首页 Qt+OpenGL教程

Qt+OpenGL教程

举报
开通vip

Qt+OpenGL教程Qt OpenGL教程 最近一段时间除了学习Qt,翻译Qt文档之外,由于工作和兴趣的原因,开始着手看Qt OpenGL编程。在网上搜索了有关OpenGL的教程,发现NeHe的OpenGL教程的还很不错,作者是NeHe。上面有很多种语言的实现,但是没有Qt和Gtk的,所以我就想着手写这个Qt OpenGL教程,每课的内容和NeHe是一样的。另外,介绍NeHe的一个中文翻译站点CSDN-CKer翻译的NeHe的OpenGL教程,翻译人是CKer,在我学习这个教程的过程中,给了我很大的帮助。 下面就是Qt Open...

Qt+OpenGL教程
Qt OpenGL教程 最近一段时间除了学习Qt,翻译Qt文档之外,由于工作和兴趣的原因,开始着手看Qt OpenGL编程。在网上搜索了有关OpenGL的教程,发现NeHe的OpenGL教程的还很不错,作者是NeHe。上面有很多种语言的实现,但是没有Qt和Gtk的,所以我就想着手写这个Qt OpenGL教程,每课的 内容 财务内部控制制度的内容财务内部控制制度的内容人员招聘与配置的内容项目成本控制的内容消防安全演练内容 和NeHe是一样的。另外,介绍NeHe的一个中文翻译站点CSDN-CKer翻译的NeHe的OpenGL教程,翻译人是CKer,在我学习这个教程的过程中,给了我很大的帮助。 下面就是Qt OpenGL教程的内容: Qt OpenGL的准备工作 第一课:创建一个OpenGL窗口 第二课:你的第一个多边形 第三课:上色 第四课:旋转 第五课:向三维进军 第六课:纹理映射 第七课:纹理滤波、光源和键盘控制 第八课:融合 第九课:在三维空间中移动位图 第十课:载入一个三维世界并在其中移动 第十一课:旗的效果(波动纹理) 第十二课:显示列 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 第十三课:位图字体 第十四课:轮廓字体 第十五课:使用纹理映射的轮廓字体 第十六课:看起来很棒的雾 因为本教程是从NeHe的OpenGL教程迁移过来的,代码变为Qt实现的。所以有的课程一时还没有实现成功,所以可能有些教程是跳跃的。 因本人时间有限,所以难免有错误出现,如果您发现了这些错误,或者有什么建议,请来信指教,谢谢。 Qt OpenGL的准备工作 因为Qt存在很多版本,另外它支持的平台也很多,到目前为止我只实验了几个组合,所以就先把这些列出来吧,欢迎大家补充。 Unix/X11 Linux Qt:自由版或者企业版都支持OpenGL模块,而专业版则不能。我现在使用的是3.1.0自由版和企业版。 gcc:编译器。我现在使用的是3.2。 X:Linux下的图形环境。我现在使用的是4.2.0。 Mesa:自由的OpenGL。我现在使用的是5.0。 Windows Qt:企业版支持OpenGL模块,而专业版则不能。我现在使用的是3.1.0企业版。 Microsoft Visual Studio:编译器。我现在使用的是6.0。 创建一个OpenGL窗口 我假设您对Qt编程已经有了一定的了解,如果您还没有熟悉Qt编程,建议您先学习一下Qt编程的基础知识。 Qt中已经包含了OpenGL模块,具体情况您可以参考Qt OpenGL模块的相关内容。 NeHeWidget类 这就是我们继承QGLWidget类得到的OpenGL窗口部件类。 (由nehewidget.h展开。) #include class NeHeWidget : public QGLWidget { Q_OBJECT 因为QGLWidget类被包含在qgl.h头文件中,所以我们的类就需要包含这个头文件。Q_OBJECT是Qt中的一个专用的宏,具体说明请参见Qt的文档。 public: NeHeWidget( QWidget* parent = 0, const char* name = 0, bool fs = false ); ~NeHeWidget(); protected: void initializeGL(); void paintGL(); void resizeGL( int width, int height ); 因为QGLWidget类已经内置了对OpenGL的处理,就是通过对initializeGL()、paintGL()和resizeGL()这个三个函数实现的,具体情况可以参考QGLWidget类的文档。 因为我们的这个Qt OpenGL教程取材于NeHe OpenGL教程,所以这里就用这个NeHeWidget类来继承QGLWidget类来使用相关OpenGL的功能。 initializeGL()是用来初始化这个OpenGL窗口部件的,可以在里面设定一些有关选项。paintGL()就是用来绘制OpenGL的窗口了,只要有更新发生,这个函数就会被调用。resizeGL()就是用来处理窗口大小变化这一事件的,width和height就是新的大小状态下的宽和高了,另外resizeGL()在处理完后会自动刷新屏幕。 void keyPressEvent( QKeyEvent *e ); 这是Qt里面的鼠标按下事件处理函数。 protected: bool fullscreen; 用来保存窗口是否处于全屏状态的变量。 }; (由nehewidget.cpp展开。) #include "nehewidget.h" NeHeWidget::NeHeWidget( QWidget* parent, const char* name, bool fs ) : QGLWidget( parent, name ) { fullscreen = fs; 保存窗口是否为全屏的状态。 setGeometry( 0, 0, 640, 480 ); 设置窗口的位置,即左上角为(0,0)点,大小为640*480。 setCaption( "NeHe's OpenGL Framework" ); 设置窗口的标题为“NeHe's OpenGL Framework”。 if ( fullscreen ) showFullScreen(); 如果fullscreen为真,那么就全屏显示这个窗口。 } 这个是构造函数,parent就是父窗口部件的指针,name就是这个窗口部件的名称,fs就是窗口是否最大化。 NeHeWidget::~NeHeWidget() { } 这个是析构函数。 void NeHeWidget::initializeGL() { glShadeModel( GL_SMOOTH ); 这一行启用smooth shading(阴影平滑)。阴影平滑通过多边形精细的混合色彩,并对外部光进行平滑。我将在另一个教程中更详细的解释阴影平滑。 glClearColor( 0.0, 0.0, 0.0, 0.0 ); 这一行设置清除屏幕时所用的颜色。如果您对色彩的工作原理不清楚的话,我快速解释一下。色彩值的范围从0.0到1.0。0.0代表最黑的情况,1.0就是最亮的情况。glClearColor后的第一个参数是红色,第二个是绿色,第三个是蓝色。最大值也是1.0,代表特定颜色分量的最亮情况。最后一个参数是Alpha值。当它用来清除屏幕的时候,我们不用关心第四个数字。现在让它为0.0。我会用另一个教程来解释这个参数。 通过混合三种原色(红、绿、蓝),您可以得到不同的色彩。希望您在学校里学过这些。因此,当您使用glClearColor(0.0, 0.0, 1.0, 0.0 ),您将用亮蓝色来清除屏幕。如果您用glClearColor(0.5, 0.0, 0.0, 0.0 )的话,您将使用中红色来清除屏幕。不是最亮(1.0),也不是最暗 (0.0)。要得到白色背景,您应该将所有的颜色设成最亮(1.0)。要黑色背景的话,您该将所有的颜色设为最暗(0.0)。 glClearDepth( 1.0 ); 设置深度缓存。 glEnable( GL_DEPTH_TEST ); 启用深度测试。 glDepthFunc( GL_LEQUAL ); 所作深度测试的类型。 上面这三行必须做的是关于depth buffer(深度缓存)的。将深度缓存设想为屏幕后面的层。深度缓存不断的对物体进入屏幕内部有多深进行跟踪。我们本节的程序其实没有真正使用深度缓存,但几乎所有在屏幕上显示3D场景OpenGL程序都使用深度缓存。它的排序决定那个物体先画。这样您就不会将一个圆形后面的正方形画到圆形上来。深度缓存是OpenGL十分重要的部分。 glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST ); 真正精细的透视修正。这一行告诉OpenGL我们希望进行最好的透视修正。这会十分轻微的影响性能。但使得透视图看起来好一点。 } 这个函数中,我们对OpenGL进行所有的设置。我们设置清除屏幕所用的颜色,打开深度缓存,启用smooth shading(阴影平滑),等等。这个例程直到OpenGL窗口创建之后才会被调用。 void NeHeWidget::paintGL() { glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); 清楚屏幕和深度缓存。 glLoadIdentity(); 重置当前的模型观察矩阵。 } 这个函数中包括了所有的绘图代码。任何您所想在屏幕上显示的东东都将在此段代码中出现。以后的每个教程中我都会在例程的此处增加新的代码。如果您对OpenGL已经有所了解的话,您可以在 glLoadIdentity()调用之后,函数返回之前,试着添加一些OpenGL代码来创建基本的形。如果您是OpenGL新手,等着我的下个教程。目前我们所作的全部就是将屏幕清除成我们前面所决定的颜色,清除深度缓存并且重置场景。我们仍没有绘制任何东东。 void NeHeWidget::resizeGL( int width, int height ) { if ( height == 0 ) { height = 1; } 防止height为0。 glViewport( 0, 0, (GLint)width, (GLint)height ); 重置当前的视口(Viewport)。 glMatrixMode( GL_PROJECTION ); 选择投影矩阵。 glLoadIdentity(); 重置投影矩阵。 gluPerspective( 45.0, (GLfloat)width/(GLfloat)height, 0.1, 100.0 ); 建立透视投影矩阵。 glMatrixMode( GL_MODELVIEW ); 选择模型观察矩阵。 glLoadIdentity(); 重置模型观察矩阵。 } 上面几行为透视图设置屏幕。意味着越远的东西看起来越小。这么做创建了一个现实外观的场景。此处透视按照基于窗口宽度和高度的45度视角来计算。0.1,100.0是我们在场景中所能绘制深度的起点和终点。 glMatrixMode(GL_PROJECTION)指明接下来的两行代码将影响projection matrix(投影矩阵)。投影矩阵负责为我们的场景增加透视。 glLoadIdentity()近似于重置。它将所选的矩阵状态恢复成其原始状态。调用glLoadIdentity()之后我们为场景设置透视图。 glMatrixMode(GL_MODELVIEW)指明任何新的变换将会影响 modelview matrix(模型观察矩阵)。模型观察矩阵中存放了我们的物体讯息。最后我们重置模型观察矩阵。如果您还不能理解这些术语的含义,请别着急。在以后的教程里,我会向大家解释。只要知道如果您想获得一个精彩的透视场景的话,必须这么做。 这个函数的作用是重新设置OpenGL场景的大小,而不管窗口的大小是否已经改变(假定您没有使用全屏模式)。甚至您无法改变窗口的大小时(例如您在全屏模式下),它至少仍将运行一次——在程序开始时设置我们的透视图。OpenGL场景的尺寸将被设置成它显示时所在窗口的大小。 void NeHeWidget::keyPressEvent( QKeyEvent *e ) { switch ( e->key() ) { case Qt::Key_F2: fullscreen = !fullscreen; if ( fullscreen ) { showFullScreen(); } else { showNormal(); setGeometry( 0, 0, 640, 480 ); } updateGL(); break; 如果按下了F2键,那么屏幕是否全屏的状态就切换一次。然后再根据需要,显示所要的全屏窗口或者普通窗口。 case Qt::Key_Escape: close(); } 如果按下了Escape键,程序退出。 } main.cpp (由main.cpp展开。) #include #include Qt的应用程序都是一个QApplication类,所以qapplication.h必须要包含。因为我们在进入OpenGL窗口之前让用户选择是否使用全屏窗口,所以使用了QMessageBox类,所以qmessagebox.h也要包含。 #include "nehewidget.h" int main( int argc, char **argv ) { bool fs = false; 我们把这个布尔型变量的初始值设置为false。 QApplication a(argc,argv); 每一个Qt应用程序都使用QApplication类。 switch( QMessageBox::information( 0, "Start FullScreen?", "Would You Like To Run In Fullscreen Mode?", QMessageBox::Yes, QMessageBox::No | QMessageBox::Default ) ) { case QMessageBox::Yes: fs = true; break; case QMessageBox::No: fs = false; break; } 这里弹出一个消息对话框,让用户选择是否使用全屏模式。 NeHeWidget w( 0, 0, fs ); 创建一个NeHeWidget对象。 a.setMainWidget( &w ); 设置应用程序的主窗口部件为w。 w.show(); 显示w。 return a.exec(); 程序返回。 } 本课程的源代码。 你的第一个多边形 上一课中,我教您如何创建一个OpenGL窗口。这一课中,我将教您如何创建三角形和四边形。我们讲使用GL_TRIANGLES来创建一个三角形,GL_QUADS来创建一个四边形。 我们只要修改第一课中的NeHeWidget类中的paintGL()函数就可以了。 NeHeWidget类 (由nehewidget.cpp展开。) void NeHeWidget::paintGL() { glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); 清除屏幕和深度缓存。 GlLoadIdentity (); 重置当前的模型观察矩阵。 当您调用glLoadIdentity()之后,您实际上将当前点移到了屏幕中心,X坐标轴从左至右,Y坐标轴从下至上,Z坐标轴从里至外。OpenGL屏幕中心的坐标值是X和Y轴上的0.0点。中心左面的坐标值是负值,右面是正值。移向屏幕顶端是正值,移向屏幕底端是负值。移入屏幕深处是负值,移出屏幕则是正值。 glTranslatef( -1.5, 0.0, -6.0 ); glTranslatef(x, y, z)沿着 X, Y 和 Z 轴移动。根据前面的次序,下面的代码沿着X轴左移1.5个单位,Y轴不动(0.0),最后移入屏幕6.0个单位。注意在glTranslatef(x, y, z)中当您移动的时候,您并不是相对屏幕中心移动,而是相对与当前所在的屏幕位置。 现在我们已经移到了屏幕的左半部分,并且将视图推入屏幕背后足够的距离以便我们可以看见全部的场景-创建三角形。 glBegin( GL_TRIANGLES ); 开始绘制三角形。 glBegin(GL_TRIANGLES)的意思是开始绘制三角形,glEnd() 告诉OpenGL三角形已经创建好了。通常您会需要画3个顶点,可以使用GL_TRIANGLES。在绝大多数的显卡上,绘制三角形是相当快速的。如果要画四个顶点,使用GL_QUADS的话会更方便。但据我所知,绝大多数的显卡都使用三角形来为对象着色。最后,如果您想要画更多的顶点时,可以使用GL_POLYGON。 本节的简单示例中,我们只画一个三角形。如果要画第二个三角形的话,可以在这三点之后,再加三行代码(3点)。所有六点代码都应包含在glBegin(GL_TRIANGLES)和glEnd()之间。在他们之间再不会有多余的点出现,也就是说,(GL_TRIANGLES)和glEnd()之间的点都是以三点为一个集合的。这同样适用于四边形。如果您知道实在绘制四边形的话,您必须在第一个四点之后,再加上四点为一个集合的点组。另一方面,多边形可以由任意个顶点,(GL_POLYGON)不在乎glBegin(GL_TRIANGLES)和glEnd()之间有多少行代码。 glVertex3f( 0.0, 1.0, 0.0 ); 上顶点。 glBegin之后的第一行设置了多边形的第一个顶点,glVertex 的第一个参数是X坐标,然后依次是Y坐标和Z坐标。第一个点是上顶点,然后是左下顶点和右下顶点。glEnd()告诉OpenGL没有其他点了。这样将显示一个填充的三角形。 CKer注:这里要注意的是存在两种不同的坐标变换方式,glTranslatef(x, y, z)中的x, y, z是相对与您当前所在点的位移,但glVertex(x,y,z)是相对于glTranslatef(x, y, z)移动后的新原点的位移。因而这里可以认为glTranslate移动的是坐标原点,glVertex中的点是相对最新的坐标原点的坐标值。 glVertex3f( -1.0, -1.0, 0.0 ); 左下顶点。 glVertex3f( 1.0, -1.0, 0.0 ); 右下顶点。 glEnd(); 三角形绘制结束。 glTranslatef( 3.0, 0.0, 0.0 ); 在屏幕的左半部分画完三角形后,我们要移到右半部分来画正方形。为此要再次使用glTranslate。这次右移,所以X坐标值为正值。因为前面左移了1.5个单位,这次要先向右移回屏幕中心(1.5个单位),再向右移动1.5个单位。总共要向右移3.0个单位。 glBegin( GL_QUADS ); 开始绘制四边形。 glVertex3f( -1.0, 1.0, 0.0 ); 左上顶点。 glVertex3f( 1.0, 1.0, 0.0 ); 右上顶点。 glVertex3f( 1.0, -1.0, 0.0 ); 右下顶点。 glVertex3f( -1.0, -1.0, 0.0 ); 左下顶点。 glEnd(); 四边形绘制结束。 } 本课程的源代码。 上色 上一课中我教给您三角形和四边形的绘制方法。这一课我将教您给三角形和四边形添加两种不同类型的着色方法。使用单调着色(Flat coloring)给四边形涂上固定的一种颜色。使用平滑着色(Smooth coloring)将三角形的三个顶点的不同颜色混合在一起,创建漂亮的色彩混合。 我们只要修改第二课中的NeHeWidget类中的paintGL()函数就可以了。 NeHeWidget类 (由nehewidget.cpp展开。) void NeHeWidget::paintGL() { glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); glLoadIdentity(); glTranslatef( -1.5, 0.0, -6.0 ); glBegin( GL_TRIANGLES ); glColor3f( 1.0, 0.0, 0.0 ); 红色。 如果您还记得上节课的内容,这段代码在屏幕的左半部分绘制三角形。这一行代码是我们第一次使用命令glColor3f( r, g, b )。括号中的三个参数依次是红、绿、蓝三色分量。取值范围可以从0.0到1.0。类似于以前所讲的清除屏幕背景命令。 我们将颜色设为红色(纯红色,无绿色,无蓝色)。 glVertex3f( 0.0, 1.0, 0.0 ); 上顶点。 接下来的一行代码设置三角形的第一个顶点(三角形的上顶点),并使用当前颜色(红色)来绘制。从现在开始所有的绘制的对象的颜色都是红色,直到我们将红色改变成别的什么颜色。 glColor3f( 0.0, 1.0, 0.0 ); 绿色。 glVertex3f( -1.0, -1.0, 0.0 ); 左下顶点。 glColor3f( 0.0, 0.0, 1.0 ); 蓝色。 glVertex3f( 1.0, -1.0, 0.0 ); 右下顶点。 glEnd(); glEnd()出现后,三角形将被填充。但是因为每个顶点有不同的颜色,因此看起来颜色从每个角喷出,并刚好在三角形的中心汇合,三种颜色相互混合。这就是平滑着色。 glTranslatef( 3.0, 0.0, 0.0 ); glColor3f( 0.5, 0.5, 1.0 ); 一次性将颜色设置为蓝色。 现在我们绘制一个单调着色——蓝色的正方形。最重要的是要记住,设置当前色之后绘制的所有东东都是当前色的。以后您所创建的每个工程都要使用颜色。即便是在完全采用纹理贴图的时候,glColor3f仍旧可以用来调节纹理的色调。等等...,以后再说吧。 我们必须要做的事只需将颜色一次性的设为我们想采用的颜色(本例采用蓝色),然后绘制场景。每个顶点都是蓝色的,因为我们没有告诉OpenGL要改变顶点的颜色。最后的结果是.....全蓝色的正方形。再说一遍,顺时针绘制的正方形意味着我们所看见的是四边形的背面。 glBegin( GL_QUADS ); glVertex3f( -1.0, 1.0, 0.0 ); glVertex3f( 1.0, 1.0, 0.0 ); glVertex3f( 1.0, -1.0, 0.0 ); glVertex3f( -1.0, -1.0, 0.0 ); glEnd(); } 在这一课中,我试着尽量详细的解释如何为您的OpenGL多边形添加单调和平滑的着色效果的步骤。改改代码中的红绿蓝分量值,看看最后有什么样的结果。 本课程的源代码。 旋转 上一课中我教给您三角形和四边形的着色。这一课我将教您如何将这些彩色对象绕着坐标轴旋转。 其实只需在上节课的代码上增加几行就可以了。 我们将在NeHeWidget类中增加两个变量来控制这两个对象的旋转。它们是浮点类型的变量,使得我们能够非常精确地旋转对象。浮点数包含小数位置,这意味着我们无需使用1、2、3...的角度。你会发现浮点数是OpenGL编程的基础。新变量中叫做rTri的用来旋转三角形,rQuad 旋转四边形。 NeHeWidget类 (由nehewidget.h展开。) protected: bool fullscreen; GLfloat rTri; GLfloat rQuad; }; 上面就是添加的两个变量。rTri是用于三角形的角度,rQuad是用于四边形的角度。 (由nehewidget.cpp展开。) NeHeWidget::NeHeWidget( QWidget* parent, const char* name, bool fs ) : QGLWidget( parent, name ) { rTri = 0.0; rQuad = 0.0; fullscreen = fs; setGeometry( 0, 0, 640, 480 ); setCaption( "NeHe's Rotation Tutorial" ); if ( fullscreen ) showFullScreen(); } 我们需要在构造函数中给rTri和rQuad赋初值,都是0.0。 void NeHeWidget::paintGL() { glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); glLoadIdentity(); glTranslatef( -1.5, 0.0, -6.0 ); glRotatef( rTri, 0.0, 1.0, 0.0 ); glRotatef( Angle, Xvector, Yvector, Zvector )负责让对象绕某个轴旋转。这个函数有很多用处。 Angle 通常是个变量代表对象转过的角度。Xvector,Yvector和Zvector三个参数则共同决定旋转轴的方向。比如( 1, 0, 0 )所描述的矢量经过X坐标轴的1个单位处并且方向向右。( -1, 0, 0 )所描述的矢量经过X坐标轴的1个单位处,但方向向左。 D. Michael Traub:提供了对 Xvector , Yvector 和 Zvector 的上述解释。 为了更好的理解X, Y 和 Z的旋转,我举些例子... X轴-您正在使用一台台锯。锯片中心的轴从左至右摆放(就像OpenGL中的X轴)。尖利的锯齿绕着X轴狂转,看起来要么向上转,要么向下转。取决于锯片开始转时的方向。这与我们在OpenGL中绕着X轴旋转什么的情形是一样的。(CKer注:这会儿您要把脸蛋凑向显示器的话,保准被锯开了花 ^-^。) Y轴-假设您正处于一个巨大的龙卷风中心,龙卷风的中心从地面指向天空(就像OpenGL中的Y轴)。垃圾和碎片围着Y轴从左向右或是从右向左狂转不止。这与我们在OpenGL中绕着Y轴旋转什么的情形是一样的。 Z轴-您从正前方看着一台风扇。风扇的中心正好朝着您(就像OpenGL中的Z轴)。风扇的叶片绕着Z轴顺时针或逆时针狂转。这与我们在OpenGL中绕着Z轴旋转什么的情形是一样的。 上面的一行代码中,如果rtri等于7,我们将三角形绕着Y轴从左向右旋转7 。您也可以改变参数的值,让三角形绕着X和Y轴同时旋转。 glBegin( GL_TRIANGLES ); glColor3f( 1.0, 0.0, 0.0 ); glVertex3f( 0.0, 1.0, 0.0 ); glColor3f( 0.0, 1.0, 0.0 ); glVertex3f( -1.0, -1.0, 0.0 ); glColor3f( 0.0, 0.0, 1.0 ); glVertex3f( 1.0, -1.0, 0.0 ); glEnd(); 上面的绘制三角形的代码没有改变。在屏幕的左面画了一个彩色渐变三角形,并绕着Y轴从左向右旋转。 glLoadIdentity(); 我们增加了另一个glLoadIdentity()调用。目的是为了重置模型观察矩阵。如果我们没有重置,直接调用glTranslate的话,会出现意料之外的结果。因为坐标轴已经旋转了,很可能没有朝着您所希望的方向。所以我们本来想要左右移动对象的,就可能变成上下移动了,取决于您将坐标轴旋转了多少角度。试试将glLoadIdentity() 注释掉之后,会出现什么结果。 重置模型观察矩阵之后,X、Y、Z轴都以复位,我们调用glTranslate。您会注意到这次我们只向右移了1.5单位,而不是上节课的3.0单位。因为我们重置场景的时候,焦点又回到了场景的中心(0.0)处。这样就只需向右移1.5单位就够了。 当我们移到新位置后,绕X轴旋转四边形。正方形将上下转动。 glTranslatef( 1.5, 0.0, -6.0 ); glRotatef( rQuad, 1.0, 0.0, 0.0 ); 绕X轴旋转四边形。 glColor3f( 0.5, 0.5, 1.0 ); glBegin( GL_QUADS ); glVertex3f( -1.0, 1.0, 0.0 ); glVertex3f( 1.0, 1.0, 0.0 ); glVertex3f( 1.0, -1.0, 0.0 ); glVertex3f( -1.0, -1.0, 0.0 ); glEnd(); rTri += 0.2; rQuad -= 0.15; 我们在构造函数中已经将rTri和rQuad的值设为0.0,在这里我们每绘制完一次图像,就修改一下这两个变量。两个变量的变化会使对象的旋转角度发生变化。 尝试改变下面代码中的+和-,来体会对象旋转的方向是如何改变的。并试着将0.2改成1.0。这个数字越大,物体就转的越快,这个数字越小,物体转的就越慢。 } 在这一课中,我试着尽量详细的解释如何让对象绕某个轴转动。改改代码,试着让对象绕着Z轴、X+Y轴或者所有三个轴来转动:)。 本课程的源代码。 向三维进军 在上一课的内容上作些扩展,我们现在开始生成真正的三维对象,而不是象前两节课中那样在三维世界中的二维对象。我们给三角形增加一个左侧面,一个右侧面,一个后侧面来生成一个金字塔(四棱锥)。给正方形增加左、右、上、下及背面生成一个立方体。 我们混合金字塔上的颜色,创建一个平滑着色的对象。给立方体的每一面则来个不同的颜色。 其实只需在上节课的代码上增加几行就可以了。 NeHeWidget类 (由nehewidget.cpp展开。) void NeHeWidget::paintGL() { glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); glLoadIdentity(); glTranslatef( -1.5, 0.0, -6.0 ); glRotatef( rTri, 0.0, 1.0, 0.0 ); 有些人可能早已在上节课中的代码上尝试自行创建3D对象了。但经常有人来信问我:“我的对象怎么不会绕着其自身的轴旋转?看起来总是在满屏乱转。”要让您的对象绕自身的轴旋转,您必须让对象的中心坐标总是( 0.0, 0,0, 0,0 )。 下面的代码创建一个绕者其中心轴旋转的金字塔。金字塔的上顶点离中心一个单位,底面离中心也是一个单位。上顶点在底面的投影位于底面的中心。 注意所有的面-三角形都是逆时针次序绘制的。这点十分重要,在以后的课程中我会作出解释。现在,您只需明白要么都逆时针,要么都顺时针,但永远不要将两种次序混在一起,除非您有足够的理由必须这么做。 glBegin( GL_TRIANGLES ); glColor3f( 1.0, 0.0, 0.0 ); glVertex3f( 0.0, 1.0, 0.0 ); glColor3f( 0.0, 1.0, 0.0 ); glVertex3f( -1.0, -1.0, 1.0 ); glColor3f( 0.0, 0.0, 1.0 ); glVertex3f( 1.0, -1.0, 1.0 ); 上面是我们绘制的金字塔的前侧面。因为所有的面都共享上顶点,我们将这点在所有的三角形中都设置为红色。底边上的两个顶点的颜色则是互斥的。前侧面的左下顶点是绿色的,右下顶点是蓝色的。这样相邻右侧面的左下顶点是蓝色的,右下顶点是绿色的。这样四边形的底面上的点的颜色都是间隔排列的。 还应注意到后面的三个侧面和前侧面处于同一个glBegin( GL_TRIANGLES )和glEnd()语句中间。因为我们是通过三角形来构造这个金字塔的。OpenGL知道每三个点构成一个三角形。当它画完一个三角形之后,如果还有余下的点出现,它就以为新的三角形要开始绘制了。OpenGL在这里并不会将四点画成一个四边形,而是假定新的三角形开始了。所以千万不要无意中增加任何多余的点。 glColor3f( 1.0, 0.0, 0.0 ); glVertex3f( 0.0, 1.0, 0.0 ); glColor3f( 0.0, 0.0, 1.0 ); glVertex3f( 1.0, -1.0, 1.0 ); glColor3f( 0.0, 1.0, 0.0 ); glVertex3f( 1.0, -1.0, -1.0 ); 绘制右侧面。注意其底边上的两个顶点的X坐标位于中心右侧的一个单位处。顶点则位于Y轴上的一单位处,且Z坐标正好处于底边的两顶点的Z坐标中心。右侧面从上顶点开始向外侧倾斜至底边上。 这次的左下顶点用蓝色绘制,以保持与前侧面的右下顶点的一致。蓝色将从这个角向金字塔的前侧面和右侧面扩展并与其他颜色混合。 glColor3f( 1.0, 0.0, 0.0 ); glVertex3f( 0.0, 1.0, 0.0 ); glColor3f( 0.0, 1.0, 0.0 ); glVertex3f( 1.0, -1.0, -1.0 ); glColor3f( 0.0, 0.0, 1.0 ); glVertex3f( -1.0, -1.0, -1.0 ); 后侧面。再次切换颜色。左下顶点又回到绿色,因为后侧面与右侧面共享这个角。 glColor3f( 1.0, 0.0, 0.0 ); glVertex3f( 0.0, 1.0, 0.0 ); glColor3f( 0.0, 0.0, 1.0 ); glVertex3f( -1.0, -1.0, -1.0 ); glColor3f( 0.0, 1.0, 0.0 ); glVertex3f( -1.0, -1.0, 1.0 ); 最后画左侧面。又要切换颜色。左下顶点是蓝色,与后侧面的右下顶点相同。右下顶点是蓝色,与前侧面的左下顶点相同。 到这里金字塔就画完了。因为金字塔只绕着Y轴旋转,我们永远都看不见底面,因而没有必要添加底面。如果您觉得有经验了,尝试增加底面(正方形),并将金字塔绕X轴旋转来看看您是否作对了。确保底面四个顶点的颜色与侧面的颜色相匹配。 glEnd(); 接下来开始画立方体。他由六个四边形组成。所有的四边形都以逆时针次序绘制。就是说先画右上角,然后左上角、左下角、最后右下角。您也许认为画立方体的背面的时候这个次序看起来好像顺时针,但别忘了我们从立方体的背后看背面的时候,与您现在所想的正好相反。(译者注:您是从立方体的外面来观察立方体的。) glLoadIdentity(); glTranslatef( 1.5, 0.0, -7.0 ); 注意到这次我们将立方体移地更远离屏幕了。因为立方体的大小要比金字塔大,同样移入6个单位时,立方体看起来要大的多。这是透视的缘故。越远的对象看起来越小 :) 。 glRotatef( rQuad, 1.0, 1.0, 1.0 ); glBegin( GL_QUADS ); glColor3f( 0.0, 1.0, 0.0 ); glVertex3f( 1.0, 1.0, -1.0 ); glVertex3f( -1.0, 1.0, -1.0 ); glVertex3f( -1.0, 1.0, 1.0 ); glVertex3f( 1.0, 1.0, 1.0 ); 先画立方体的顶面。从中心上移一单位,注意Y坐标始终为一单位,表示这个四边形与Z轴平行。先画右上顶点,向右一单位,再屏幕向里一单位。然后左上顶点,向左一单位,再屏幕向里一单位。然后是靠近观察者的左下和右下顶点。就是屏幕往外一单位。 glColor3f( 1.0, 0.5, 0.0 ); glVertex3f( 1.0, -1.0, 1.0 ); glVertex3f( -1.0, -1.0, 1.0 ); glVertex3f( -1.0, -1.0, -1.0 ); glVertex3f( 1.0, -1.0, -1.0 ); 底面的画法和顶面十分类似。只是Y坐标变成了-1。如果我们从立方体的下面来看立方体的话,您会注意到右上角离观察者最近,因此我们先画离观察者最近的顶点。然后是左上顶点最后才是屏幕里面的左下和右下顶点。 如果您真的不在乎绘制多边形的次序(顺时针或者逆时针)的话,您可以直接拷贝顶面的代码,将Y坐标从1改成-1,也能够工作。但一旦您进入象纹理映射这样的领域时,忽略绘制次序会导致十分怪异的结果。 glColor3f( 1.0, 0.0, 0.0 ); glVertex3f( 1.0, 1.0, 1.0 ); glVertex3f( -1.0, 1.0, 1.0 ); glVertex3f( -1.0, -1.0, 1.0 ); glVertex3f( 1.0, -1.0, 1.0 ); 立方体的前面。保持Z坐标为一单位,前面正对着我们。 glColor3f( 1.0, 1.0, 0.0 ); glVertex3f( 1.0, -1.0, -1.0 ); glVertex3f( -1.0, -1.0, -1.0 ); glVertex3f( -1.0, 1.0, -1.0 ); glVertex3f( 1.0, 1.0, -1.0 ); 立方体后面的绘制方法与前面类似。只是位于屏幕的里面。注意Z坐标现在保持-1不变。 glColor3f( 0.0, 0.0, 1.0 ); glVertex3f( -1.0, 1.0, 1.0 ); glVertex3f( -1.0, 1.0, -1.0 ); glVertex3f( -1.0, -1.0, -1.0 ); glVertex3f( -1.0, -1.0, 1.0 ); 还剩两个面就完成了。您会注意到总有一个坐标保持不变。这一次换成了X坐标。因为我们在画左侧面。 glColor3f( 1.0, 0.0, 1.0 ); glVertex3f( 1.0, 1.0, -1.0 ); glVertex3f( 1.0, 1.0, 1.0 ); glVertex3f( 1.0, -1.0, 1.0 ); glVertex3f( 1.0, -1.0, -1.0 ); 立方体的最后一个面了。X坐标保持为一单位。逆时针绘制。您愿意的话,留着这个面不画也可以,这样就是一个盒子:) glEnd(); 或者您要是有兴趣可以改变立方体所有顶点的色彩值,象金字塔那样混合颜色。您会看见一个非常漂亮的彩色立方体,各种颜色在它的各个表面流淌。 rTri += 0.2; rQuad -= 0.15; } 这一课又结束了。到这里您应该已经较好的掌握了在三维空间创建对象的方法。必须将OpenGL屏幕想象成一张很大的画纸,后面还带着许多透明的层。差不多就是个由大量的点组成的立方体。这些点从左至右、从上至下、从前到后的布满了这个立方体。如果您能想象的出在屏幕的深度方向,应该在设计新三维对象时没有任何问题。 如果您对三维空间的理解很困难的话,千万不要灰心!刚开始的时候,领会这些内容会很难。象立方体这样的对象是您练习的好例子。继续努力吧! 本课程的源代码。 纹理映射 学习texture map纹理映射(贴图)有很多好处。比方说您想让一颗导弹飞过屏幕。根据前几课的知识,我们最可行的办法可能是很多个多边形来构建导弹的轮廓并加上有趣的颜色。使用纹理映射,您可以使用真实的导弹图像并让它飞过屏幕。您觉得哪个更好看?照片还是一大堆三角形和四边形?使用纹理映射的好处还不止是更好看,而且您的程序运行会更快。导弹贴图可能只是一个飞过窗口的四边形。一个由多边形构建而来的导弹却很可能包括成百上千的多边形。很显然,贴图极大的节省了CPU时间。 我们要在第一课的代码上增加几行就可以了。 我们将要增加一个loadGLTextures()函数来处理有关纹理操作的。我们将在NeHeWidget类中增加三个变量xRot、yRot、zRot来处理立方体的旋转。还有一个用来存储纹理的texture[1]。 NeHeWidget类 (由nehewidget.h展开。) protected: void loadGLTextures(); 在这个函数中我们会载入指定的图片并生成相应当纹理。 protected: bool fullscreen; GLfloat xRot, yRot, zRot; GLuint texture[1]; }; 上面就是添加的三个变量xRot、yRot、zRot来处理立方体在三个方向上的旋转。texture[1]用来存储一个纹理。 (由nehewidget.cpp展开。) NeHeWidget::NeHeWidget( QWidget* parent, const char* name, bool fs ) : QGLWidget( parent, name ) { xRot = yRot = zRot = 0.0; fullscreen = fs; setGeometry( 0, 0, 640, 480 ); setCaption( "NeHe's Texture Mapping Tutorial" ); if ( fullscreen ) showFullScreen(); } 我们需要在构造函数中给xRot、yRot、zRot赋初值,都是0.0。 void NeHeWidget::loadGLTextures() { QImage tex, buf; if ( !buf.load( "./data/NeHe.bmp" ) ) 载入纹理图片。这里使用了QImage类。 { qWarning( "Could not read image file, using single-color instead." ); QImage dummy( 128, 128, 32 ); dummy.fill( Qt::green.rgb() ); buf = dummy; 如果载入不成功,自动生成一个128*128的32位色的绿色图片。 } tex = QGLWidget::convertToGLFormat( buf ); 这里使用了QGLWidget类中提供的一个静态函数converToGLFormat(),专门用来转换图片的,具体情况请参见相应文档。 glGenTextures( 1, &texture[0] ); 创建一个纹理。告诉OpenGL我们想生成一个纹理名字(如果您想载入多个纹理,加大数字)。值得注意的是,开始我们使用 GLuint texture[1] 来创建一个纹理的存储空间,您也许会认为第一个纹理就是存放在 &texture[1] 中的,但这是错的。正确的地址应该是 &texture[0] 。同样如果使用 GLuint texture[2] 的话,第二个纹理存放在 texture[1] 中。 glBindTexture( GL_TEXTURE_2D, texture[0] ); 使用来自位图数据生成的典型纹理。告诉OpenGL将纹理名字texture[0]绑定到纹理目标上。2D纹理只有高度(在Y轴上)和宽度(在X轴上)。主函数将纹理名字指派给纹理数据。本例中我们告知OpenGL,&texture[0]处的内存已经可用。我们创建的纹理将存储在&texture[0]的指向的内存区域。 glTexImage2D( GL_TEXTURE_2D, 0, 3, tex.width(), tex.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, tex.bits() ); 这里真正的创建纹理。GL_TEXTURE_2D告诉OpenGL此纹理是一个2D纹理。数字零代表图像的详细程度,通常就由它为零去了。数字三是数据的成分数。因为图像是由红色数据,绿色数据,蓝色数据三种组分组成。 tex.width()是纹理的宽度。tex.height()是纹理的高度。数字零是边框的值,一般就是零。GL_RGBA 告诉OpenGL图像数据由红、绿、蓝三色数据以及alpha通道数据组成,这个是由于QGLWidget类的converToGLFormat()函数的原因。 GL_UNSIGNED_BYTE 意味着组成图像的数据是无符号字节类型的。最后tex.bits()告诉OpenGL纹理数据的来源。 glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); 上面的两行告诉OpenGL在显示图像时,当它比放大得原始的纹理大(GL_TEXTURE_MAG_FILTER)或缩小得比原始得纹理小(GL_TEXTURE_MIN_FILTER)时OpenGL采用的滤波方式。通常这两种情况下我都采用GL_LINEAR。这使得纹理从很远处到离屏幕很近时都平滑显示。使用GL_LINEAR需要CPU和显卡做更多的运算。如果您的机器很慢,您也许应该采用GL_NEAREST。过滤的纹理在放大的时候,看起来斑驳的很。您也可以结合这两种滤波方式。在近处时使用GL_LINEAR,远处时GL_NEAREST。 } loadGLTe
本文档为【Qt+OpenGL教程】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_256729
暂无简介~
格式:doc
大小:1MB
软件:Word
页数:82
分类:互联网
上传时间:2012-02-26
浏览量:60