首页 自-LLC谐振变换器与不对称半桥

自-LLC谐振变换器与不对称半桥

举报
开通vip

自-LLC谐振变换器与不对称半桥LLC谐振变换器与不对称半桥变换器的对比1不对称半桥变换器图中互补控制的功率MOSFET(S1和S2),其中S1的占空比为D,S2的占空比为(1-D);隔直电容Cb,其上电压作为S2开通时的电源;中心抽头变压器Tr,其原边匝数为Np,副边匝数分别为Ns1和Ns2;半桥全波整流二级管D1和D2;输出滤波电感Ld,电容Cf。不对称半桥(AHB)变换器的稳态工作原理如下。ﻫ 1)当S1导通S2关断时,变压器原边承受正向电压,副边Ns1工作;二极管D1导通,二极管D2截止; 2)当S2导通S1关断时,隔直电容Cb上的电压加...

自-LLC谐振变换器与不对称半桥
LLC谐振变换器与不对称半桥变换器的对比1不对称半桥变换器图中互补控制的功率MOSFET(S1和S2),其中S1的占空比为D,S2的占空比为(1-D);隔直电容Cb,其上电压作为S2开通时的电源;中心抽头变压器Tr,其原边匝数为Np,副边匝数分别为Ns1和Ns2;半桥全波整流二级管D1和D2;输出滤波电感Ld,电容Cf。不对称半桥(AHB)变换器的稳态工作原理如下。ﻫ 1)当S1导通S2关断时,变压器原边承受正向电压,副边Ns1工作;二极管D1导通,二极管D2截止; 2)当S2导通S1关断时,隔直电容Cb上的电压加在变压器的原边,副边Ns2工作,二极管D1截止。ﻫ 图2中n1=Np/Ns1,n2=Np/Ns2,且n1=n2=n。通过对 电路 模拟电路李宁答案12数字电路仿真实验电路与电子学第1章单片机复位电路图组合逻辑电路课后答案 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 ,可以得到传统不对称半桥变换器占空比D的计算 公式 小学单位换算公式大全免费下载公式下载行测公式大全下载excel公式下载逻辑回归公式下载 2.LLC谐振变换器图3和图4分别给出了LLC谐振变换器的电路图和工作波形。图3中包括两个功率MOSFET(S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。ﻫ LLC变换器的稳态工作原理如下。ﻫ  1)〔t1,t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。ﻫ 2)〔t2,t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。ﻫ 3)〔t3,t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。ﻫ4)〔t4,t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。  5)〔t5,t6〕当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。  6)〔t6,t7〕当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。ﻫ 通过上面的详细分析,对这两类软开关型变换器的工作原理及其特性有了一定的了解,下面将对它们之间的差异进行比较,进一步加深对它们的认识。两种变换器差异的对比不对称半桥变换器是PWM型的,而LLC谐振变换器是谐振型的,因此,它们在控制方法、副边整流管的电压应力、原边的电流应力等方面有很大的差异,不对称半桥变换器通过调节开关管的占空比来调节输出电压,不对称半桥变换器的掉电维持时间特性比较差.LLC谐振变换器是通过调节开关频率来调节输出电压的,也就是在不同的输入电压下它的占空比保持不变,掉电维持时间特性比较好.副边整流管电压应力的对比在LLC谐振变换器中副边二极管上的电压应力是输出电压的2倍不对称半桥变换器副边整流管电压应力D1=Vin/1-D, D2=Vin/D3副边二极管的开通对比ﻫ从对不对称半桥变换器的分析可知其副边二极管是硬开通,损耗比较大;而从对LLC谐振变换器的分析可知其副边二极管是零电流开关,损耗比较小,这样就可以提高变换器的效率。ﻫ4其他方面 首先,在不对称半桥变换器中上下开关管的占空比是互补的,因此,不对称半桥变换器中的变压器有直流偏置现象;而在LLC谐振变换器中上下开关管的占空比是相等的,因此,LLC谐振变换器中的变压器没有直流偏置现象。ﻫLLC谐振变换器是通过调开关管的工作频率来调节输出电压,因此,对于LLC谐振变换器来说,要实现同步整流控制比较复杂;而不对称半桥变换器是通过调开关管的占空比来调节输出电压,因此,对于不对称半桥变换器来说,要实现同步整流控制比较简单。ﻫLLC谐振变换器的电流应力比较高;不对称半桥变换器中电流应力比较低。1 工作原理图1所示是半桥结构的LLC串联多谐振变换器:两个主开关S1和S2构成一个半桥结构,其驱动信号是占空比固定50%的互补信号,通过改变开关频率来实现输出电压的恒定。因此,这类谐振型变换器也可以归类于控制型软开关电路。电感Ls、电容Cs和变压器的励磁电感Lm构成一个LLC谐振网络。该谐振网络连接在半桥的中点与地之间,因此,谐振电容Cs也起到隔直电容的作用。在输出侧,整流二极管D1和D2构成中心抽头的整流电路,整流二极管直接连接到输出电容Co上。LC的本征谐振频率定义为本文所述的LLC串联多谐振变换器的开关频率范围为fm<f 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 Lm>>Ls,因此,谐振周期明显变长。ir基本保持不变,可以认为ir(t)=im(t)=Im   (5)在该阶段中,ir继续对Cs充电,Cs的电压继续上升,一直到t3时刻,S1关断,开始下半个工作周期。工作阶段4、5、6与工作阶段1、2、3类似。所不同的是谐振的初始能量由谐振电容Cs提供。工作波形与阶段1、2、3完全对称。4)阶段4〔t3~t4〕在t3时刻S1关断,ir对S2的输出电容放电,S2的漏-源电压vds2开始下降,当vds2下降到零,S2的体二极管导通。在副边,变压器绕组的极性为上负下正,D2导通,Lm的电压被Vo钳位,谐振实际上发生在Ls与Cs之间,Lm上的电流im线性下降。5)阶段5〔t4~t5〕在t4时刻S2在零电压条件下开通。im继续线性下降,ir流经S2并以正弦波形式负向增长。流过D2的输出电流为谐振电流与励磁电流之差。在该工作频率范围内,开关周期大于Ls与Cs的谐振周期。因此,在ir经过半个周期的谐振,S2仍然处于开通状态。当ir下降到与im相等时,D2电流过因零而关断。该工作阶段结束。6)阶段6〔t5~t6〕在t5时刻D2零电流条件下关断。输出侧与谐振回路完全脱离。Lm的电压不再受Vo限制,Lm与Ls串联参与谐振。ir基本保持不变,继续对谐振电容Cs放电,Cs的电压继续下降,一直到t6时刻,S2关断,新的工作周期开始。假定ir在t2到t3以及t5到t6保持不变,并以Im表示,那么输出电压Vo可以表示为式中:Vin为输入电压;T为开关周期;Ts为Cs和Ls的谐振周期,Ts=1/fs=从式(6)可以看出,输出电压随着开关周期的增加而增加。2 高频适应性分析上面所分析的LLC多谐振变换器非常适合用于开关频率非常高的场合,其原因如下。1)所有的开关管都工作在ZVS状态下,开关损耗几乎为零。开关管的零电压是由激磁电感上的激磁电流对开关管的结电容充放电来实现的。所以,对于负载电流的变化,其零电压开通的条件基本不会变化,这一点要优于移相全桥等其它控制型软PWM电路。另外,LLC多谐振变换器的激磁电感是作为其中一个谐振电感,用来调节输入输出电压的关系,本身会设计得比较小。从通态损耗来看,这一点是不利的,但是,从软开关的实现条件来看却是非常有利,因此,在超高频场合该电路非常有优势。ZVS的极限条件如式(7)所示(极限条件的意思是假设死区时间可以任意大,能实现ZVS的临界条件)。式中:Coss1和Coss2分别是两个开关管的输出电容。再将式(4)代入式(7),可得ZVS的极限条件的进一步的表达式为式(8)。实际上,在LLC多谐振变换器中,式(8)是非常容易满足的,而死区时间也不会非常大,因此,可以近似认为在死区时间内激磁电感上的电流保持不变,即为一个恒流源在对开关管的结电容进行充放电。在这种情况下的ZVS条件称为宽裕条件,表达式为式(9)。式中:tdead为死区时间。再将式(4)代入式(9),可得ZVS的宽裕条件的进一步的表达式为式(10)。2)所有的副边二极管都工作在ZCS状态下,反向恢复的影响很小。而普通的控制型软PWM电路都只实现了开关管的软开关,而没有很好地解决二极管的反向恢复问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 ,因此,在开关频率非常高的场合(例如1MHz以上)使用起来还是有困难的。副边二极管的电流波形近似为正弦,对于减少通态损耗来说是缺点,但是应用在超高频的场合,开关损耗要比通态损耗难处理得多,所以,该电路应用在超高频的场合又有一个优势。3)普通的控制型软PWM电路难以工作在1MHz以上的另外一个原因是,在高频下变压器漏感很难处理。特别是考虑到原副边绝缘强度的时候,变压器漏感很难做小,而在超高频下,漏感的影响又是非常明显。LLC多谐振变换器的漏感是作为其中一个谐振电感或是谐振电感的一部分,本身就希望能将漏感设计得大一些。在低频场合通常难以设计出所需要的漏感而要外加一个谐振电感,而在高频场合就比较容易设计出所需要的漏感。因此,这又是一个该电路适合用于超高频场合的理由。3实验结果一个开关频率1MHz以上的DC/DC变换器验证了该多谐振变换器工作原理和高频适应性。该变换器的规格和主要参数如下:输入电压Vin135V;输出电压Vo 54V;输出电流Io 0~3A;最低工作频率f 1MHz;主开关S1及S2IRFP250;整流二极管D1及D2 30CPQ150;变压器Tn=13∶(7+7),Lm=15μH,Ls=6μH;谐振电容Cs4.4nF(在高频下Cs的实际容量要小于该值)。图4给出了该变换器在不同负载下的变换效率。其最高效率达到了89.5%,满载效率达到了88.7%。ﻫ图5是输入135V时的主要实验波形。图5(a)是满载(3A)时S2的vds和vgs波形,可以看到,S2的驱动电压vgs是在vds电压下降到零后才开始上升的,因此,是零电压开通。S1的vds和vgs波形也是类似的,这里不一一给出了。图5(b)是原边的谐振电压和电流波形,每半个周期有两个谐振过程,分别是Cs和Ls的谐振、Cs和(Ls+Lm)的谐振。图5(c)是整流二极管D1上的电压和电流波形。可以看到,电流是以正弦的形状谐振到零,但还是出现一定的反向恢复电流。这是因为开关频率为1MHz,尽管是正弦的电流波形,但其di/dt还是相当大的。若在同样的频率下换成一般的PWM电路,反向恢复问题会更加严重。因此,使用普通的肖特基或快恢复二极管,一般的PWM电路也无法工作在1MHz的频率下。这里的二极管电压也会因为反向恢复而过冲,但是,其过冲电压还是没有超过2倍的输出电压,因此,这里可以用150V的肖特基二极管,这在一般的PWM电路中是无法做到的。
本文档为【自-LLC谐振变换器与不对称半桥】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
洛逍遥
暂无简介~
格式:doc
大小:278KB
软件:Word
页数:12
分类:生活休闲
上传时间:2022-07-31
浏览量:0