首页 5.2 平面向量基本定理及坐标表示

5.2 平面向量基本定理及坐标表示

举报
开通vip

5.2 平面向量基本定理及坐标表示nullnull§5.2 平面向量基本定理及坐标表示 要点梳理 1.两个向量的夹角 (1)定义 已知两个 向量a和b,作 =a, =b,则∠AOB=θ叫做向量a 与b的夹角. (2)范围 向量夹角θ的范围是 ,a与b同向时, 夹角θ= ;a与b反向时,夹角θ= .非零0°≤θ≤180°180°0°基础知识 自主学习null (3)向量垂直 如果向量a与b的夹角是 ,则a与b垂直,记作 . 2.平面向量基本定理...

5.2  平面向量基本定理及坐标表示
nullnull§5.2 平面向量基本定理及坐标表示 要点梳理 1.两个向量的夹角 (1)定义 已知两个 向量a和b,作 =a, =b,则∠AOB=θ叫做向量a 与b的夹角. (2)范围 向量夹角θ的范围是 ,a与b同向时, 夹角θ= ;a与b反向时,夹角θ= .非零0°≤θ≤180°180°0°基础知识 自主学习null (3)向量垂直 如果向量a与b的夹角是 ,则a与b垂直,记作 . 2.平面向量基本定理及坐标表示 (1)平面向量基本定理 定理:如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的任意向量a, 一对实数 1, 2,使a= . 其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组 .90°a⊥b不共线有且只有1e1+ 2e2基底null(2)平面向量的正交分解 把一个向量分解为两个 的向量,叫做把向量 正交分解. (3)平面向量的坐标表示 ①在平面直角坐标系中,分别取与x轴、y轴方向相同 的两个单位向量i,j作为基底,对于平面内的一个向 量a,有且只有一对实数x,y,使a=xi+yj,把有序数对 叫做向量a的坐标,记作a= ,其中 叫a在x 轴上的坐标, 叫a在y轴上的坐标. ②设 =xi+yj,则向量 的坐标(x,y)就是 ,即若 =(x,y),则A点坐标为 ,反之亦成立.(O是坐标原点)(x,y)xy(x,y)终点A的坐标(x,y)互相垂直null3.平面向量的坐标运算 (1)加法、减法、数乘运算. (2)向量坐标的求法 已知A(x1,y1),B(x2,y2),则 =(x2-x1,y2-y1),即一个向量的坐标等于该向量 的坐标减去 的坐标. (3)平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0,则a与b共线a=  .终点始点 bx1y2-x2y1=0null基础自测 1.(2008·辽宁文,5)已知四边形ABCD的顶点 A(0,2)、B(-1,-2)、C(3,1),且 = 2 则顶点D的坐标为 ( ) A. B. C.(3,2) D.(1,3) 解析 ∵A(0,2),B(-1,-2),C(3,1), ∴ =(3,1)-(-1,-2)=(4,3). 设D(x,y),∵ =(x,y-2), =2 , ∴(4,3)=(2x,2y-4).∴x=2,y= .Anull2.已知a=(4,2),b=(x,3),且a∥b,则x等于( ) A.9 B.6 C.5 D.3 解析 ∵a∥b,∴12-2x=0,∴x=6. 3.已知两点A(4,1),B(7,-3),则与 同向的单位向量是 ( ) A. B. C. D. 解析 ∵A(4,1),B(7,-3), =(3, -4), ∴与 同向的单位向量为BAnull4.(2008·安徽理,3)在平行四边形ABCD中,AC为一条对角线,若 =(2,4), =(1,3),则 等于 ( ) A.(-2,-4) B.(-3,-5) C.(3,5) D.(2,4) 解析 如图所示, (-1,-1), 所以 (-3,-5).Bnull5.已知向量a=(8, x),b=(x,1),其中x>0,若(a- 2b)∥(2a+b),则x的值为 . 解析 a-2b=(8-2x, x-2),2a+b=(16+x,x+1), 由已知(a-2b)∥(2a+b),显然2a+b≠0,故有(8-2x, x-2)= (16+x,x+1)  8-2x= (16+x) x-2= (x+1)4x=4 (x>0).null 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 型一 平面向量基本定理 【例1】如图所示,在平行四边形ABCD中, M,N分别为DC,BC的中点,已知 =c, =d,试用c,d表示 , . 直接用c、d表示 、 有难度,可换一个角度,由 、 表示 、 ,进而解方程组可求 、 .思维启迪题型分类 深度剖析null解 方法一 设 =a, =b, 则a= =d+( b) ① b= =c+( a) ② 将②代入①得a=d+( )  ,代入②得 null方法二 设 =a, =b. 因M,N分别为CD,BC的中点, 所以 b, a, c=b+ a a= (2d-c) d=a+ b b= (2c-d), 即 = (2d-c), = (2c-d).因而 平面向量基本定理从理论上说明平面内任何一个向量都可以用一组基底表示.这就是说 、 一定能用c、d表示.本题用方程的思想使问题得以解决. 探究提高 null知能迁移1 如图所示,在△ABC中,点 O是BC的中点,过点O的直线分别交 直线AB、AC于不同两点M、N, 若 则m+n的值 为 . 解析 设 =a, =b, (a+b)- null 同理 由 ∥ 得 = ① ② ①×②整理得m+n=2. 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 2即null题型二 向量的坐标运算 【例2】已知点A(1,0)、B(0,2)、C(-1, - 2),求以A、B、C为顶点的平行四边形的第四个顶点D的坐标. “以A、B、C为顶点的平行四边形”可以有三种情况:(1)ABCD;(2)ADBC;(3)ABDC. 解 设D的坐标为(x,y). (1)若是ABCD,则由 得 (0,2)-(1,0)=(-1,-2)-(x,y), 即(-1,2)=(-1-x,-2-y), -1-x=-1, -2-y=2.思维启迪∴null∴x=0,y=-4. ∴D点的坐标为(0,-4)(如图中的D1). (2)若是ADBC,则由 得 (x,y)-(1,0)=(0,2)-(-1,-2), 即(x-1,y)=(1,4).解得x=2,y=4. ∴D点坐标为(2,4)(如图中的D2). (3)若是ABDC,则由 得 (0,2)-(1,0)=(x,y)-(-1,-2), 即(-1,2)=(x+1,y+2).解得x=-2,y=0. ∴D点的坐标为(-2,0)(如图中的D3). 综上所述,以A、B、C为顶点的平行四边形的第四个 顶点D的坐标为(0,-4)或(2,4)或(-2,0).null 探究提高 (1)要加强对向量的坐标与该向量起点、终点的关系的理解,以及对坐标运算的灵活应用. (2)向量的坐标运算是向量运算的数量表达形式,更能利用代数知识解决,也是向量被广泛应用的基础.null知能迁移2(2009·辽宁文,13)在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知A(-2,0),B(6,8),C(8,6),则D点的坐标为 . 解析 设D点的坐标为(x,y),由题意知 , 即(2,-2)=(x+2,y),所以x=0,y=-2,∴D(0,-2). (0,-2)null题型三 平行向量的坐标运算 【例3】 (12分)平面内给定三个向量a=(3,2),b= (-1,2),c=(4,1).回答下列问题:(1)若(a+kc)∥(2b-a),求实数k; (2)设d=(x,y)满足(d-c)∥(a+b)且|d-c|=1,求d. (1)由两向量平行及两向量平行的条件得出关于k的方程,从而求出实数k的值. (2)由两向量平行及|d-c|=1得出关于x,y的两个方程,解方程组即可得出x,y的值,从而求出d.思维启迪null解 (1)∵(a+kc)∥(2b-a), 又a+kc=(3+4k,2+k),2b-a=(-5,2), 2分 ∴2×(3+4k)-(-5)×(2+k)=0, 4分 ∴k=- . 6分 (2)∵d-c=(x-4,y-1),a+b=(2,4), 又(d-c)∥(a+b)且|d-c|=1, 4(x-4)-2(y-1)=0 (x-4)2+(y-1)2=1, 8分∴null 12分 向量平行的坐标公式实质是把向量问题转 化为实数的运算问题.通过坐标公式建立参数的方 程,通过解方程或方程组求得参数,充分体现了方程 思想在向量中的应用.探究提高解得10分null知能迁移3 已知点O(0,0),A(1,2),B(4,5)且 (1)求点P在第二象限时,实数t的取值范围; (2)四边形OABP能否为平行四边形?若能,求出相应的实数t;若不能,请说明理由. 解 ∵O(0,0),A(1,2),B(4,5), ∴ =(1,2), =(4-1,5-2)=(3,3). (1)设P(x,y),则 =(x,y),若点P在第二象限, x<0 y>0则且(x,y)=(1,2)+t(3,3),null x=1+3t 1+3t<0 y=2+3t 2+3t>0, ∴ (2)因为 =(1,2), (3-3t,3-3t), 若四边形OABP为平行四边形,则 3-3t=1 3-3t=2,无解, ∴四边形OABP不可能为平行四边形.∴, ∴∴null方法与技巧 1.坐标的引入使向量的运算完全代数化,成了数形结合的载体,也加强了向量与解析几何的联系. 2.中点坐标公式:P1(x1,y1),P2(x2,y2),则P1P2中点P的坐标为 在△ABC中,若A(x1,y1),B(x2,y2), C(x3,y3),则△ABC的重心G的坐标为思想方法 感悟提高null失误与防范 1.要区分点的坐标与向量的坐标的区别,尽管在形式上它们完全一样,但意义完全不同,向量的坐标中同样有方向与大小的信息. 2.在处理分点问题比如碰到条件“若P是线段AB的分点,且|PA|=2|PB|”时,P可能是AB的内分点,也可能是AB的外分点,即可能的结论有: 或 3.数学上的向量是自由向量,向量x=(a,b)经过平移后得到的向量的坐标仍是(a,b).null一、选择题 1.(2009·湖北文,1)若向量a=(1,1),b=(-1,1), c=(4,2),则c= ( ) A.3a+b B.3a-b C.-a+3b D.a+3b 解析 设c=xa+yb,则(4,2)=x(1,1)+y(-1,1), 4=x-y, x=3. 2=x+y. y=-1.定时 检测 工程第三方检测合同工程防雷检测合同植筋拉拔检测方案传感器技术课后答案检测机构通用要求培训 B∴故c=3a-b.∴null2.若a=(2cos ,1),b=(sin ,1), 且a∥b,则tan 等于 ( ) A.2 B. C.-2 D. 解析 ∵a∥b,∴2cos ×1=sin .∴tan =2.Anull3.已知向量a=(1,2),b=(0,1),设u=a+kb,v=2a-b,若 u∥v,则实数k的值为 ( ) A.-1 B. C. D.1 解析 ∵u=(1,2)+k(0,1)=(1,2+k), v=(2,4)-(0,1)=(2,3),又u∥v, ∴1×3=2(2+k),得k= .Bnull4.(2009·重庆文,4)已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是 ( ) A.-2 B.0 C.1 D.2 解析 ∵a+b=(3,1+x),4b-2a=(6,4x-2),a+b与4b-2a平行,则4x-2=2(1+x),∴x=2.Dnull5.已知向量 =(1,-3), =(2,-1), =(m+1,m-2),若点A、B、C能构成三角形,则实数m应满足的条件是 ( ) A.m≠-2 B.m≠ C.m≠1 D.m≠-1 解析 若点A、B、C不能构成三角形,则只能共线. ∵ (2,-1)-(1,-3)=(1,2), (m+1,m-2)-(1,-3)=(m,m+1). 假设A、B、C三点共线, 则1×(m+1)-2m=0,即m=1. ∴若A、B、C三点能构成三角形,则m≠1.Cnull6.已知O为原点,A、B是两定点, =a, =b,且点P关于点A的对称点为Q,点Q关于点B的对称点为R,则 等于 ( ) A.a-b B.2(a-b) C.2(b-a) D.b-a 解析 设 =a=(x1,y1), =b=(x2,y2), 则A(x1,y1),B(x2,y2). 设P(x,y),则由中点坐标公式可得 Q(2x1-x,2y1-y),R(2x2-2x1+x,2y2-2y1+y). ∴ (2x2-2x1,2y2-2y1) =2(x2,y2)-2(x1,y1),即 =2(b-a).Cnull二、填空题 7.(2009·广东理,10)若平面向量a,b满足|a+b|=1,a+b平行于x轴,b=(2,-1),则a= . 解析 ∵|a+b|=1,a+b平行于x轴,故a+b=(1,0)或(-1,0),∴a=(1,0)-(2,-1)=(-1,1)或a=(-1,0) -(2,-1)=(-3,1). 8.已知向量a=(2x+1,4),b=(2-x,3),若a∥b,则实数x的值等于 . 解析 由a∥b得3(2x+1)=4(2-x),解得x= .(-1,1)或(-3,1)null9.已知向量集合M={a|a=(1,2)+ (3,4), ∈R},N={b|b=(-2,-2)+(4,5), ∈R},则M∩N= . 解析 由(1,2)+ 1(3,4)=(-2,-2)+ 2(4,5), ∴M∩N={(-2,-2)}.{(-2,-2)}null三、解答题 10.已知A(1,-2),B(2,1),C(3,2),D(-2, 3),以 , 为一组基底来表示 . 解 ∵ =(1,3), =(2,4), =(-3,5), =(-4,2), =(-5,1), ∴ (-3,5)+(-4,2)+(-5,1)=(-12,8).null根据平面向量基本定理,必存在唯一实数对m,n 使得 ∴(-12,8)=m(1,3)+n(2,4). -12=m+2n, 8=3m+4n, ∴ ∴得m=32,n=-22.null11.已知A(-2,4),B(3,-1),C(-3,-4).设 =a, =b, =c,且 =3c, =-2b, (1)求:3a+b-3c; (2)求满足a=mb+nc的实数m,n. 解 由已知得a=(5,-5),b=(-6,-3),c=(1,8). (1)3a+b-3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb+nc=(-6m+n,-3m+8n), -6m+n=5 m=-1 -3m+8n=-5, n=-1.∴解得null12.在△ABC中,a、b、c分别是角A、B、C的对边, 已知向量m=(a,b),向量n=(cos A,cos B),向量p= 若m∥n,p2=9, 求证:△ABC为等边三角形. 证明 ∵m∥n,∴acos B=bcos A. 由正弦定理,得sin Acos B=sin Bcos A, 即sin(A-B)=0. ∵A、B为三角形的内角,∴-π<A-B<π. ∴A=B.∵p2=9,∴8sin2 +4sin2A=9. null∴4[1-cos(B+C)]+4(1-cos2A)=9. ∴4cos2A-4cos A+1=0,解得cos A= . 又∵0<A<π,∴A= . ∴△ABC为等边三角形. 返回
本文档为【5.2 平面向量基本定理及坐标表示】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_117259
暂无简介~
格式:ppt
大小:978KB
软件:PowerPoint
页数:0
分类:高中数学
上传时间:2011-10-18
浏览量:60