首页 概率论与数理统计课后习题答案[1]

概率论与数理统计课后习题答案[1]

举报
开通vip

概率论与数理统计课后习题答案[1] 习题 一 1.略.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1) A发生,B,C都不发生; (2) A与B发生,C不发生; (3) A,B,C都发生; (4) A,B,C至少有一个发生; (5) A,B,C都不发生; (6) A,B,C不都发生; (7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生. 【解】(1) A (2) AB (3) ABC (4) A∪B∪C=C∪B∪A∪BC∪AC∪AB∪ABC= (5)...

概率论与数理统计课后习题答案[1]
习题 一 1.略.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1) A发生,B,C都不发生; (2) A与B发生,C不发生; (3) A,B,C都发生; (4) A,B,C至少有一个发生; (5) A,B,C都不发生; (6) A,B,C不都发生; (7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生. 【解】(1) A (2) AB (3) ABC (4) A∪B∪C=C∪B∪A∪BC∪AC∪AB∪ABC= (5) = (6) (7) BC∪AC∪AB∪C∪A∪B∪==∪∪ (8) AB∪BC∪CA=AB∪AC∪BC∪ABC 3.略.见教材习题参考答案 4.设A,B为随机事件,且P(A)=0.7,P(AB)=0.3,求P( ). 【解】 P( )=1P(AB)=1[P(A)P(AB)] =1[0.70.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求: (1) 在什么条件下P(AB)取到最大值? (2) 在什么条件下P(AB)取到最小值? 【解】(1) 当AB=A时,P(AB)取到最大值为0.6. (2) 当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率. 【解】 P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC) =++= 7.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p= 8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P(A1)==()5 (亦可用独立性求解,下同) (2) 设A2={五个人生日都不在星期日},有利事件数为65,故 P(A2)==()5 (3) 设A3={五个人的生日不都在星期日} P(A3)=1P(A1)=1()5 9.略.见教材习题参考答案. 10.一批产品共N件,其中M件正品.从中随机地取出n件(n 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 简便得多. (3) 由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n次抽取中有m次为正品的组合数为种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,nm次取得次品,每次都有NM种取法,共有(NM)nm种取法,故 此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为,则取得m件正品的概率为 11.略.见教材习题参考答案. 12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A={发生一个部件强度太弱} 13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥. 故 14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率. 【解】设Ai={第i批种子中的一粒发芽},(i=1,2) (1) (2) (3) 15.掷一枚均匀硬币直到出现3次正面才停止. (1) 问正好在第6次停止的概率; (2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) (2) 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率. 【解】 设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则 =0.32076 17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A={下雨},B={下雪}. (1) (2) 19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的). 【解】 设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故 或在缩减样本空间中求,此时样本点总数为7. 20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A={此人是男人},B={此人是色盲},则由贝叶斯公式 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率. 题21图 题22图 【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|xy|>30.如图阴影部分所示. 22.从(0,1)中随机地取两个数,求: (1) 两个数之和小于的概率; (2) 两个数之积小于的概率. 【解】 设两数为x,y,则0乙反) 由对称性知P(甲正>乙正)=P(甲反>乙反) 因此P(甲正>乙正)= 46.证明“确定的原则”(Surething):若P(A|C)≥P(B|C),P(A| )≥P(B| ),则P(A)≥P(B). 【证】由P(A|C)≥P(B|C),得 即有 同理由 得 故 47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设Ai={第i节车厢是空的},(i=1,…,n),则 其中i1,i2,…,in1是1,2,…,n中的任n1个. 显然n节车厢全空的概率是零,于是 故所求概率为 48.设随机试验中,某一事件A出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1. 【证】 在前n次试验中,A至少出现一次的概率为 49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A={投掷硬币r次都得到国徽} B={这只硬币为正品} 由题知 则由贝叶斯公式知 50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少? 【解】以B1、B2记火柴取自不同两盒的事件,则有.(1)发现一盒已空,另一盒恰剩r根,说明已取了2nr次,设n次取自B1盒(已空),nr次取自B2盒,第2nr+1次拿起B1,发现已空。把取2nr次火柴视作2nr重贝努里试验,则所求概率为 式中2反映B1与B2盒的对称性(即也可以是B2盒先取空). (2) 前2nr1次取火柴,有n1次取自B1盒,nr次取自B2盒,第2nr次取自B1盒,故概率为 51.求n重贝努里试验中A出现奇数次的概率. 【解】 设在一次试验中A出现的概率为p.则由 以上两式相减得所求概率为 若要求在n重贝努里试验中A出现偶数次的概率,则只要将两式相加,即得 . 52.设A,B是任意两个随机事件,求P{( +B)(A+B)( + )(A+ )}的值. 【解】因为(A∪B)∩( ∪ )=A ∪ B ( ∪B)∩(A∪ )=AB∪ 所求  故所求值为0. 53.设两两相互独立的三事件,A,B和C满足条件: ABC=(,P(A)=P(B)=P(C)<1/2,且P(A∪B∪C)=9/16,求P(A). 【解】由 故或,按题设P(A)<,故P(A)=. 54.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,求P(A). 【解】 ① ② 故 故 ③ 由A,B的独立性,及①、③式有 故 故 或(舍去) 即P(A)=. 55.随机地向半圆00,P(A|B)=1,试比较P(A∪B)与P(A)的大小. (2006研考) 解:因为 所以 . 习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律. 【解】 故所求分布律为 X 3 4 5 P 0.1 0.3 0.6 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求: (1) X的分布律; (2) X的分布函数并作图; (3) . 【解】 故X的分布律为 X 0 1 2 P (2) 当x<0时,F(x)=P(X≤x)=0 当0≤x<1时,F(x)=P(X≤x)=P(X=0)= 当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)= 当x≥2时,F(x)=P(X≤x)=1 故X的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X表示击中目标的次数.则X=0,1,2,3. 故X的分布律为 X 0 1 2 3 P 0.008 0.096 0.384 0.512 分布函数 4.(1) 设随机变量X的分布律为 P{X=k}= , 其中k=0,1,2,…,λ>0为常数,试确定常数a. (2) 设随机变量X的分布律为 P{X=k}=a/N, k=1,2,…,N, 试确定常数a. 【解】(1) 由分布律的性质知 故 (2) 由分布律的性质知 即 . 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7) (1) + (2) =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有 即 利用泊松近似 查表得N≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X表示出事故的次数,则X~b(1000,0.0001) 8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}. 【解】设在每次试验中成功的概率为p,则 故 所以 . 9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X表示5次独立试验中A发生的次数,则X~6(5,0.3) (2) 令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3) 10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1) (2) 11.设P{X=k}= , k=0,1,2 P{Y=m}= , m=0,1,2,3,4 分别为随机变量X,Y的概率分布,如果已知P{X≥1}=,试求P{Y≥1}. 【解】因为,故. 而 故得 即 从而 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率. 【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算, 得 13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率. 【解】 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率; (2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑. (1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为 由于n很大,p很小,λ=np=5,故用泊松近似,有 (2) P(保险公司获利不少于10000) 即保险公司获利不少于10000元的概率在98%以上 P(保险公司获利不少于20000) 即保险公司获利不少于20000元的概率约为62% 15.已知随机变量X的密度函数为 f(x)=Ae|x|, ∞a时,F(x)=1 即分布函数 18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X~U[2,5],即 故所求概率为 19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}. 【解】依题意知,即其密度函数为 该顾客未等到服务而离开的概率为 ,即其分布律为 20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N(40,102),则 若走第二条路,X~N(50,42),则 ++ 故走第二条路乘上火车的把握大些. (2) 若X~N(40,102),则 若X~N(50,42),则 故走第一条路乘上火车的把握大些. 21.设X~N(3,22), (1) 求P{20; (2) f(x)= 试确定常数a,b,并求其分布函数F(x). 【解】(1) 由知 故 即密度函数为 当x≤0时 当x>0时 故其分布函数 (2) 由 得 b=1 即X的密度函数为 当x≤0时F(x)=0 当0 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 正态分布的上分位点, (1)=0.01,求; (2)=0.003,求,. 【解】(1) 即 即 故 (2) 由得 即 查表得 由得 即 查表得 28.设随机变量X的分布律为 X 2 1 0 1 3 Pk 1/5 1/6 1/5 1/15 11/30 求Y=X2的分布律. 【解】Y可取的值为0,1,4,9 故Y的分布律为 Y 0 1 4 9 Pk 1/5 7/30 1/5 11/30 29.设P{X=k}=()k, k=1,2,…,令 求随机变量X的函数Y的分布律. 【解】 30.设X~N(0,1). (1) 求Y=eX的概率密度; (2) 求Y=2X2+1的概率密度; (3) 求Y=|X|的概率密度. 【解】(1) 当y≤0时, 当y>0时, 故 (2) 当y≤1时 当y>1时 故 (3) 当y≤0时 当y>0时 故 31.设随机变量X~U(0,1),试求: (1) Y=eX的分布函数及密度函数; (2) Z=2lnX的分布函数及密度函数. 【解】(1) 故 当时 当10时, 即分布函数 故Z的密度函数为 32.设随机变量X的密度函数为 f(x)= 试求Y=sinX的密度函数. 【解】 当y≤0时, 当00)=1,故0<1e2X<1,即P(06,则P(X1时, 即 故 51.设随机变量X的密度函数为 fX(x)= , 求Y=1 的密度函数fY(y). 【解】 故 52.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布. (1) 求相继两次故障之间时间间隔T的概率分布; (2) 求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.(1993研考) 【解】(1) 当t<0时, 当t≥0时,事件{T>t}与{N(t)=0}等价,有 即 即间隔时间T服从参数为λ的指数分布。 (2) 53.设随机变量X的绝对值不大于1,P{X=1}=1/8,P{X=1}=1/4.在事件{1P{|Y-μ2|<1},试比较σ1与σ2的大小. (2006研考) 解: 依题意 ,,则 , . 因为,即 , 所以有 ,即. 习题三 1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律. 【解】X和Y的联合分布律如表: 0 1 2 3 1 0 0 3 0 0 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律. 【解】X和Y的联合分布律如表: 0 1 2 3 0 0 0 1 0 2 P(0黑,2红,2白)= 0 3.设二维随机变量(X,Y)的联合分布函数为 F(x,y)= 求二维随机变量(X,Y)在长方形域 内的概率. 【解】如图 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= 求:(1) 常数A; (2) 随机变量(X,Y)的分布函数; (3) P{0≤X<1,0≤Y<2}. 【解】(1) 由 得 A=12 (2) 由定义,有 (3) 5.设随机变量(X,Y)的概率密度为 f(x,y)= (1) 确定常数k; (2) 求P{X<1,Y<3}; (3) 求P{X<1.5}; (4) 求P{X+Y≤4}. 【解】(1) 由性质有 故  (2) (3) (4) 题5图 6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为 fY(y)= 求:(1) X与Y的联合分布密度;(2) P{Y≤X}. 题6图 【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为 而 所以
本文档为【概率论与数理统计课后习题答案[1]】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_558346
暂无简介~
格式:doc
大小:1MB
软件:Word
页数:53
分类:工学
上传时间:2012-06-13
浏览量:604