y=-x的对称点为A′,A(3,2),∴A′(-2,-3),设直线A′B的直线解析式为y=kx+b,解得k=,b=-2,∴直线A′B解析式为y=x-2,联立解得x=,y=-,即P点坐标(,-),故答案为(,-)。4.解:作出M关于y轴的对称点M′,连接NM′,与y轴相交于点P,则P点即为所求,设过NM′两点的直线解析式为y=kx+b(k≠0),则解得k=-,b=-,故此一次函数的解析式为y=-x-,因为b=-,所以P点坐标为(0,-)。5.解:作N关于AB的对称点N′,连接MN′,NN′,  ON′,OM,ON,∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN 周长最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4, ∴△PMN周长的最小值为4+1=5(5题答图)(6题答图)(7题答图)6.解:(1)把A(-3,0),B(1,0),C(0,3)三点坐标代入y=ax2+bx+c中,解得即抛物线的解析式是y=-x2-2x+3 (2)如图,△PBC的周长=PB+PC+BC,∵BC是定值,∴当PB+PC最小时,△PBC的周长最小.A,B两点关于对称轴对称,连接AC,交对称轴于点P,点P即为所求,∵AP=BP,△PBC的最小周长=PB+PC+BC=AC+BC,∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=,∴△PBC的最小周长=3+。7.解:(1)如图2,作点E 关于AD的对称点F,交AC于点 F,连接BF,交AD 于点P,连接PE, 点P即为所求. 在等边△ABC中,AB=2,点E是AB  的中点,AD是高,∴F是AC的中点,∴BF⊥AC于点F,∴BP+PE的最小值=BF== (2)如图3,作点G关于AB的对称点M,在CD上截取CH=1,连接MH,交AB于点E,在BE上截取EF=1,连接CF,则E,F为所求,∵AB=4,BC=6, G为边AD上的中点,∴DG=GA=AM=3,∵AE∥DH,∴△MAE∽△MDH,∴=,∴=,∴AE=1,∴在Rt△GAE,Rt△CBF,Rt△CDG中,分别由勾股定理解得,GE===,CF===2,CG==5, ∴四边形GEFC的周长的最小值=GE+EF+FC+CG=+1+2+5 =6+38.解:(1)∵y=-x2+4x+5与y轴交于点C,∴点C的坐标为(0,5)又∵M(0,1),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,令y=-x2+4x+5=3,解得x=2±,∵点P在第一象限,∴P(2+,3) (2)四边形PMEF的四条边中,PM,EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),作点M1关于x轴的对称点M2,则M2(1,-1),连接PM2,与x轴交于F点,此时ME+PF=PM2最小,设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,-1)代入得:,解得:,∴y=x-,当y=0时,解得x=.∴F(,0),∵F(a+1,0),∴a=,∴a=时,四边形PMEF周长最小(8题答图)(拓展1答图)(拓展2答图)拓展提高:1.解:(1)∵⊙O与直线l相切于点A,且AB为⊙O的直径,∴AB⊥l,又∵PC⊥l,∴AB∥PC,∴∠CPA=∠PAB,∵AB是⊙O的直径,∴∠APB=90°,又PC⊥l,∴∠PCA=∠APB=90°,∴△PCA∽△APB,∴=,即PA2=PC•AB,∵PC=,AB=4,∴PA==,∴Rt△APB中,AB=4,PA=,由勾股定理得:PB==;(2)过O作OE⊥PD,垂足为E,∵PD是⊙O的弦,OE⊥PD,∴PE=ED,又∠CEO=∠ECA=∠OAC=90°,∴四边形OACE为矩形,∴CE=OA=2,又PC=x,∴PE=ED=PC﹣CE=x﹣2,∴CD=PC﹣PD=x﹣2(x﹣2)=4﹣x,∴PD•CD=2(x﹣2)•(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵2<x<4,∴当x=3时,PD•CD的值最大,最大值是2.2.解:(1)∵CG∥AP,∴△GCD∽△APG,∴=,∵GF=4,CD=DA=1,AF=x,∴GD=3﹣x,AG=4﹣x,∴=,即y=,∴y关于x的函数关系式为y=,当y=3时,=3,解得x=2.5,经检验的x=2.5是分式方程的根.故x的值为2.5;(2)∵S1=GP•GD=••(3﹣x)=,S2=GD•CD=(3﹣x)1=,∴S1﹣S2=﹣=即为常数;(3)延长PD交AC于点Q.∵正方形ABCD中,AC为对角线,∴∠CAD=45°,∵PQ⊥AC,∴∠ADQ=45°,∴∠GDP=∠ADQ=45°.∴△DGP是等腰直角三角形,则GD=GP,∴3﹣x=,化简得:x2﹣5x+5=0.解得:x=,∵0≤x≤2.5,∴x=,在Rt△DGP中,PD==(3﹣x)=.一、定值问题解1.【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC==4,∴OC=OP+PC=4+4=8。又∵矩形AOCD,A(0,4),∴D(8,4)。t的取值范围为:0<t<4。(2)结论:△AEF的面积S不变化。∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC。∴,即,解得CE=。由翻折变换的性质可知:DF=DQ=4-t,则CF=CD+DF=8-t。S=S梯形AOCF+S△FCE-S△AOE=(OA+CF)•OC+CF•CE-OA•OE=[4+(8-t)]×8+(8-t)•-×4×(8+)。化简得:S=32为定值。所以△AEF的面积S不变化,S=32。(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF。由PQ∥AF可得:△CPQ∽△DAF。∴CP:AD=CQ:DF,即8-2t:8=t:4-t,化简得t2-12t+16=0,解得:t1=6+2,t2=。由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去。∴当t=秒时,四边形APQF是梯形。2.【答案】解:(1)证明:如图,连接AC。∵四边形ABCD为菱形,∠BAD=120°,∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC。∵∠BAD=120°,∴∠ABF=60°。∴△ABC和△ACD为等边三角形。∴∠ACF=60°,AC=AB。∴∠ABE=∠AFC。∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,∴△ABE≌△ACF(ASA)。∴BE=CF。(2)四边形AECF的面积不变,△CEF的面积发生变化。理由如下:由(1)得△ABE≌△ACF,则S△ABE=S△ACF。∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值。作AH⊥BC于H点,则BH=2,。由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF。∴△CEF的面积的最大值是。3.【答案】D。【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。【分析】∵把A,B分别代入反比例函数得:y1=2,y2=,∴A(,2),B(2,)。∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大。设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:。∴直线AB的解析式是。当y=0时,x=,即P(,0)。故选D。4.【答案】解:(1)如图1,设经翻折后,点A.B的对应点分别为A1、B1,依题意,由翻折变换的性质可知A1(3,0),B1(﹣1,0),C点坐标不变,∴抛物线l1经过A1(3,0),B1(﹣1,0),C(0,﹣3)三点,设抛物线l1的解析式为y=ax2+bx+c,则,解得。∴抛物线l1的解析式为:y=x2﹣2x﹣3。(2)抛物线l1的对称轴为:x=,如图2,连接B1C并延长,与对称轴x=1交于点P,则点P即为所求。此时,|PA1﹣PC|=|PB1﹣PC|=B1C。设P′为对称轴x=1上不同于点P的任意一点,则有:|P′A﹣P′C|=|P′B1﹣P′C|<B1C(三角形两边之差小于第三边),∴|P′A﹣P′C|<|PA1﹣PC|,即|PA1﹣PC|最大。设直线B1C的解析式为y=kx+b,则,解得k=b=﹣3。∴直线B1C的解析式为:y=﹣3x﹣3。令x=1,得y=﹣6。∴P(1,﹣6)。5.【答案】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得。∴抛物线的函数关系式为。设直线AC的函数关系式为y=kx+n,由直线AC过点A(﹣1,0)及C(2,3)得:,解得。∴直线AC的函数关系式为y=x+1。(2)作N点关于直线x=3的对称点N′,令x=0,得y=3,即N(0,3)。∴N′(6,3)由得:D(1,4)。设直线DN′的函数关系式为y=sx+t,则:,解得。∴故直线DN′的函数关系式为。根据轴对称的性质和三角形三边关系,知当M(3,m)在直线DN′上时,MN+MD的值最小,∴。∴使MN+MD的值最小时m的值为。(3)由(1)、(2)得D(1,4),B(1,2),①当BD为平行四边形对角线时,由B、C、D、N的坐标知,四边形BCDN是平行四边形,此时,点E与点C重合,即E(2,3)。②当BD为平行四边形边时,∵点E在直线AC上,∴设E(x,x+1),则F(x,)。又∵BD=2,∴若四边形BDEF或BDFE是平行四边形时,BD=EF。∴,即。若,解得,x=0或x=1(舍去),∴E(0,1)。若,解得,,∴E或E。综上,满足条件的点E为(2,3)、(0,1)、、。(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3)。∴。∴。∵,∴当时,△APC的面积取得最大值,最大值为。压轴题训练1.【答案】解:(1)∵抛物线经过A(4,0),B(2,3),C(0,3)三点,∴,解得。∴抛物线的解析式为:,其对称轴为:。(2)由B(2,3),C(0,3),且对称轴为x=1,可知点B、C是关于对称轴x=1的对称点。如图1所示,连接AC,交对称轴x=1于点M,连接MB,则MA+MB=MA+MC=AC,根据两点之间线段最短可知此时MA+MB的值最小。设直线AC的解析式为y=kx+b,∵A(4,0),C(0,3),∴,解得。∴直线AC的解析式为:y=x+3。令x=1,得y=。∴M点坐标为(1,)。(3)结论:存在。如图2所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1。由B(2,3),C(0,3),可知BC∥x轴,则x轴与抛物线的另一个交点P1即为所求。在中令y=0,解得x1=-2,x2=4。∴P1(-2,0)。∵P1A=6,BC=2,∴P1A≠BC。∴四边形ABCP1为梯形。②若AB∥CP2,此时梯形为ABCP2。设CP2与x轴交于点N,∵BC∥x轴,AB∥CP2,∴四边形ABCN为平行四边形。∴AN=BC=2。∴N(2,0)。设直线CN的解析式为y=k1x+b1,则有:,解得。∴直线CN的解析式为:y=x+3。∵点P2既在直线CN:y=x+3上,又在抛物线:上,∴x+3=,化简得:x2-6x=0,解得x1=0(舍去),x2=6。∴点P2横坐标为6,代入直线CN解析式求得纵坐标为-6。∴P2(6,-6)。∵ABCN,∴AB=CN,而CP2≠CN,∴CP2≠AB。∴四边形ABCP2为梯形。综上所述,在抛物线上存在点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形,点P的坐标为(-2,0)或(6,-6)。2.【答案】解:(1)证明:如图,连接AC∵四边形ABCD为菱形,∠BAD=120°,∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC。∵∠BAD=120°,∴∠ABF=60°。∴△ABC和△ACD为等边三角形。∴∠ACF=60°,AC=AB。∴∠ABE=∠AFC。∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,∴△ABE≌△ACF(ASA)。∴BE=CF。(2)四边形AECF的面积不变,△CEF的面积发生变化。理由如下:由(1)得△ABE≌△ACF,则S△ABE=S△ACF。∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值。作AH⊥BC于H点,则BH=2,。由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF。∴△CEF的面积的最大值是。【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠ACF=60°,AC=AB,从而求证△ABE≌△ACF,即可求得BE=CF。(2)由△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可得四边形AECF的面积是定值。当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大。3.解(1)令y=0,得:﹣x+4=0,解得x=4,所以点A的坐标为(4,0);(2)存在.理由:如图下图1所示:图1图2将x=0代入y=﹣x+4得:y=4,∴OB=4,由(1)可知OA=4,在Rt△BOA中,由勾股定理得:AB==4.∵△BOQ≌△AQP.∴QA=OB=4,BQ=PA.∵BQ=AB﹣AQ=4﹣4,∴PA=4﹣4.∴点P的坐标为(4,4﹣4).(3)如下图2所示:∵OP⊥OM,∴∠1+∠3=90°.又∵∠2+∠1=90°,∴∠2=∠3.又∵∠OAP=∠OAM=90°,∴△OAM∽△PAO.∴,设AP=m,则:,∴AM=.在Rt△OAP中,PO=,∴S1===,在Rt△OAM中,OM==,∴S2===,∴=+=1+=.点评:本题主要考查的是全等三角形的性质,相似三角形的性质和判定以及勾股定理和一次函数的综合应用,根据题意画出图形,利用全等三角形和相似三角形的性质和判定求得AM和PA的长度是解题的关键.
本文档为【中考数学定值问题专题复习(含答案)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_682974
暂无简介~
格式:doc
大小:714KB
软件:Word
页数:0
分类:
上传时间:2021-05-13
浏览量:37