首页 薄膜太阳能电池分类

薄膜太阳能电池分类

举报
开通vip

薄膜太阳能电池分类薄膜太阳能电池分类21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛...

薄膜太阳能电池分类
薄膜太阳能电池分类21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同 材料 关于××同志的政审材料调查表环保先进个人材料国家普通话测试材料农民专业合作社注销四查四问剖析材料 当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛。1.硅基薄膜电池硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。2.碲化镉(CdTe)薄膜电池碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 ,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW碲化镉太阳电池组件。3.铜铟镓硒(CIGS)薄膜电池铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。4.砷化镓(GaAs)薄膜电池砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被应用于人造卫星的太阳电池板。然而砷化镓电池价格昂贵,且砷是有毒元素,所以极少在地面应用。5.染料敏化薄膜电池染料敏化太阳电池是太阳电池中相当新颖的技术产品,由透明导电基板、二氧化钛(TiO2)纳米微粒薄膜、染料(光敏化剂)、电解质和ITO电极所组成。目前仍停留在实验室阶段,实验室最高效率在11%左右。非晶硅薄膜电池简介非晶硅(amorphoussiliconα-Si)又称无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。非晶硅的化学性质比晶体硅活泼。可由活泼金属(如钠、钾等)在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。采用辉光放电气相沉积法就得含氢的非晶硅薄膜,氢在其中补偿悬挂链,并进行掺杂和制作pn结。非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。禁带宽度1.7~1.8eV,而迁移率和少子寿命远比晶体硅低。现已工业应用,主要用于提炼纯硅,制造太阳电池、薄膜晶体管、复印鼓、光电传感器等。非晶硅薄膜电池的起源非晶硅薄膜太阳能电池由Carlson和Wronski在20世纪70年代中期开发成功,80年代其生产曾达到高潮,约占全球太阳能电池总量的20%左右,但由于非晶硅太阳能电池转化效率低于晶体硅太阳能电池,而且非晶硅太阳能电池存在光致衰减效应的缺点:光电转换效率会在头1000个光照时间内逐渐衰减到稳定状态,对薄膜电池的应用存在影响。非晶硅薄膜电池的优点1.低成本单结非晶硅太阳电池的厚度0.2um。主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体,化学工业可大量供应,且十分便宜。目前晶体硅太阳电池的基本厚度多为200um以下,相差1000倍,大规模生产需极大量的半导体级硅,仅硅片的成本就占整个太阳电池成本的65-70%,目前在中国晶体硅太阳电池的硅材料成本大概为0.2USD/W左右。几年前,从原材料供应角度考虑,人类大规模使用太阳光发电,非晶硅太阳电池及其它薄膜太阳电池是比较好的选择。但是在最近两年,硅材料的成本快速下跌,从成本的角度来说,除个别厂家外,非晶硅太阳能电池已经不具备之前的竞争力。2.能量返回期短转换效率为6%的非晶硅太阳电池,其生产用电约1.9度电/瓦,由它发电后返回的时间约为1.5-2年,这是晶硅太阳电池无法比拟的。3.大面积自动化生产目前,世界上最大的非晶硅太阳电池是SwitzlandUnaxis的KAI-1200PECVD设备生产的1100mm*1250mm单结晶非晶硅太阳电池,其初始效率高于9%。其稳定输出功率接近80W/片。商品晶体硅太阳电池还是以156mm*156mm和125mm*125mm为主。4.高温性能好当太阳能电池工作温度高于标准测试温度25℃时,其最佳输出功率会有所下降;非晶硅太阳能电池受温度的影响比晶体硅太阳能电池要小得多。5.短波响应优于晶体硅太阳能电池上海尤力卡公司曾在中国甘肃省酒泉市安装一套6500瓦非晶硅太阳能电站,其每千瓦发电量为1300KWh,而晶体硅太阳电池每千瓦的年发电量约为1100-1200KWh。非晶硅太阳电池显示出其极大的使用优势。下图为该电站的现场照片,第一代非晶硅太阳电池的以上优点已被人们所接受。2003年以来全世界太阳能市场需求量急剧上升,非晶硅太阳电池也出现供不应求的局面。目前存在的问题(1)效率较低单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性基体非晶硅太阳电池组件(约1000平方厘米)的效率为10-12%,还存在一定差距。相同的输出电量所需太阳能电池面积增加,对于对太阳能电池占地面积要求不高的场合尤其适用,如农村和西部地区。我国目前尚有约28000个村庄、700万户、大约3000万农村人口还没有用上电,60%的有电县严重缺电;光致衰减效应也可在电量输出中加以考虑,我们认为以上缺点已不成为其发展的障碍,非晶硅太阳能电池已迎来新的发展机遇。(2)稳定性问题非晶硅太阳能电池的光致衰减,所谓的W-S效应,是影响其大规模生产的重要因素。目前,柔性基体非晶硅太阳能电池稳定效率已超过10%,已具备作为空间能源的基本条件。(3)成本问题非晶硅太阳能电池投资额是晶体硅太阳能电池的5倍左右,因此项目投资有一定的资金壁垒。且,成本回收周期较长,昂贵的设备折旧率是大额回报率的一大瓶颈。非晶硅薄膜电池的市场应用(1)大规模发电站1996年美国APS公司在美国加州建了一个400千瓦的非晶硅电站,引起光伏产业震动。Mass公司(欧洲第三大太阳能系统公司)去年从中国进口约5MWp的非晶硅太阳能电池。日本Kaneka公司年产25MWp的非晶硅太阳能电池大部分输往欧洲建大型发电站(约每座500KWp-1000KWp)。德国RWESchott公司也具有30MWp年产量,全部用于建大规模太阳能电站。(2)与建筑相结合,建造太阳能房非晶硅太阳能电池可以制成半透明的,如作为建筑的一部分,白天既能发电又能使部分光线透过玻璃进入室内,为室内提供十分柔和的照明(紫外线被滤掉)能挡风雨,又能发电;美国,欧洲和日本的太阳能电池厂家已生产这种非晶硅组件。(3)太阳能照明光源由于非晶硅太阳能电池的技术优势,同样功率的非晶硅太阳能灯具,其照明时间要比晶体硅太阳能路灯的照明时间长20%,而其成本每瓦要低约10元人民币。上海尤利卡公司于2003年-2005年已为松江区的太阳能路灯提供了400多个非晶硅太阳能路灯电源,其冬天的发电效果明显优于晶体硅。(4)弱光下使用由于非晶硅太阳能电池在室内弱光下也能发电,已被广泛用于太阳能钟,太阳能手表,太阳能显示牌等不直接受光照等场合下。碲化镉薄膜电池简介(1)碲化镉CdTe是Ⅱ-Ⅵ族化合物半导体,带隙1.5eV,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好的PV材料,具有很高的理论效率(28%),性能很稳定,一直被光伏界看重,是技术上发展较快的一种薄膜电池。碲化镉容易沉积成大面积的薄膜,沉积速率也高。CdTe薄膜太阳电池通常以CdS/CdTe异质结为基础。尽管CdS和CdTe和晶格常数相差10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高达FF=0.75。(2)制备工艺制备CdTe多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、CVD、CBD、丝网印刷、溅射、真空蒸发等。丝网印刷烧结法:由含CdTe、CdS浆料进行丝网印刷CdTe、CdS膜,然后在600~700℃可控气氛下进行热处理1h得大晶粒薄膜.近空间升华法:采用玻璃作衬底,衬底温度500~600℃,沉积速率10μm/min.真空蒸发法:将CdTe从约700℃加热钳埚中升华,冷凝在300~400℃衬底上,典型沉积速率1nm/s.以CdTe吸收层,CdS作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背电极。碲化镉电池现状(1)转换效率碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1m2组件生产线的建设和大面积电池生产技术的研发。(2)成本估算1MW碲化镉薄膜太阳能电池所消耗的材料的成本可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。注:成本计算依据①虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni②碲化镉薄膜的厚度为5微米③转换效率为7%,(3)碲资源碲是地球上的稀有元素,发展碲化镉薄膜太阳能电池面临的首要问题就是地球上碲的储藏量是否能满足碲化镉太阳能电池组件的工业化规模生产及应用。工业上,碲主要是从电解铜或冶炼锌的废料中回收得到。据相关报导,地球上有碲14.9万吨,其中中国有2.2万吨,美国有2.5万吨。在美国碲化镉薄膜太阳能电池制造商FirstSolar年产量25MW的工厂中,300~340公斤碲化镉即可以满足1MW太阳能电池的生产需要。考虑到碲的密度为6.25g/cm3,镉的密度为8.64g/cm3,则130~140公斤碲即可以满足1MW碲化镉薄膜太阳能电池的生产需要。由以上数据可以知道,按现已探明储量,地球上的碲资源可以供100个年生产能力为100MW的生产线用100年。环境影响(1)镉排放量 (2)重金属排放量 图1太阳能电池组件与其他能源的镉排放量的比较图太阳能电池的排放量均小于1g/GWh,其中又以碲化镉的镉排放量最低,为0.3g/GWh。 图2硅太阳能电池和碲化镉太阳能电池的重金属排放量的比较图碲化镉太阳能电池的砷、铬、铅、汞、镍等其他重金属的排放量也比硅太阳能电池的低。关键技术(1)结构&工艺   硫化镉、碲化镉、复合背接触层等三层薄膜的沉积和后处理是获得高效率的技术关键。图3碲化镉薄膜太阳能电池组件集成结构示意图 图4碲化镉薄膜太阳能电池组件制备工艺流程图(2)激光刻蚀   图5是分别用1064nm激光和532nm的激光刻划CdS/CdTe薄膜后,用探针式表面轮廓分析仪测量的刻痕形貌。1064nm激光刻划的刻槽边缘有高达4微米的"脊状峰",这不利于后续沉积的背电极接触层及金属背电极与透明导电薄膜之间形成连续的具有良好欧姆特性的连接。图5CdTe薄膜激光刻划刻痕形貌  (3)表面腐蚀技术   使用磷酸-硝酸混合溶液可以获得较好的腐蚀效果,典型溶液的体积浓度为(硝酸:磷酸:水)0.5:70:29.5,室温下腐蚀时间为1分钟。降低硝酸浓度和温度可以进一步延长腐蚀。磷硝酸溶液沿晶界的择优腐蚀较为严重,容易在沉积背电极后形成局部的短路漏电通道。使用硝酸-冰乙酸溶液可以进一步减轻晶体择优腐蚀程度,获得更好的膜面腐蚀效果。图6不同温度下使用硝酸-冰乙酸腐蚀后碲化镉的XRD谱图  前景展望目前,碲化镉薄膜太阳能电池的生产成本正在逐步接近、甚至低于传统发电系统的,这种廉价的清洁能源在全世界范围内引起了关注,各国均在大力研究解决制约碲化镉薄膜太阳能电池发展的因素,相信存在的问题不久将会逐个解决,从而使碲化镉薄膜电池成为未来社会的主导新能源之一。铜铟镓硒(CIGS)薄膜电池简介CIGS是一种半导体材料,是在通常所称的铜铟硒(CIS)材料中添加一定量的ⅢA族Ga元素替代相应的In元素而形成的四元化合物。鉴于添加Ga元素后能适度调宽材料的带隙,使电池的开路电压得到提高,因此,近年来CIGs反而比CIS更受关注。单晶硅、多晶硅以及非晶硅属于元素半导体材料,尤其单晶硅,在电子、信息科学领域占据着不可撼动的地位,作为硅太阳电池,只是它诸多的重要应用之一。与硅系太阳电池在材料性质上有所不同的是:CIGS属于化合物半导体范畴。固体物理学的单晶硅金刚石型晶体结构和cIGs黄铜矿型晶体结构如下图所示。在化合物半导体系列太阳电池家族中,某些成员也有不凡表现,如砷化镓(GaAs)太阳电池,其最高的光电转换效率使其他类型的太阳电池难以望其项背。然而,其高昂的制备成本使其只能应用于高层次的不计工本的特殊场合,如太空、军事领域。在各领风骚的太阳电池阵容中,CIGS太阳电池以其特性方面的闪光点脱颖而出。性能特点:1.多晶材料的制备难度、成本低于单晶材料用来制备CIGS太阳电池的材料是多晶态。一般多晶材料的制备难度和成本都低于单晶材料,这一点对产业化和民用化具有重要意义。理论和试验结果都证实,制备CIGS电池器件工艺中,对成分配比的离散相对有较大的宽容度,对材料纯度和制备温度的要求也低于常规晶态的半导体工艺。这为工业化制备的良品率和制备成本的优化提供了较大的空间。2.相对较高的光利用特质用半导体专业语言来讲,CIGS是一种直接带隙材料,对可见光的吸收系数高达105(cm-1),优于其他电池材料。对比图2中的各种薄膜电池材料吸收系数的曲线,可知CIGS材料的吸收系数最高。CIGS薄膜电池的吸收层仅需1~29m厚,就可将阳光全部吸收利用。因此,CIGS最适合做薄膜太阳电池,其电池厚度薄且材料用量少,大大降低了对原材料的消耗,减轻了In等稀有元素的资源压力。3.光电转换效率居各类薄膜太阳电池之首目前太阳电池家族中,尚存在几种不同材料类型的薄膜电池。如硅基薄膜电池、碲化镉薄膜电池等。但值得提出的是,在所有类型的薄膜太阳电池中,CIGS薄膜太阳电池的光电转换效率在理论上和实际上都是最高的,迄今实验室最高效率已超过20%,仍没封顶。4.电池发电稳定性好电池的稳定性是描述电池使用价值的另一个非常重要的指标,尤其对电站来讲,是首要指标,同时也直接影响到电池的能量回收水平及使用寿命的长短。有试验证明,CIGS薄膜电池组件在户外条件下使用,历时三年之久,性能没有衰减,并非每种太阳电池都能有这种出色的表现。5.弱光发电性能好弱光发电性能不容忽视。太阳的光强有四季、早晚、阴晴的变化。因此,我们不仅要重视太阳电池在强光下的峰值发电能力,更要关注一天或一年时段中的累计发电量,即追究太阳电池的弱光发电能力。正是在这一指标上,与不同类型太阳电池相比,CIGS太阳电池有着突出的表现。在晨昏时节、阴天冬季,仍具有相当的发电能力。6.抗辐照能力强CIGS材料的Cu迁移和点缺陷反应的动态协同作用导致受辐射损伤的电池具有自愈合能力,这就保证了CIGS太阳电池在强辐射下的良好反应。如同摆擂台一样,将几种太阳电池置于1MeV电子辐照下,结果屉示,大多数电池输出功率明显衰退时,C1S(CIS在此可代表CIGS)电池却无任何衰减(见下图)。在领取用作空间电源的通行证的竞争中,CIGS太阳电池顺利过关。7.外观漂亮CIGS薄膜太阳电池组件因其黑亮沉穆的色泽备受赞叹(因其极高的吸收系数)。无论作为屋顶或幕墙,CIGS薄膜电池无疑是功能建筑一体化的最佳选择,作为发电功能与装饰效果的完美组合,CIGS独具风格。8.带隙可依性能要求调节带隙可依性能要求调节,这为高性能的叠层电池奠定了基础。CIGS材料晶型为黄铜矿结构。通过调节材料的成分及其配比,CIGS有多种结构。例如不掺Ga的CIS三元化合物材料做成的太阳电池,其材料的半导体禁带宽度是1.04eV;如用适量的Ga取代In,成为四元化合物(CIGS),其禁带宽度可在1.04~1.67eV范围内连续调整。优点:可根据与太阳光谱匹配的要求来调整最佳带隙(1.5eV);容许材料成分配比有一定的偏差和漂移,而不丧失器件的光伏性能。尤其在产业化工程中,可提高工艺条件的宽容度和良品率的保证。9.可做柔性电池CIGS材料的光吸收系数最高,吸收层可做得很薄。实际上CIGS薄膜电池各层叠加起的总厚度<4μm,具有充分的柔软性。沉积在金属箔或高分子塑料薄膜上,就成为可折叠、弯曲的柔性电池。柔性电池用途更加广泛与方便,可用于帐篷、屋顶、探测气球及各种异型表面,尤其适合便携和随机使用。在同样的发电能力下,CIGS薄膜电池重量最轻。各种类型太阳能电池技术与效率比较理论效率与目前实验室效率、商业效率之间的比较不同衬底类型薄膜电池与组件效率比较注:以上数据来源于2012年太阳能光伏技术发展及应用研讨会,上海空间电源研究所《铜铟镓硒薄膜太阳电池技术研究》。产业化进展及发展趋势HYPERLINK"javascript:void(0)"国外产业化技术整体进展HYPERLINK"javascript:void(0)"技术发展趋势新进机构:如杜邦、IBM、Intel、陶氏化学、Bosch、台积电,……注:以上数据来源于2012年太阳能光伏技术发展及应用研讨会,上海空间电源研究所《铜铟镓硒薄膜太阳电池技术研究》。国内研究现状目前国内有多家高校、研究所、企业在进行CIGS薄膜太阳能电池的研究,包括南开大学、上海空间电源研究所,中电18所、山东孚日等。一些新进的机构包括广东榕泰、深圳浩德,中科院太阳能研发中心等。对于国内CIGS技术研发和产业化发展的要求是,需要系统化、深入化,并寻求突破和发展。相信随着科技的不断进步和发展,国内CIGS的相关研发及应用会迈上一个新的台阶。CIGS薄膜太阳能电池会是下一代领跑者吗?据汉能董事局主席李河君说,在此次收购完成后,汉能薄膜太阳能电池的产能将超过3GW,一举超越美国第一太阳能(FirstSolar),成为全球最大的薄膜组件企业。在感叹我国光伏企业海外并购步伐之大的同时,我们心中也不免会产生疑问:暂不谈该项技术在国内的本土化进程,只从技术路线而言,CIGS电池能否超越晶硅电池与硅基薄膜技术,成为光伏领域下一代的领跑者还有待验证。何为CIGSCIGS电池是由铜(Copper),铟(Indium),镓(Gallium),硒(Selenium)等几种元素的化合物作为原料生产的薄膜化合物太阳能电池。其制作工艺有共蒸发法和溅射后硒化法等。CIGS电池由最初的CIS电池发展而来,薄膜材料CIS是在1953年由Hahn首次合成;1974年贝尔实验室的Wagner等人制备出了第一块CIS太阳能电池;上世纪80年代,波音公司和ARCOSolar(即SiemensSolar)公司分别用共蒸发和溅射硒化法进行了进一步研究;之后,又将CIS的材料中掺入镓(Ga)和硫(S)元素使之与太阳光谱更匹配,美国再生能源实验室(NREL)发明了拥有更高的光电转换效率的CIGS电池,这就是现代CIGS太阳能电池的雏形。之后又经过不断的技术改良与创新,CIGS的转化效率不断提高,目前量产的CIGS的组件转化效率可以达到10%到13%左右,高于一般的硅基薄膜组件。相较于传统的晶硅组件以及硅基薄膜组件,CIGS电池具有转换效率较高,使用寿命较长,单片组件生产成本较低,可塑性较强,安全性较高以及生产过程中不需要提炼高纯度原料等特点。首先,其转换效率较高。CIGS电池是在薄膜太阳能电池中具备最高转化效率的电池之一,德国太阳能和氢能研究中心(ZSW)采用共蒸发法曾在0.5平方厘米的CIGS电池上达到了20.3%的高转化效率,使CIGS薄膜的效率与仍然主导市场的多晶硅太阳能电池之间的差距缩小到了0.1%。就连一般的量产CIGS组件,其转化效率也可以达到10%到12%左右,高于一般的硅基薄膜组件的5%~10%。其次,其使用寿命较长,稳定性高。一般的硅基薄膜电池组件,在使用后的短时间内,其转化效率就会有较大幅度的跌幅。而CIGS电池则可以有更高更稳定的使用寿命。第三,其低成本预期可加速实现。由于CIGS电池的转化效率较高,每提高1%的转化效率,其成本预期便会降低10%左右。而且,CIGS电池的薄膜厚度仅是硅基薄膜组件的百分之一左右,即2μm至3μm,相同面积使用的材料则更少。另外,其基板材料也是较为廉价的碱石灰玻璃。再者,对原料纯度要求并非十分苛刻。这一系列原因,都预示着单片CIGS电池较低的生产成本。另外,能源回收周期短。根据迈哲华咨询(中国)公司的相关数据分析,相对于其他组件,CIGS电池的EPT(EnergyPaybackTime)更短。所谓EPT,即能量回收周期,指的是在生产太阳能电池的过程中使用的能量,与制作完成的太阳能电池发电产生的能量等同时所需要的时间。EPT=生产太阳能电池的过程中使用的能量÷制作完成的太阳能电池一年发电产生的能量。在能源回收利用的效率上,CIGS电池有着更大的优势。但是,尽管CIGS电池相对于硅基薄膜组件有着诸多优点,但是其本身的局限性也是不容忽视的。例如,薄膜组件生产过程中共同的软肋:前期投资成本高,设备要求高,生产过程复杂;以及目前CIGS电池关键原料的供应并不十分充足,远不如晶硅组件原料般普及;而且,关于其生产过程中可能产生有害物质的争议也从来没有停息过。这些,都是目前制约CIGS电池发展的主要因素。CIGS技术前景如何?目前全球CIGS电池的市场情况如何呢?2012年,受全球太阳能发电市场不景气的影响,CIGS组件的产能也受到了不小的冲击,尽管目前2012年具体的数据还尚未统计出来,但是从2011年全球前7位的组件厂商的现状,便可以了解一二。目前全球CIGS电池的产能虽然较小,但是整体市场状况和晶硅组件一样不容乐观,尽管这其中有受全球光伏市场疲软的影响因素,但是CIGS电池组件生产本身的高投资成本,与小众化的市场等,也是导致其在全球市场中表现不佳的症结所在。那究竟为什么在全球CIGS电池市场当下并不景气的情况下,汉能依旧出巨资收购MiaSolé等CIGS电池企业呢?笔者认为,首先是因为MiaSolé光伏组件具有较高的转化效率技术,据汉能董事局主席李河君说,该技术的量产转化效率达15.5%,并且该技术预期两年内也能有较大的提升空间,汉能收购MiaSolé预示着对其技术能力的肯定与高预期;其次,由于美国市场对我国组件企业的双反等成为了我国组件厂商进入美国市场的最大阻碍之一,汉能此番收购美国本土公司,可以较好地越过贸易壁垒,为今后在美国市场的发展打下基础;再者,由于现在CIGS电池整体行业的不景气,对其厂商的收购价格也较为低廉,所以汉能选在现在完成对MiaSolé的收购,也是较为合适的时机。除汉能外,国际上如三井物产等诸多大型跨国公司,早已在2011年光伏产业进入寒冬之前,便将下一代的光伏技术如CdTe(碲化镉)电池以及CIGS电池等化合物薄膜电池作为晶硅组件的下一代潜在替代品,进行了产业战略布局。目前相较于这些传统的跨国公司,我国企业在CIGS电池行业上的产业步伐其实也毫不落后。那么,CIGS电池未来的市场前景又将如何呢?根据迈哲华咨询(中国)公司的分析预测,到2016年,全球CIGS电池的产能,将达到4GW,市场规模也将达到200亿元人民币左右,成为超越硅基薄膜组件、持平CdTe薄膜电池组件的全球最大规模薄膜组件产业之一。但是短期之内,CIGS电池组件想要成为替代晶硅组件的国际主流太阳能电池组件,形成庞大的产业链与供需关系,就目前看来可能性还是很小。那么,中国CIGS电池产业在今后将如何发展,才能在全球的CIGS电池市场中占据有利地形呢?笔者认为,中国CIGS电池产业要获得快速可持续的发展,有赖于几方面内外部条件:首先,企业自身的运作,应避免重蹈晶硅组件过于注重产能的覆辙,重技术而轻产能——努力降低企业前期的设备投入成本,将整体交钥匙产线拆分拆细,拥有自己的高效率产线,以降低对海外设备的依存度,使前期设备技术投入成本成为阻碍CIGS电池产业的非主要因素,并且不断积极开发新技术,致力于发展提高转化效率,降低组件材料成本等核心竞争优势;其次,我国CIGS电池企业对外应不断积极拓宽国内以及海外市场,以形成一批和目前国内晶硅组件同样具备国际化品牌竞争优势的龙头企业;再次,国家对CIGS电池国内市场的扶植也是不可或缺的,我国可以将对CIGS电池产业的促进,作为一项长期稳定的战略规划来部署,视市场发展状况逐渐完善强化CIGS电池的产业链,以期在下一代的光伏市场竞争中,使我国企业占据有利地势。以同为化合物薄膜电池的CdTe电池为例,笔者曾在2011年拜访过一家国内较早涉及CdTe电池行业的企业之一,上方能源。该公司表示,为了扶植新兴太阳能电池发展,绍兴市政府与其共同出资15亿元人民币,在绍兴投资了产能达500MW的CdTe电池生产线。笔者认为,绍兴市政府对CdTe电池产业的扶植,对同样是新兴技术的CIGS电池在国内市场的发展十分具有可供参考的借鉴意义。尽管到目前为止,CIGS电池在不远的将来能否成为晶硅组件的革命性替代产品还是未知数,但是对技术创新的鼓励与支持,是社会与科技进步与发展的原动力,是各国都应当认真对待的重要课题之一。就在汉能对美国CIGS薄膜组件企业MiaSolé完成并购的当天,日本CIGS电池厂商SolarFrontier宣布,日前通过溅射和硒化工艺,刷新了无镉CIGS薄膜太阳能电池的转换效率纪录,使其实验室转化效率达到了19.7%。由此看来,我国CIGS光伏企业现在还远不到志得意满的时候,在国际光伏行业的舞台上,唯有不断技术创新,才能使自己屹立于行业潮头。砷化镓(GaAs)薄膜电池砷化镓简介砷化镓(GaAs)半导体材料与传统的硅材料相比,它具有很高的电子迁移率、宽禁带、直接带隙,消耗功率低的特性,电子迁移率约为硅材料的5.7倍。因此,广泛应用于高频及无线通讯中制做IC器件。所制出的这种高频、高速、防辐射的高温器件,通常应用于激光器、无线通信、光纤通信、移动通信、GPS全球导航等领域。砷化镓除在IC产品应用以外,也可加入其它元素改变能带隙及其产生光电反应,达到所对应的光波波长,制作成光电元件。还可与太阳能结合制备砷化镓太阳能电池。砷化镓薄膜电池聚光跟踪发电系统的基本构想在薄膜光伏电池中,非晶硅电池效率低下,且稳定性有待提高。尽管硫化镉、碲化镉薄膜电池的效率较非晶硅薄膜电池效率高,成本较晶体硅电池低,且易于大规模生产,但是镉有剧毒,会对环境造成严重污染,硒和铟是储量很少的稀有元素,因此大规模发展必将受到材料制约。而砷化镓化合物材料具有十分理想的禁带宽度以及较高的光吸收效率,适合于制造高效电池。此外,还可以通过叠层技术做成多结砷化镓基电池,以进一步提高转换效率。但是,由于砷化镓基材料价格昂贵,砷化镓薄膜电池目前只在航天等特殊领域应用,离地面应用的商业化运行还有很大距离。为了降低光伏电池的发电成本,可采取的有效途径之一就是研发和应用砷化镓薄膜电池聚光发电系统。在获得同样输出功率情况下,可以大大减少所需的砷化钾薄膜电池面积。相当于用比较便宜的普通金属、玻璃材料做成聚光器和支撑系统,来代替部分昂贵的砷化镓薄膜电池。在这种聚光系统中,如果聚光率超过10倍以上,则系统只能利用直射阳光,因而必须采用跟踪系统相互配合,才能充分发挥效能。在固定温度下,光伏电池效率随聚光率变化的一般趋势是,在低聚光率时,电池效率随聚光率的增加而增加,在高聚光率时,则随聚光率的增加而降低。光伏电池在高聚光大电流下,其工作温度的升高将导致效率的下降,因此,聚光跟踪系统还需要配备有效的散热设备。考虑到系统的整体经济性,可以通过主动制冷方式,在对光伏电池快速散热的同时,充分利用热能生产热水,最终实现实现太阳能光热和光伏的综合利用,以充分发挥整体效能。砷化镓薄膜电池聚光跟踪发电系统的组成1.电池片市场上的聚光光伏电池系统组件大部分仍采用单晶硅太阳能电池,基于砷化镓基多结太阳能电池的产品在国际市场上刚刚崭露头角,尚未进入国内市场。高效太阳能电池是聚光光伏、光热综合利用系统的核心部件。在500-1000倍的高倍聚光条件下,其芯片和模组制作工艺都与低倍聚光下不同,需要重新 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 工艺条件。在适合高倍聚光的光伏电池工艺中应充分借鉴激光器、发光二极管等器件的先进设计方法。采用低成本、高热稳定性的不含金的合金作为III-V聚光光伏电池顶部网格电极材料,通过优化电极结构和制作工艺,在不改变电池外延结构的条件下,开发出500至1000倍聚光下高效多结光伏电池低成本产业化生产工艺,使光电转换效率达到30%,并获得较高的工作稳定性。2.聚光器由于高效砷化镓光伏电池的生产成本较高,因此提高聚光器的聚光倍数、聚光效率和均匀性成为充分发挥砷化镓光伏电池效率优势、降低聚光光伏、光热综合利用系统成本的关键之一。光伏聚光器是利用透镜或反射镜将太阳光聚焦到光伏电池上。按光学类型划分,常用的聚光系统通常分为折射聚光系统和反射聚光系统。对于实际应用来说,菲涅尔透镜成为理想之选。它的聚焦方式可以是点聚焦,也可以是线聚焦。点聚焦时,将太阳光聚焦在一个光伏电池片上;线聚焦时,将太阳光聚焦在光伏电池组成的线列阵上。反射式聚光系统也可以分为点聚焦结构和线聚焦结构。但是传统菲涅尔透镜存在难以实现的高接收角、聚光后光强分布不均匀和易老化变形等问题。而反射式聚光器聚光倍数较低,难以大幅度降低发电成本。3.跟踪器对于砷化镓薄膜电池聚光跟踪发电系统来说,对日跟踪器必不可少。这主要是由于随着聚光比的提高,聚光光伏系统所接收到光线的角度范围就越小,为了更加充分地利用太阳光,聚光光伏系统必须辅以对日跟踪装置。因此,通过对聚光光伏系统跟踪信号的产生、自动控制的机理、驱动执行部分的实现以及保护应急措施的考虑,研究出跟踪精度高、运行安全可靠、抗干扰能力强、制造和运用成本低、用户操作界面友好的太阳能跟踪器,对于成功开发砷化镓薄膜电池聚光跟踪发电系统是至为重要的。目前,对日跟踪器的设计 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 众多,形式不拘一格。点聚光结构的聚光器一般要求双轴跟踪,线聚光结构的聚光器仅需单轴跟踪。由于砷化镓薄膜电池聚光跟踪发电系统不得不经受安装地区恶劣的气候条件,如风、沙、冰雹、雨、雪等的侵蚀和损坏,因此,跟踪系统的可靠性仍需进一步的提高。4.散热器温度是影响太阳能电池光电转换效率的重要因素之一。聚光太阳电池在运行过程中,未被利用的太阳辐射能除一部分被反射外,其余大部分被电池吸收转化为热能。如果这些吸收的热量不能及时排除,电池温度就会逐渐升高,发电效率降低,而且电池长期在高温下工作还会因迅速老化而缩短使用寿命。因此,为了实现对电池组件的温度控制,可采用无机超导热管技术。即以多种无机元素组合而成的传热介质,加入到管腔或夹壁腔内,经真空处理且密封后形成具有高效传热特性的元件。该元件将热量由一端向另一端快速传导的过程中,表面呈现出无热阻快速波状导热特性。它既可保证聚光光伏电池的光电转换效率,同时又能获得相当可观的光热收益,实现对太阳能的电热联用,以满足普通用户日常生活用电和热水。砷化镓薄膜电池聚光跟踪发电系统的开发意义在各国政府的大力支持下,以及光伏市场的需求和聚光光伏技术迅猛提高的趋势下,高效、低廉、可靠、稳定的聚光光伏发电系统正在逐步走向产业化。在国际光伏市场巨大潜力的推动下,中国作为世界能源消耗第二大国,对于高效、低成本的光伏发电系统的需求更为迫切。与国际上蓬勃发展的光伏发电相比,国内平板式光伏发电系统技术已经比较成熟,而聚光光伏发电系统还处于技术开发阶段。只要我们抓住有利时机,瞄准国际光伏电池新材料及器件研究的前沿,积极引进和开发成熟砷化镓薄膜电池聚光跟踪发电系统,就能在聚光光伏技术及应用方面取得原创性的、突破性的进展。砷化镓薄膜电池聚光跟踪发电系统是一个技术水平高、涉及学科多、带动作用强的综合产业。在这个产业链上,包括了研制系统所需要的钢材、玻璃、塑胶材料等产业;包括了与聚光器、跟踪器所密切相关的精密仪器加工和自动控制等产业;包括了与高效太阳能电池相关的关键设备制造、III-V族半导体材料外延和器件制作等产业,包括了与太阳能光热利用相关的传热、水箱、管道等产业,还有相关的蓄电池、逆变器和控制器等产业。因此,通过研发砷化镓薄膜电池聚光跟踪发电系统,能够带动相关产业的迅速发展,提高相关产业的整体研发水平,同时创造更多的就业岗位。发展砷化镓薄膜电池聚光跟踪发电系统,具有良好的节能减排、环境保护和推广应用等社会效益。同时,砷化镓薄膜电池聚光跟踪发电系统的研发和推广,必将对普及太阳能知识,增强全社会对新能源的认识,加快新能源的推广、应用和普及步伐,产生积极而又深远的影响。
本文档为【薄膜太阳能电池分类】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: ¥14.0 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
浩瀚天空
暂无简介~
格式:doc
大小:526KB
软件:Word
页数:13
分类:教育学
上传时间:2021-12-05
浏览量:1