首页 【2017年整理】轴承的选用及安装方法

【2017年整理】轴承的选用及安装方法

举报
开通vip

【2017年整理】轴承的选用及安装方法【2017年整理】轴承的选用及安装方法 轴承的选用及安装方法 更新时间:2009-03-30 14:49:58 一、滚动轴承的基本代号 轴承型式代号: 0 双列斜角滚珠轴承 1 自动调心滚珠轴承 2 球面滚子轴承和球面滚子止推轴承 3 锥型滚子轴承 4 双列深沟滚珠轴承 5 止推滚珠轴承 6 单列深沟滚珠轴承 7 单列斜角滚珠轴承 8 圆柱滚子止推轴承 N 圆筒型滚子轴承 QJ四点接触滚珠轴承 二、轴承的分类及优缺点 轴承可分为:滚动轴承和滑动轴承两大类。 (一...

【2017年整理】轴承的选用及安装方法
【2017年整理】轴承的选用及安装方法 轴承的选用及安装方法 更新时间:2009-03-30 14:49:58 一、滚动轴承的基本代号 轴承型式代号: 0 双列斜角滚珠轴承 1 自动调心滚珠轴承 2 球面滚子轴承和球面滚子止推轴承 3 锥型滚子轴承 4 双列深沟滚珠轴承 5 止推滚珠轴承 6 单列深沟滚珠轴承 7 单列斜角滚珠轴承 8 圆柱滚子止推轴承 N 圆筒型滚子轴承 QJ四点接触滚珠轴承 二、轴承的分类及优缺点 轴承可分为:滚动轴承和滑动轴承两大类。 (一)滚动轴承与滑动轴承相比,各自的优缺点: 滚动轴承的优点 : 1(滚动轴承的摩擦系数比滑动轴承小,传动效率高。一般滑动轴承的摩擦系数为0.08-0.12,而滚动轴承的摩擦系数仅为0.001-0.005; 2(滚动轴承已实现标准化、系列化、通用化,适于大批量生产和供应,使用和维修十分方便; 3(滚动轴承用轴承钢制造,并经过热处理,因此,滚动轴承不仅具有较高的机械性能和较长的使用寿命,而且可以节省制造滑动轴承所用的价格较为昂贵的有色金属; 4(滚动轴承内部间隙很小,各零件的加工精度较高,因此,运转精度较高。同时,可以通过预加负荷的方法使轴承的刚性增加。这对于精密机械是非常重要的; 5(某些滚动轴承可同时承受径向负荷和轴向负荷,因此,可以简化轴承支座的结构; 6(由于滚动轴承传动效率高,发热量少,因此,可以减少润滑油的消 耗,润滑维护较为省事; 7(滚动轴承可以方便地应用于空间任何方位的铀上。 但是,一切事物都是一分为二的,滚动轴承也有一定的缺点,主要是: 1( 滚动轴承承受负荷的能力比同样体积的滑动轴承小得多,因此,滚动轴承的径向尺寸大。所以,在承受大负荷的场合和要求径向尺寸小、结构要求紧凑的场合〈如内燃机曲轴轴承),多采用滑动轴承; 2( 滚动轴承振动和噪声较大,特别是在使用后期尤为显著,因此,对精密度要求很高、又不许有振动的场合,滚动轴承难于胜任,一般选用滑动轴承的效果更佳 3( 滚动轴承对金属屑等异物特别敏感,轴承内一旦进入异物,就会产生断续地较大振动和噪声,亦会引起早期损坏。此外,滚动轴承因金属夹杂质等也易发生早期损坏的可能性。即使不发生早期损坏,滚动轴承的寿命也有一定的限度。总之,滚动轴承的寿命较滑动轴承短些。 可是,滚动轴承与滑动轴承相比较,各有优缺点,各占有一定的适用场合,因此,两者不能完全互相取代,但是,由于滚动轴承的突出优点,目前,滚动轴承已发展成为机械的主要支承型式,应用愈来愈广泛。 三、滚动轴承怎么选用 1.选择的方法和步骤 能否正确选用滚动轴承,对主机能否获得良好的工作性能,延长使用 寿命;对企业能否缩短维修时间,减少维修费用,提高机器的运转率,都有着十分重要的作用。因此,不论是 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 制造单位,还是维修使用单位,在选择滚动轴承时都必须高度重视,一般来说,选择轴承的步骤可能概括为: 1.根据轴承工作条件(包括载荷方向及载荷类型、转速、润滑方式、同轴度要求、定位或非定位、安装和维修环境、环境温度等),选择轴承基本类型、公差等级和游隙; 2.根据轴承的工作条件和受力情况和寿命要求,通过计算确定轴承型号,或根据使用要求,选定轴承型号,再验算寿命; 3.验算所选轴承的额定载荷和极限转速。 选择轴承的主要考虑因素是极限转速、要求的确良寿命和载荷能力,其它的因素则有助于确定轴承类型、结构、尺寸及公差等级和游隙工求的最终方案。 1. 类型选择 各类滚动轴承具有不同的特性,适用于各种机械的不同使用情况。选择轴承类型时,通常应考虑下列因素。一般情况下:对承受推力载荷时选用推力轴承、角接触轴承,对高速应用场合通常使用球轴承,承受重的径向载荷时,则选用滚子轴承。总之,选用人员应从不同生产厂家、众多的轴承产品中,选用合适的类型。选型时考虑的几点因素: (1)轴承所占机械的空间和位置 在机械设计中,一般先确定轴的尺寸,然后,根据轴的尺寸选择滚动 轴承。通常是小轴选用球轴承,大轴选用滚子轴承。但是,当轴承在机器的直径方向受到限制时,则选用滚针轴承、特轻和超轻系列的球或滚子轴承;当轴承在机器的轴向位置受到限制时,可选用窄的或特窄系列的球或滚子轴承。 (2)轴承所受载荷的大小、方向和性质 载荷是选用轴承的最主要因素。滚子轴承用于承受较重的载荷,球轴承用于承受较轻的或中等载荷,渗碳钢制造或贝氏体淬火的轴承,可承受冲击与振动载荷。在载荷的作用方向方面,承受纯径向载荷时,可选用深沟球轴承、圆柱滚子轴承或滚针轴承。承受较小的纯轴向载荷时,可选用推力球轴承;承受较大的纯轴向载荷时,可选用推力滚子轴承。当轴承承受径向和轴向联合载荷时,一般选用角接触球轴承或圆锥滚子轴承。对于悬臂支撑结构,常采用圆锥滚子轴承或角接触球轴承,且成对使用。 (3)轴承的调心性能 当轴的中心线与轴承座中心线不同,有角度误差,或因轴的两支承间距较大而轴的刚性以较小,容易受力弯曲或倾斜时,可选用具有良好调心性能的调心球或调心滚子轴承,以及外球轴承。此类轴承在轴稍微倾斜或弯曲情况下,能保持正常工作。 (4)轴承的刚性 轴承的刚性,是指轴承产生单位变形所需力之大小。滚动轴承的弹性变形很小,在大多数机械中可以不必考虑,但在某些机械中,如机床主轴,轴承刚性则是一个重要因素,一般应选用圆柱和圆锥滚子轴承。 因为这两类轴承在承受载荷时,其滚动体与滚道属于点接触,刚性较差。另外,各类轴承还可以通过预紧,达到增大支承刚性的目的。如角接触球轴承和圆锥滚子轴承,为防止轴的振动,增加支承刚性,往往在安装时预先施加一定的轴向力,使其相互压紧。这里特别指出:预紧量不可过大。过大时,将使轴承摩擦增大,温升增高,影响轴承使用寿命。 (5)轴承的转速 每一个轴承型号都有其自身的极限转速,它是由诸如尺寸、类型及结构等物理特性所决定的,极限转速是指轴承的最高工作转速(通常用r?min),超过这一极限会导致轴承温度升高,润滑剂干枯,甚至使轴承卡死。用节圆直径D乘以轴旋转速度(单位r/min)得出一极限转速因素(DN),DN在选择轴承类型和尺寸时十分重要。大多数轴承制造厂家的产品目录都提供其产品的极限转速值,实践证明,在低于极限转速90%的状态下工作是比较好的。脂润滑轴承的极限转速比油润滑轴承的极限转速低,轴承的供油方式对可达到的极限转速有影响。对脂润滑轴承,其极限转速一般仅是该轴承采用一个高质量的重复循环油系统时的极限转速的80%,但对油雾润滑系统,其极限转速一般比相同的基本润滑系统高50%。 (6)保持架的设计和结构也影响轴承的极限转速,因为滚动体与保持架表面是滑动接触,用比较贵的、设计合理的、以高质量和低摩擦材料制成的保持架,不仅可将滚动体隔开来,而且有助于维持滑动接触区的润滑油膜。但象冲压保持架之类价格低廉的保持架,通常只能 使滚动体保持分离。因此,它们存在着易出事故和令人苦恼的滑动接触,从而导致更低的极限转速。一般来说在较高转速的工作场合下,宜选用深沟球轴承、角接触轴承、圆柱滚子轴承;在较低转速工作场合下,可选用圆锥滚子轴承。圆锥滚子轴承的极限转速,一般约为深沟球轴承的65%,圆柱滚子轴承的70%,角接触球轴承的60%。推力球轴承的极限转速低,只能用于较低转速的场合。对于同一类轴承,尺寸愈小,允许转速愈高。在选用轴承时,应注意要使实际转速低于极限转速。 (7)轴承游动和轴向位移 通常情况下,一个轴用两个轴承相隔一定的距离给予支承。为了适应轴和外壳不同程度的热涨影响,安装时应将一个轴承在轴向固定,另一个轴承使之在轴上可以游动(即游动支承),以防止因轴的伸长或收缩引起的卡死现象。游动支承通常选用内圈或外圈无挡边的圆柱滚子轴承和滚针轴承,这主要是此类轴承内部结构允许轴与外壳有适当轴向位移的缘故。此时,内圈与轴,外圈与外壳孔可采用紧配合。当采用不可分离型轴承做游动支承时,如深沟球轴承、调心滚子轴承,在安装中必须允许外圈与外壳孔,或内圈与轴采用较松配合,使之轴向可自由游动。圆锥滚子轴承、调心滚子轴承和深沟球轴承基本上属于定位型,当用作非定位时则采用松配合安装。所有推力滚子轴承均属定位型轴承。 (8)便利于轴承的安装和拆卸 选用轴承类型时,对轴承安装拆卸是否方便,亦必须考虑周全,特别 是对大型和特大型轴承的安装和拆卸尤为重要。一般的外圈可分离的角接触球轴承、圆锥滚子轴承、圆柱滚子轴承和滚针轴承,安装拆卸比较方便,它们的内圈和外圈可分别装于轴上或壳体孔内。此外,内径带圆锥孔的,带紧定套的调心滚子轴承、双列圆柱滚子轴承和调心球轴承,也比较容易安装拆卸。 (9)游隙选择 游隙是滚动轴承能否正常工作的一个重要因素,分为轴向游隙和径向游隙。选择适当的游隙,可使载荷在轴承滚动体之间合理分布;可限制轴(或外壳)的轴向和径向位移,保证轴的旋转精度;能使轴承在规定的温度下正常工作;减少振动和噪声,有利于提高轴承的寿命。因此在选用轴承时,必须选择适当的轴承游隙。 a、所谓游隙——是将一个套圈固定,另一套圈沿径向或轴向的最大活动量。一般来说,径向游隙越大,轴向游隙也越大,反之亦然。 b、游隙的作用——是保证滚动体正常运转和润滑以及补偿轴的热伸长。若游隙过大,使用中承载的滚动体数目减少而单个滚动体负荷增加,减低旋转精度和寿命引起震动和噪音。游隙过小则加剧磨损和发热,同样减低轴承寿命。 c、选择轴承游隙时,应考虑以下几个方面: 1.轴承的工作条件,如载荷、温度、转速等; 2.对轴承使用性能的要求(旋转精度、摩擦力矩、振动、噪声); 3.轴承与轴和外壳孔为过盈配合时导致轴承游隙减小; 4.轴承工作时,内外套圈的温度差导致轴承游隙减小; 5.因轴和外壳材料的膨胀系数不同,导致轴承游隙减小或增大。 根据使用经验,球轴承最适宜的工作游隙为近于零;滚子轴承应保持有少量的工作游隙。在要求支承刚性良好的部件中,轴承允许有一定数值的预紧力。这里特别指出,A、所谓工作游隙,轴承在工作状态时的游隙,工作时内圈温升最大,热膨胀最大,使轴承游隙减小;同时,由于负荷的作用,滚动体与滚道接触处产生弹性变形,使轴承游隙增大,轴承工作游隙比安装游隙大还是小,取决于这两种因素的综合作用。B、安装游隙2 }& c5 C4 h+N# D/ x6 X! ?, N:也叫配合游隙,是轴承与轴及轴承座安装完毕而尚未工作时的游隙。由于过盈安装,或使内圈增大,或使外圈缩小,或二者兼而有之,均使安装游隙比原始游隙小。C、还有一种游隙叫原始游隙,是指轴承安装前自由状态时的游隙,原始游隙是由制造厂加工、装配所确定的。原始游隙大于安装游隙。我们对游隙的选择,主要是选择合适的工作游隙。 一般深沟球轴承的径向内部游隙 (单位:um) 国家标准规定的游隙值分为三组:有基本组(C0组)、小游隙辅助组(C2组)和大游隙辅助组(C3、C4、C5组)。选择时,在正常工作条件下,宜优先选用基本组,便可使轴承得到合适的工作游隙。当基本组不能满足使用要求时,则应选用辅助组游隙。大游隙辅助组适用于轴承与轴和外壳孔采用过盈配合,轴承内外圈温差较大,深沟球轴承需要承受较大轴向负荷或需改善调心性能,以及要求提高极限转速和降低轴承摩擦力矩等场合;小游隙辅助组适用于要求较高的旋转精度、需严格控制外壳孔的轴向位移,以及需减少振动和噪声的场合。 0 j. b- ~5 L0 B5 |- V6 }% J# p# u; o. [, l; C: y 五、游隙的检查 游隙检查分为径向游隙和轴向游隙检查两种。 (一)径向游隙的检查方法如下: \' G5 Y: F. j$ Q) p* N" ?* {\' T一、感觉法 1、有手转动轴承,轴承应平稳灵活无卡涩现象。 5 z& K3 B- g/ s: h. w化工技术论坛 赠人玫瑰 手有余香2、用手晃动轴承外圈,即使径向游隙只有0.01mm,轴承最上面一点的轴向移动量,也有0.10~0.15 mm。这种方法专用于单列向心球轴承。 & W* M9 S) ?* f, }; d" x化工技术论坛 赠人玫瑰 手有余香二、测量法 & J- K+ m0 D; _$z } r- rbbs.**.net1、用塞尺检查,确认滚动轴承最大负荷部位,在与其成180?的滚动体和外(或内)圈之间塞入塞尺,松紧相宜的塞尺厚度即为轴承径向游隙。这种方法广泛应用于调心轴承和圆柱滚子轴承。 2、用千分表检查,先把千分表调零,然后顶起轴承外圈,千分表的读数就是轴承的径向游隙。 三、压铅丝法 选择合适的铅丝塞进两滚动体之间,然后旋转内外圈使滚动体压过铅丝,这时取出铅丝用分体卡测量铅丝被滚动体压过的部分,所读取的数值即为该轴承游隙。 (二)2 W% g- t4 }# u# }% ]轴向游隙的检查方法如下: d7 g6 W" ~9 D8 Z) x*ebbs.**.net1、感觉法 & O. `$ f8 J\' w+ [: ]/ v 用手指检查滚动轴承的轴向游隙,这种方法应用于轴端外露的场合。当轴端封闭或因其他原因而不能用手指检查 时,可检查轴是否转动灵活。 2、测量法 5 _; m `$ E&_bbs.**.net (1)用塞尺检查,操作方法与用塞尺检查径向游隙的方法相同,但轴向游隙应为c=λ /(2sinβ)式中/ c5 b2 s& u7 ^( 6 v5[& i5 V& { rc——轴向游隙,mm; λ——塞尺厚度,mm;β——轴承锥角,(?)。 / w5 |% z+ @9 c% R (2)用千分表检查,用撬杠窜动轴使轴在两个极端位置时,千分表读数的差值即为轴承的轴向游隙。但加于撬杠的力不能过大,否则壳体发生弹性变形,即使变形很小,也影响所测轴 向游隙的准确性。 六、各种轴承的特点: 1调心滚子轴承:主要用于承受径向载荷,同时亦可承受较小轴向载. 荷,承受径向载荷能力高调心性能良好,允许内圈对外圈相对倾斜不大于?的条件下工作锥孔轴承内圈沿轴向移动可调整径向游隙装2.5 在紧定套上轴承适用于装在没有轴肩的光轴上,适用需要经常安装拆 卸轴承场合。 2.不锈钢轴承:不锈钢轴承特点是高精度、低噪音、防腐蚀、防酸碱、 无磁性、耐高温。 3.含油轴承:变载荷工作条件下摩擦因数、温升和振动值均比静载荷条件下的大;含油轴承的摩擦因数比普通轴承摩擦因数小,而振动特性则相反,含油轴承运转时,其摩擦学性能要优于普通轴承,但就振动特 性而言,普通轴承则要优于含油轴承. 4.外球面轴承:由两面带密封的外球面球轴承和铸造(或钢板冲压的)轴承座组成。外球面轴承内部结构与深沟球轴承相同,但此种轴承的外圈具有截球形外表面,与轴承座的凹球面相配能自动调心通常此种轴承用顶丝、偏心套或紧定套将轴承内圈固定在轴上,并随轴一起转 动带座轴承结构紧凑、装拆方便,适用于简单支承。 5.滚针轴承:承受径向载荷,外径尺寸小,特别适用于径向安装尺寸 受限制的结构。 6.推力球轴承:只能承受单向轴向载荷,限制单向轴向位移,极限转速低,双向推力球轴承可承受双向轴向载荷,限制双向轴向位移,极 限转速低 7.圆锥滚子轴承:可承受以径向载荷为主的径向与轴向载荷,大锥角轴承可承受以轴向载荷为主的径向、轴向载荷,在径向载荷作用下产生附加轴向力,因此,一般成对配置,可承受径向载荷,如单独使用 外加轴向力必须大于附加轴向力。 8.角接触球轴承:可同时承受径向载荷和单向轴向载荷,也可承受纯轴向载荷,轴向载荷能力由接触角α决定,(标准的接触角为15?、30?和40?)轴向载荷能力随接触角增大而增大。极限转速高,将一对轴承相对安装在轴上时,可限制两个方向轴向位移,一般应成对使用,分 离型其内圈外圈可分别安装,适用于安装条件受限制的部位。9.调心球轴承:调心球轴承有圆柱孔、圆锥孔两种,主要承受径向载 荷,同时可承受较小轴向载荷轴(外壳)的轴向位移限制在游隙限度内,具有自动调心性能,允许内、外圈相对倾斜不大于?的条件下正3 常工作,适用于支承座孔不能严格保证同轴度的部件中10.深沟轴承:主要用以承受径向载荷,也可承受较小的轴向载荷,轴 的轴向位移限制在轴向游隙范围内,允许内圈相对外圈倾斜8?,15? 七、使用后的轴承如何鉴定好坏 1.向心球轴承的鉴定 技术状态正常的向心球轴承,其内、外圈滚道应无剥落和严重磨痕,并呈光亮的一条圆弧沟槽;所有的滚珠应保持圆形,表面无斑点、裂纹和剥落;保持架不松散、不破碎、未磨穿。当用一只手持内圈,另一只手迅速轻推外圈旋转时,要求旋转平稳,只听到滚珠在滚道上滚动的轻微声响,无振动;停止时应逐渐减速,停后无倒退现象,正常的向心心球轴承,其内、外圈与滚动体之间的间隙为0.005-0.010mm,当沿径向晃动内外圈时,应感觉无间隙。使用过的轴承,可以用手拿着内圈沿轴向晃动几下,当外圈和滚珠有明显声响时,说明其配合间隙超过了0.03mm,不应再继续使用。 2.圆锥滚子轴承的鉴定 轴承使用后,应检查滚动体与内圈滚道是否有剥落,保持架是否过于松旷,内圈前后边缘是否完整,外圈滚道是否有裂痕。内圈和滚子组合体装入外圈后,滚子应落入滚道中间,前移量不超过1.5mm。其中 有一项不合格,即不能使用。 3.调心滚子轴承和短圆柱滚子轴承的鉴定 这类轴承的外圈是可分离的。正常状态时,内、外圈滚道和滚子应无破碎、麻点和较深的磨痕;保持架应无变形并能将滚子收拢在内圈上; 内、外圈滚道与滚子的配合间隙不应超过0.06mm。 4.推力球轴承鉴定 正常状态时,两滚道应无剥落伤和严重磨损,滚珠应无破碎和麻点;保持架应无变形,不与两个滚道垫圈相碰,并将滚珠牢固地收拢在一 起。 八、轴承的安装 轴承的安装是否正确,影响着精度、寿命、性能。因此要严格按照作 业标准进行安装,作业标准的通常如下:项目 (1)、轴承及轴承关连部件清洗 (2)、检查关连部件的尺寸及精加工情况 (3)、安装 (4)、安装好轴承后的检查 (5)、供给润滑剂 希望在即将安装前,方才打开轴承包装。一般润滑脂润滑,不清洗,直接填充润滑脂。润滑油润滑,普通也不必清洗,但是,仪器用或高速用轴承等,要用洁净的油洗净,除去涂在轴承上的防锈剂。除去了 防锈剂的轴承,易生锈,所以不能放置不顾。 再者,已封入润滑脂的轴承,不清洗直接使用。 轴承的安装方法,因轴承结构、配合、条件而异,一般,由于多为轴 旋转,所以内圈需要过盈配合。圆柱孔轴承,多用压力机压入,或多 用热装方法。锥孔的场合,直接安装在锥度轴上,或用套筒安装。安装到外壳时,一般游隙配合多,外圈有过盈量,通常用压力机压入,或也有冷却后安装的冷缩配合方法。用干冰作冷却剂,冷缩配合安装的场合,空气中的水分会凝结在轴承的表面。所以,需要适当的防锈 措施。 电厂分散控制系统故障分析与处理 作者: 单位: 摘要:归纳、分析了电厂DCS系统出现的故障原因,对故障处理的过程及注意事项进行了说明。为提高分散控制系统可靠性,从管理角度提出了一些预防措施建议,供参考。 关键词:DCS 故障统计分析 预防措施 随着机组增多、容量增加和老机组自动化化改造的完成,分散控制系统以其系统和网络结构的先进性、控制软件功能的灵活性、人机接口系统的直观性、工程设计和维护的方便性以及通讯系统的开放性等特点,在电力生产过程中得到了广泛应用,其功能在DAS、MCS、BMS、SCS、DEH系统成功应用的基础上,正逐步向MEH、BPC、ETS和ECS方向扩展。但与此同时,分散控制系统对机组安全经济运行的影响也在逐渐增加;因此如何提高分散控制系统的可靠性和故障后迅速判断原因的能力,对机组的安全经济运行至关重要。本文通过对浙江电网机组分散控制系统运行中发生的几个比较典型故障案例的分析处理,归纳出提高分散系统的可靠性的几点建议,供同行参考。 1 考核故障统计 浙江省电力行业所属机组,目前在线运行的分散控制系统,有TELEPERM-ME、MOD300,INFI-90,NETWORK-6000, MACS?和MACS-?,XDPS-400,A/I。DEH有TOSAMAP-GS/C800, DEH-IIIA等系统。笔者根据各电厂安全简报记载,将近几年因分散控制系统异常而引起的机组故障次数及定性统计于表1 表1 热工考核故障定性统计 2 热工考核故障原因分析与处理 根据表1统计,结合笔者参加现场事故原因分析查找过程了解到的情况,下面将分散控制系统异常(浙江省电力行业范围内)而引起上述机组设备二类及以上故障中的典型案例分类浅析如下: 2.1 测量模件故障典型案例分析 测量模件“异常”引起的机组跳炉、跳机故障占故障比例较高,但相对来讲故障原因的分析查找和处理比较容易,根据故障现象、故障首出信号和SOE记录,通过分析判断和试验,通常能较快的查出“异常”模件。这种“异常”模件有硬性故障和软性故障二种,硬性故障只能通过更换有问题模件,才能恢复该系统正常运行;而软性故障通过对模件复位或初始化,系统一般能恢复正常。比较典型的案例有三种: (1)未冗余配置的输入/输出信号模件异常引起机组故障。如有台130MW机组正常运行中突然跳机,故障首出信号为“轴向位移大?”,经现场检查,跳机前后有关参数均无异常,轴向位移实际运行中未达到报警值保护动作值,本特利装置也未发讯,但LPC模件却有报警且发出了跳机指令。因此分析判断跳机原因为DEH主保护中的LPC模件故障引起,更换LPC模件后没有再发生类似故障。另一台600MW机组,运行中汽机备用盘上“汽机轴承振动高”、“汽机跳闸”报警,同时汽机高、中压主汽门和调门关闭,发电机逆功率保护动作跳闸;随即高低压旁路快开,磨煤机B跳闸,锅炉因“汽包水位低低”MFT。经查原因系,1高压调门因阀位变送器和控制模件异常,使调门出现大幅度晃动直至故障全关,过程中引起,1轴承振动高高保护动作跳机。更换,1高压调门阀位控制卡和阀位变送器后,机组启动并网,恢复正常运行。 (2)冗余输入信号未分模件配置,当模件故障时引起机组跳闸:如有一台600MW机组运行中汽机跳闸,随即高低压旁路快开,磨煤机B和D相继跳闸,锅炉因“炉膛压力低低”MFT。当时因系统负荷紧张,根据SOE及DEH内部故障记录,初步判断的跳闸原因而强制汽机应力保护后恢复机组运行。二日后机组再次跳闸,全面查找分析后,确认2次机组跳闸原因均系DEH系统三路“安全油压力低”信号共用一模件,当该模件异常时导致汽轮机跳闸,更换故障模件后机组并网恢复运行。另一台200MW机组运行中,汽包水位高?值,?值相继报警后MFT保护动作停炉。查看CRT上汽包水位,2点显示300MM,另1点与电接点水位计显示都正常。进一步检查显示300MM 的2点汽包水位信号共用的模件故障,更换模件后系统恢复正常。针对此类故障,事后热工所采取的主要反事故措施,是在检修中有针对性地对冗余的输入信号的布置进行检查,尽可能地进行分模件处理。 (3)一块I/O模件损坏,引起其它I/O模件及对应的主模件故障:如有台机组 “CCS控制模件故障"及“一次风压高低”报警的同时, CRT上所有磨煤机出口温度、电流、给煤机煤量反馈显示和总煤量百分比、氧量反馈,燃料主控BTU输出消失,F磨跳闸(首出信号为“一次风量低”)。4分钟后 CRT上磨煤机其它相关参数也失去且状态变白色,运行人员手动MFT(当时负荷410MW)。经检查电子室制粉系统过程控制站(PCU01柜MOD4)的电源电压及处理模件底板正常,二块MFP模件死机且相关的一块CSI模件((模位1-5-3,有关F磨CCS参数)故障报警,拔出检查发现其5VDC逻辑电源输入回路、第4输出通道、连接MFP的I/O扩展总线电路有元件烧坏(由于输出通道至BCS(24VDC),因此不存在外电串入损坏元件的可能)。经复位二块死机的MFP模件,更换故障的CSI模件后系统恢复正常。根据软报警记录和检查分析,故障原因是CSI模件先故障,在该模件故障过程中引起电压波动或I/O扩展总线故障,导致其它I/O模件无法与主模件MFP03通讯而故障,信号保持原值,最终导致 主模件MFP03故障(所带A-F磨煤机CCS参数),CRT上相关的监视参数全部失去且呈白色。 2.2 主控制器故障案例分析 由于重要系统的主控制器冗余配置,大大减少了主控制器“异常”引发机组跳闸的次数。主控制器“异常”多数为软故障,通过复位或初始化能恢复其正常工作,但也有少数引起机组跳闸,多发生在双机切换不成功时,如: (1)有台机组运行人员发现电接点水位计显示下降,调整给泵转速无效,而CRT上汽包水位保持不变。当电接点水位计分别下降至甲-300mm,乙-250mm,并继续下降且汽包水位低信号未发,MFT未动作情况下,值长令手动停炉停机,此时CRT上调节给水调整门无效,就地关闭调整门;停运给泵无效,汽包水位急剧上升,开启事故放水门,甲、丙给泵开关室就地分闸,油泵不能投运。故障原因是给水操作站运行DPU死机,备用DPU不能自启动引起。事后热工对给泵、引风、送风进行了分站控制,并增设故障软手操。 (2)有台机组运行中空预器甲、乙挡板突然关闭,炉膛压力高MFT动作停炉;经查原因是风烟系统I/O站DPU发生异常,工作机向备份机自动切换不成功引起。事后电厂人员将空预器烟气挡板甲1、乙1和甲2、乙2两组控制指令分离,分别接至不同的控制站进行控制,防止类似故障再次发生。 2.3 DAS系统异常案例分析 DAS系统是构成自动和保护系统的基础,但由于受到自身及接地系统的可靠性、现场磁场干扰和安装调试质量的影响,DAS信号值瞬间较大幅度变化而导致保护系统误动,甚至机组误跳闸故障在我省也有多次发生,比较典型的这类故障有: (1)模拟量信号漂移:为了消除DCS系统抗无线电干扰能力差的缺陷,有的DCS厂家对所有的模拟量输入通道加装了隔离器,但由此带来部分热电偶和热电阻通道易电荷积累,引起信号无规律的漂移,当漂移越限时则导致保护系统误动作。我省曾有三台机组发生此类情况(二次引起送风机一侧马达线圈温度信号向上漂移跳闸送风机,联跳引风机对应侧),但往往只要松一下端子板接线(或拆下接线与地碰一下)再重新接上,信号就恢复了正常。开始热工人员认为是端子柜接地不好或者I/O屏蔽接线不好引起,但处理后问题依旧。厂家多次派专家到现场处理也未能解决问题。后在机组检修期间对系统的接地进行了彻底改造,拆除原来连接到电缆桥架的AC、DC接地电缆;柜内的所有备用电缆全部通过导线接地;UPS至DCS电源间增加1台20kVA的隔离变压器,专门用于系统供电,且隔离变压器的输出端N线与接地线相连,接地线直接连接机柜作为系统的接地。同时紧固每个端子的接线;更换部份模件并将模件的软件版本升级等。使漂移现象基本消除。 (2)DCS故障诊断功能设置不全或未设置。信号线接触不良、断线、受干扰,使信号值瞬间变化超过设定值或超量程的情况,现场难以避免,通过DCS模拟量信号变化速率保护功能的正确设置,可以避免或减少这类故障引起的保护系统误动。但实际应用中往往由于此功能未设置或设置不全,使此类故障屡次发生。如一次风机B跳闸引起机组RB动作,首出信号为轴承温度高。经查原因是由于测温热电阻引线是细的多股线,而信号电缆是较粗的 单股线,两线采用绞接方式,在震动或外力影响下连接处松动引起轴承温度中有点信号从正常值突变至无穷大引起(事后对连接处进行锡焊处理)。类似的故障有:民工打扫现场时造成送风机轴承温度热电阻接线松动引起送风机跳闸;轴承温度热电阻本身损坏引起一次风机跳闸;因现场干扰造成推力瓦温瞬间从99?突升至117?,1秒钟左右回到99?,由于相邻第八点已达85?,满足推力瓦温度任一点105?同时相邻点达85?跳机条件而导致机组跳闸等等。预防此类故障的办法,除机组检修时紧固电缆和电缆接线,并采用手松拉接线方式确认无接线松动外,是完善DCS的故障诊断功能,对参与保护连锁的模拟量信号,增加信号变化速率保护功能尤显重要(一当信号变化速率超过设定值,自动将该信号退出相应保护并报警。当信号低于设定值时,自动或手动恢复该信号的保护连锁功能)。 (3)DCS故障诊断功能设置错误:我省有台机组因为电气直流接地,保安1A段工作进线开关因跳闸,引起挂在该段上的汽泵A的工作油泵A连跳,油泵B连锁启动过程中由于油压下降而跳汽泵A,汽泵B升速的同时电泵连锁启动成功。但由于运行操作速度过度,电泵出口流量超过量程,超量程保护连锁开再循环门,使得电泵实际出水小,B泵转速上升到5760转时突然下降1000转左右(事后查明是抽汽逆止阀问题),最终导致汽包水位低低保护动作停炉。此次故障是信号超量程保护设置不合理引起。一般来说,DAS的模拟量信号超量程、变化速率大等保护动作后,应自动撤出相应保护,待信号正常后再自动或手动恢复保护投运。 2.4 软件故障案例分析 分散控制系统软件原因引起的故障,多数发生在投运不久的新软件上,运行的老系统发生的概率相对较少,但一当发生,此类故障原因的查找比较困难,需要对控制系统软件有较全面的了解和掌握,才能通过分析、试验,判断可能的故障原因,因此通常都需要厂家人员到现场一起进行。这类故障的典型案例有三种: (1)软件不成熟引起系统故障:此类故障多发生在新系统软件上,如有台机组80%额定负荷时,除DEH画面外所有DCS的CRT画面均死机(包括两台服务器),参数显示为零,无法操作,但投入的自动系统运行正常。当时采取的措施是:运行人员就地监视水位,保持负荷稳定运行,热工人员赶到现场进行系统重启等紧急处理,经过30分钟的处理系统恢复正常运行。故障原因经与厂家人员一起分析后,确认为DCS上层网络崩溃导致死机,其过程是服务器向操作员站发送数据时网络阻塞,引起服务器与各操作员站的连接中断,造成操作员站读不到数据而不停地超时等待,导致操作员站图形切换的速度十分缓慢(网络任务未死)。针对管理网络数据阻塞情况,厂家修改程序考机测试后进行了更换。另一台机组曾同时出现4台主控单元“白灯”现象,现场检查其中2台是因为A机备份网停止发送,1台是A机备份网不能接收,1台是A机备份网收、发数据变慢(比正常的站慢几倍)。这类故障的原因是主控工作机的网络发送出现中断丢失,导致工作机发往备份机的数据全部丢失,而双机的诊断是由工作机向备份机发诊断申请,由备份机响应诊断请求,工作机获得备份机的工作状态,上报给服务器。由于工作机的发送数据丢失,所以工作机发不出申请,也就收不到备份机的响应数据,认为备份机故障。临时的解决方法是 当长时间没有正确发送数据后,重新初始化硬件和软件,使硬件和软件从一个初始的状态开始运行,最终通过更新现场控制站网络诊断程序予以解决。 (2)通信阻塞引发故障:使用TELEPERM-ME系统的有台机组,负荷300MW时,运行人员发现煤量突减,汽机调门速关且CRT上所有火检、油枪、燃油系统均无信号显示。热工人员检查发现机组EHF系统一柜内的I/O BUS接口模件ZT报警灯红闪,操作员站与EHF系统失去偶合,当试着从工作站耦合机进入OS250PC软件包调用EHF系统时,提示不能访问该系统。通过查阅DCS手册以及与SIEMENS专家间的电话分析讨论,判断故障原因最大的可能是在三层CPU切换时,系统处理信息过多造成中央CPU与近程总线之间的通信阻塞引起。根据商量的处理方案于当晚11点多在线处理,分别按三层中央柜的同步模件的SYNC键,对三层CPU进行软件复位:先按CPU1的SYNC键,相应的红灯亮后再按CPU2的SYNC键。第二层的同步红灯亮后再按CPU3的同步模件的SYNC键,按3秒后所有的SYNC的同步红灯都熄灭,系统恢复正常。 (3)软件安装或操作不当引起:有两台30万机组均使用Conductor NT 5.0作为其操作员站,每套机组配置3个SERVER和3个CLIENT,三个CLIENT分别配置为大屏、值长站和操作员站,机组投运后大屏和操作员站多次死机。经对全部操作员站的SERVER和CLIENT进行全面诊断和多次分析后,发现死机的原因是:1)一台SERVER因趋势数据文件错误引起它和挂在它上的CLIENT在当调用趋势画面时画面响应特别缓慢(俗称死机)。在删除该趋势数据文件后恢复正常。2)一台SERVER因文件类型打印设备出错引起该SERVER的内存全部耗尽,引起它和挂在它上的CLIENT的任何操作均特别缓慢,这可通过任务管理器看到DEV.EXE进程消耗掉大量内存。该问题通过删除文件类型打印设备和重新组态后恢复正常。3)两台大屏和工程师室的CLIENT因声音程序没有正确安装,当有报警时会引起进程CHANGE.EXE调用后不能自动退出,大量的CHANGE.EXE堆积消耗直至耗尽内存,当内存耗尽后,其操作极其缓慢(俗称死机)。重新安装声音程序后恢复正常。此外操作员站在运行中出现的死机现象还有二种:一种是鼠标能正常工作,但控制指令发不出,全部或部分控制画面不会刷新或无法切换到另外的控制画面。这种现象往往是由于CRT上控制画面打开过多,操作过于频繁引起,处理方法为用鼠标打开VMS系统下拉式菜单,RESET应用程序,10分钟后系统一般就能恢复正常。另一种是全部控制画面都不会刷新,键盘和鼠标均不能正常工作。这种现象往往是由操作员站的VMS操作系统故障引起。此时关掉OIS电源,检查各部分连接情况后再重新上电。如果不能正常启动,则需要重装VMS操作系统;如果故障诊断为硬件故障,则需更换相应的硬件。 (4)总线通讯故障:有台机组的DEH系统在准备做安全通道试验时,发现通道选择按钮无法进入,且系统自动从“高级”切到“基本级”运行,热控人员检查发现GSE柜内的所有输入/输出卡(CSEA/CSEL)的故障灯亮, 经复归GSE柜的REG卡后,CSEA/CSEL的故障灯灭,但系统在重启“高级” 时,维护屏不能进入到正常的操作画面呈死机状态。根据报警信息分析,故障原因是系统存在总线通讯故障及节点故障引起。由于阿尔斯通DEH系统无冗余 配置,当时无法处理,后在机组调停时,通过对基本级上的REG卡复位,系统恢复了正常。 (5)软件组态错误引起:有台机组进行#1中压调门试验时,强制关闭中间变量IV1RCO信号,引起#1-#4中压调门关闭,负荷从198MW降到34MW,再热器压力从2.04MP升到4.0Mpa,再热器安全门动作。故障原因是厂家的DEH组态,未按运行方式进行,流量变量本应分别赋给IV1RCO-IV4RCO,实际组态是先赋给IV1RCO,再通过IV1RCO分别赋给IV2RCO-IV4RCO。因此当强制IV1RCO=0时,所有调门都关闭,修改组态文件后故障消除。 2.5 电源系统故障案例分析 DCS的电源系统,通常采用1:1冗余方式(一路由机组的大UPS供电,另一路由电厂的保安电源供电),任何一路电源的故障不会影响相应过程控制单元内模件及现场I/O模件的正常工作。但在实际运行中,子系统及过程控制单元柜内电源系统出现的故障仍为数不少,其典型主要有: (1)电源模件故障:电源模件有电源监视模件、系统电源模件和现场电源模件3种。现场电源模件通常在端子板上配有熔丝作为保护,因此故障率较低。而前二种模件的故障情况相对较多:1)系统电源模件主要提供各不同等级的直流系统电压和I/O模件电压。该模件因现场信号瞬间接地导致电源过流而引起损坏的因素较大。因此故障主要检查和处理相应现场I/O信号的接地问题,更换损坏模件。如有台机组负荷520MW正常运行时MFT,首出原因“汽机跳闸"。CRT画面显示二台循泵跳闸,备用盘上循泵出口阀,86?信号报警。5分钟后运行巡检人员就地告知循泵A、B实际在运行,开关室循泵电流指示大幅晃动且A大于B。进一步检查机组PLC诊断画面,发现控制循泵A、B的二路冗余通讯均显示“出错”。43分钟后巡检人员发现出口阀开度小就地紧急停运循泵A、B。事后查明A、B两路冗余通讯中断失去的原因,是为通讯卡提供电源支持的电源模件故障而使该系统失电,中断了与PLC主机的通讯,导致运行循泵A、B状态失去,凝汽器保护动作,机组MFT。更换电源模件后通讯恢复正常。事故后热工制定的主要反事故措施,是将两台循泵的电流信号由PLC改至DCS的CRT显示,消除通信失去时循泵运行状态无法判断的缺陷;增加运行泵跳闸关其出口阀硬逻辑(一台泵运行,一台泵跳闸且其出口阀开度,30度,延时15秒跳运行泵硬逻辑;一台泵运行,一台泵跳闸且其出口阀开度,0度,逆转速动作延时30秒跳运行泵硬逻辑);修改凝汽器保护实现方式。2)电源监视模件故障引起:电源监视模件插在冗余电源的中间,用于监视整个控制站电源系统的各种状态,当系统供电电压低于规定值时,它具有切断电源的功能,以免损坏模件。另外它还提供报警输出触点,用于接入硬报警系统。在实际使用中,电源监视模件因监视机箱温度的2个热敏电阻可靠性差和模件与机架之间接触不良等原因而故障率较高。此外其低电压切断电源的功能也会导致机组误跳闸, 如有台机组满负荷运行,BTG盘出现“CCS控制模件故障”报警,运行人员发现部分CCS操作框显示白色,部分参数失去,且对应过程控制站的所有模件显示白色,6s后机组MFT,首出原因为“引风机跳闸”。约2分钟后CRT画面显示恢复正常。当时检查系统未发现任何异常(模件无任何故障痕迹,过程控制站的通讯卡切换试验正常)。机组重新启动并网运行也未发现任何问题。事后与厂家技术人员一起专题分析讨论,并利用其它机组小修机会对控制系统模拟试验验证后,认为事件原因是由于该过程控制站的系统供电电压瞬间低于规定值时,其电源监视模件设置的低电压保护功能作用切断了电源,引起控制站的系统电源和24VDC、5VDC或15VDC的瞬间失去,导致该控制站的所有模件停止工作(现象与曾发生过的24VDC接地造成机组停机事件相似),使送、引风机调节机构的控制信号为0,送风机动叶关闭(气动执行机构),引风机的电动执行机构开度保持不变(保位功能),导致炉膛压力低,机组MFT。 (2)电源系统连接处接触不良:此类故障比较典型的有:1)电源系统底板上5VDC电压通常测量值在5.10,5.20VDC之间,但运行中测量各柜内进模件的电压很多在5V以下,少数跌至4.76VDC左右,引起部分I/O卡不能正常工作。经查原因是电源底板至电源母线间连接电缆的多芯铜线与线鼻子之间,表面上接触比较紧,实际上因铜线表面氧化接触电阻增加,引起电缆温度升高,压降增加。在机组检修中通过对所有5VDC电缆铜线与线鼻子之间的焊锡处理,问题得到解决。2)MACS-?DCS运行中曾在两个月的运行中发生2M801工作状态显示故障而更换了13台主控单元,但其中的多数离线上电测试时却能正常启动到工作状态,经查原因是原主控5V电源,因线损和插头耗损而导致电压偏低;通过更换主控间的冗余电缆为预制电缆;现场主控单元更换为2M801E-D01,提升主控工作电源单元电压至5.25V后基本恢复正常。3)有台机组负荷135MW时,给水调门和给水旁路门关小,汽包水位急速下降引发MFT。事后查明原因是给水调门、给水旁路门的端子板件电源插件因接触不良,指令回路的24V电源时断时续,导致给水调门及给水旁路门在短时内关下,汽包水位急速下降导致MFT。4)有台机组停炉前,运行将汽机控制从滑压切至定压后,发现DCS上汽机调门仍全开,主汽压力4260kpa,SIP上显示汽机压力下降为1800kpa,汽机主保护未动作,手动拍机。故障原因系汽机系统与DCS、汽机显示屏通讯卡件BOX1电源接触点虚焊、接触不好,引起通讯故障,使DCS与汽机显示屏重要数据显示不正常,运行因汽机重要参数失准手动拍机。经对BOX1电源接触点重新焊接后通讯恢复。5)循泵正常运行中曾发出#2UPS失电报警,20分钟后对应的#3、#4循泵跳闸。由于运行人员处理及时,未造成严重后果。热工人员对就地进行检查发现#2UPS输入电源插头松动,导致#2UPS失电报警。进行专门试验结果表明,循泵跳闸原因是UPS输入电源失去后又恢复的过程中,引起PLC输入信号抖动误发跳闸信号。 (3)UPS功能失效:有台机组呼叫系统的喇叭有杂音,通信班人员关掉该系统的主机电源查原因并处理。重新开 启该主机电源时,呼叫系统杂音消失,但集控室右侧CRT画面显示全部失去,同时MFT信号发出。经查原因是由于呼叫系统主机电源接至该机组主UPS,通讯人员在带载合开关后,给该机组主UPS电源造成一定扰动,使其电压瞬间低于195V,导致DCS各子系统后备UPS启动,但由于BCS系统、历史数据库等子系统的后备UPS失去带负荷能力(事故后试验确定),造成这些系统失电,所有制粉系统跳闸,机组由于“失燃料”而MFT 。 (4)电源开关质量引起:电源开关故障也曾引起机组多次MFT,如有台机组的发电机定冷水和给水系统离线,汽泵自行从“自动”跳到“手动”状态;在MEH上重新投入锅炉自动后,汽泵无法增加流量。1分钟后锅炉因汽包水位低MFT动作。故障原因经查是DCS 给水过程控制站二只电源开关均烧毁,造成该站失电,导致给水系统离线,无法正常向汽泵发控制信号,最终锅炉因汽包水位低MFT动作。 2.6 SOE信号准确性问题处理 一旦机组发生MFT或跳机时,运行人员首先凭着SOE信号发生的先后顺序来进行设备故障的判断。因此SOE记录信号的准确性,对快速分析查找出机组设备故障原因有着很重要的作用。这方面曾碰到过的问题有: (1)SOE信号失准:由于设计等原因,基建接受过来的机组,SOE信号往往存在着一些问题(如SOE系统的信号分辨力达不到指标要求却因无测试仪器测试而无法证实,信号源不是直接取自现场,描述与实际不符,有些信号未组态等等),导致SOE信号不能精确反映设备的实际动作情况。有台机组MFT时,光字牌报警“全炉膛灭火”,检查DCS中每层的3/4火检无火条件瞬间成立,但SOE却未捉捕到“全炉膛灭火”信号。另一台机组MFT故障,根据运行反映,首次故障信号显示“全炉膛灭火”,同时有“DCS电源故障”报警,但SOE中却未记录到DCS电源故障信号。这使得SOE系统在事故分析中的作用下降,增加了查明事故原因的难度。为此我省各电厂组织对SOE系统进行全面核对、整理和完善,尽量做到SOE信号都取自现场,消除SOE系统存在的问题。同时我们专门开发了SOE信号分辨力测试仪,经浙江省计量测试院测试合格后,对全省所属机组SOE系统分辨力进行全部测试,掌握了我省DCS的SOE系统分辨力指标不大于1ms的有四家,接近1ms的有二家,4ms的有一家。 (2)SOE报告内容凌乱:某电厂两台30万机组的INFI-90分散控制系统,每次机组跳闸时生成的多份SOE报告内容凌乱,启动前总是生成不必要的SOE报告。经过1)调整SEM执行块参数, 把触发事件后最大事件数及触发事件后时间周期均适当增大。2)调整DSOE Point 清单,把每个通道的Simple Trigger由原来的BOTH改为0TO1,Recordable Event。3)重新下装SEM组态后,问题得到了解决。 (3)SOE报表上出现多个点具有相同的时间标志:对于INFI-90分散控制系统,可能的原因与处理方法是:1)某个SET或SED模件被拔出后在插入或更换,导致该子模件上的所有点被重新扫描并且把所有状态为1的点(此时这些点均有相同的跳闸时间)上报给SEM。2)某个MFP主模件的SOE缓冲区设置太小产生溢出,这种情况下,MFP将会执行内部处理而复位SOE,导致其下属的所有SET或SED子模件中,所有状态为1的点(这些点均有相同跳闸时间)上报给了SEM模件。处理方法是调整缓冲区的大小(其值由FC241的S2决定,一般情况下调整为100)。3)SEM收到某个MFP的事件的时间与事件发生的时间之差大于设定的最大等待时间(由FC243的S5决定),则SEM将会发一个指令让对应的MFP执行SOE复位,MFP重新扫描其下属的所有SOE点,且将所有状态为1 的点(这些点均有相同的跳闸时间)上报给SEM,。在环路负荷比较重的情况下(比如两套机组通过中央环公用一套SEM模件),可适当加大S5值,但最好不要超过60秒。 2.7 控制系统接线原因 控制系统接线松动、错误而引起机组故障的案例较多,有时此类故障原因很难查明。此类故障虽与控制系统本身质量无关,但直接影响机组的安全运行,如: (1)接线松动引起:有台机组负荷125MW,汽包水位自动调节正常,突然给水泵转速下降,执行机构开度从64%关至5%左右,同时由于给水泵模拟量手站输出与给水泵液偶执行机构偏差大(大于10%自动跳出)给水自动调节跳至手动,最低转速至1780rpm,汽包水位低低MFT动作。原因经查是因为给水泵液偶执行机构与DCS的输出通道信号不匹配,在其之间加装的信号隔离器,因24VDC供电电源接线松动失电引起。紧固接线后系统恢复正常。事故后对信号隔离器进行了冗余供电。 (2)接线错误引起:某#2 机组出力300MW时,#2B汽泵跳闸(无跳闸原因首出、无大屏音响报警),机组RB动作,#2E磨联锁跳闸,电泵自启,机组被迫降负荷。由于仅有ETS出口继电器动作记录, 无#2B小机跳闸首出和事故报警,且故障后的检查试验系统都正常,当时原因未查明。后机组检修复役前再次发生误动时,全面检查小机现场紧急跳闸按钮前接的是电源地线,跳闸按钮后至PLC,而PLC后的电缆接的是220V电源火线,拆除跳闸按钮后至PLC的电缆,误动现象消除,由此查明故障原因是是跳闸按钮后至PLC的电缆发生接地,引起紧急跳闸系统误动跳小机。 (3)接头松动引起:一台机组备用盘硬报警窗处多次出现“主机EHC油泵2B跳闸”和“开式泵2A跳闸”等信号误报警,通过CRT画面检查发现PLC的 A路部分I/O柜通讯时好时坏,进一步检查发现机侧PLC的3A、4、5A和6的4个就地I/O柜二路通讯同时时好时坏,与此同时机组MFT动作,首出原因为汽机跳闸。原因是通讯母线B路在PLC4柜内接头和PLC5、PLC4柜本身的通讯分支接头有轻微松动,通过一系列的紧固后通讯恢复正常。 针对接线和接头松动原因引起的故障,我省在基建安装调试和机组检修过程中,通过将手松拉接线以以确认接线 是否可靠的方法,列入质量验收内容,提高了接线质量,减少了因接线质量引起的机组误动。同时有关电厂 制定了热工控设备通讯电缆随机组检修紧固制度,完善控制逻辑,提高了系统的可靠性。 2.8 控制系统可靠性与其它专业的关系 需要指出的是MFT和ETS保护误动作的次数,与有关部门的配合、运行人员对事故的处理能力密切相关,类似的故障有的转危为安,有的导致机组停机。一些异常工况出现或辅机保护动作,若运行操作得当,本可以避免MFT动作(如有台机组因为给煤机煤量反馈信号瞬时至零,30秒后逻辑联锁磨煤机热风隔离挡板关闭,引起一次风流量急降和出口风温持续下跌,热风调节挡板自动持续开至100%,冷风调节挡板由于前馈回路的作用而持续关小,使得一次风流量持续下降。但由于热风隔离挡板有卡涩,关到位信号未及时发出,使得一次风流量小至造成磨煤机中的煤粉积蓄,第5分钟时运行减少了约10%的煤量,约6分钟后热风隔离挡板突然关到位,引起一次风流量的再度急剧下降,之后按设计连锁逻辑,冷风隔离挡板至全开,使得一次风流量迅速增大,并将磨煤机C中的蓄煤喷向炉膛,造成锅炉燃烧产生局部小爆燃,引风机自动失控于这种异常情况,在三个波的扰动后(约1分钟),炉膛压力低低MFT。当时MFT前7分钟的异常工况运行过程中,只要停运该台磨煤机就可避免MFT故障的发生)。此外有关部门与热工良好的配合,可减少或加速一些误动隐患的消除;因此要减少机组停组次数,除热工需在提高设备可靠性和自身因素方面努力外,还需要热工和机务的协调配合和有效工作,达到对热工自动化设备的全方位管理。需要运行人员做好事故预想,完善相关事故操作指导,提高监盘和事故处理能力。 3 提高热工自动化系统可靠性的建议 随着热工系统覆盖机、电、炉运行的所有参数,监控功能和范围的不断扩大以及机组运行特点的改变和DCS技术的广泛应用,热控自动化设备已由原先的配角地位转变为决定机组安全经济运行的主导因素,其任一环节出现问题,都有导致热控装置部分功能失效或引发系统故障,机组跳闸、甚至损坏主设备的可能。因此如何通过科学的基础管理,确保所监控的参数准确、系统运行可靠是热工安全生产工作中的首要任务。在收集、 总结 初级经济法重点总结下载党员个人总结TXt高中句型全总结.doc高中句型全总结.doc理论力学知识点总结pdf 、吸收同仁们自动化设备运行检修、管理经验和保护误动误动原因分析的基础上,结合热工监督工作实践,对提高热工保护系统可靠性提出以下建议,供参考: 3.1 完善热工自动化系统 (1)解决操作员站电源冗余问题:过程控制单元柜的电源系统均冗余配置,但所有操作员站的电源通常都接自本机组的大UPS,不提供冗余配置。如果大UPS电压波动,将可能引起所有操作员站死机而不得不紧急停运机组,但由于死机后所有信号都失去监视,停机也并非易事。为避免此类问题发生,建议将每台机组的部份操作员站与另一台机组的大UPS交叉供电,以保证当本机大UPS电压波动时,仍有2台OIS在正常运行。 (2)对硬件的冗余配置情况进行全面核查,重要保护信号尽可能采取三取二方式,消除同参数的多信号处理和互为备用设备的控制回路未分模件、分电缆或分电源(对互为备用的设备)现象,减少一模件故障引起保护系统误 动的隐患。 (3)做好软报警信号的整理:一台600MW机组有近万个软报警点,这些软报警点往往未分级处理,存在许多描述错误,报警值设置不符设计,导致操作画面上不断出现大量误报警,使运行人员疲倦于报警信号,从而无法及时发现设备异常情况,也无法通过软报警去发现、分析问题。为此组织对软报警点的核对清理,整理并修改数据库里软报警量程和上、下限报警值;通过数据库和在装软件逻辑的比较,矫正和修改错误描述,删除操作员站里重复和没有必要的软报警点,对所有软报警重新进行分组、分级,采用不同的颜色并开通操作员站声音报警,进行报警信号的综合应用研究,使软报警在运行人员监盘中发挥作用。 (4)合理设置进入保护联锁系统的模拟量定值信号故障诊断功能的处理,如信号变化速率诊断处理功能的利用,可减少因接线松动、干扰信号或设备故障引起的信号突变导致系统故障的发生,未设置的应增加设置。 (5)继续做好热工设备电源回路的可靠性检查工作,对重要的保护装置及DCS、DEH系统,定期做好电源切换试验工作,减少或避免由于电源系统问题引起机组跳机等情况发生。 (6)加强对测量设备现场安装位置和测量管路敷设的检查,消除不满足规程要求隐患,避免管路积水和附加的测量误差,导致机组运行异常工况的再次发生。 (7)加强对电缆防损、和敷设途径的防火、防高温情况检查,不符要求处要及时整改,尤其是燃机机组,要避免因烟道漏气烧焦电缆,导致跳机故障的发生。 (8)电缆绝缘下降、接线不规范(松动、毛刺等)、通讯电缆接头松动、信号线拆除后未及时恢复等,引起热工系统异常情况的屡次发生,表明随着机组运行时间的延伸,电缆原先紧固的接头和接线,可能会因气候、氧化等因素而引起松动,电缆绝缘可能会因老化而下降。为避免此类故障的发生,各电厂应将热工重要系统电缆的绝缘测量、电缆接线和通讯电缆接头紧固、消除接线外露现象等,列入机组检修的热工常规检修项目中,并进行抽查验收,对所有接线用手松拉,确认接线紧固,消除接线松动而引发保护系统误动的隐患。 (9)开展热工保护、连锁信号取样点可靠性、保护逻辑条件及定值合理性的全面梳理评估工作,经过论证确认,进行必要的整改,(如给泵过量程信号设计为开再循环门的,可能会引起系统异常,应进行修改)。完善机组的硬软报警、报警分级处理及定值核对,确保其与经审核颁发的热工报警、保护定值表相符。保警信号综合利用 3.2 加强热控自动化系统的运行维护管理 (1)模件吹扫:有些DCS的模件对灰和静电比较敏感,如果模件上的积灰较多可能会造成该模件的部分通道不能正常工作甚至机组MFT,如我省曾有台机组,一个月内相继5次MFT,前四次MFT动作因GPS校时软件有问题,导致历史库、事故追忆、SOE记录时间不一致,事故原因未能查明。在GPS校时软件问题得到处理后发生第五次MFT时,根据记录查明MFT动作原因系DCS主控单元一内部模件未进行喷涂绝缘漆处理,表面积灰严重使内部模件板上元器件瞬间导通,导致控制单元误发网络信号引起。更换该控制单元模件和更改组态软件后,系统 恢复正常运行。因此要做好电子室的孔洞封堵,保持空气的清洁度,停机检修时及时进行模件的清扫。但要注意,有些机组的DCS模件吹扫、清灰后,往往发生故障率升高现象(有电厂曾发生过内部电容爆炸事件),其原因可能与拨插模件及吹扫时的防静电措施、压缩空气的干燥度、吹扫后模件及插槽的清洁度等有关,因此进行模件工作时,要确保防静电措施可靠,吹扫的压缩空气应有过滤措施(最好采用氮气吹扫),吹扫后模件及插槽内清洁。 (2)风扇故障、不满足要求的环境温湿度和灰尘等小问题,有可能对设备安全产生隐患,运行维护中加强重视。 (3)统计、分析发生的每一次保护系统误动作和控制系统故障原因(包括保护正确动作的次数统计),举一反三,消除多发性和重复性故障。 (4)对重要设备元件,严格按规程要求进行周期性测试。完善设备故障、运行维护和损坏更换登记等台帐。 (5)完善热工控制系统故障下的应急处理措施(控制系统故障、死机、重要控制系统冗余主控制器均发生故障)。 (6)根据系统和设备的实际运行要求,每二年修订保护定值清册一次,并把核对、校准保护系统的定值作为一项标准项目列入机组大小修项目中。重要保护系统条件、定值的修改或取消,宜取得制造厂同意,并报上级主管部门批准、备案。 (7)通过与规定值、出厂测试数据值、历次测试数据值、同类设备的测试数据值比较,从中了解设备的变化趋势,做出正确的综合分析、判断,为设备的改造、调整、维护提供科学依据。 3.3 规范热工自动化系统试验 (1)完善保护、联锁系统专用试验操作卡(操作卡上对既有软逻辑又有硬逻辑的保护系统应有明确标志);检修、改造或改动后的控制系统,均应在机组起动前,严格按照修改审核后的试验操作卡逐步进行试验。 (2)各项试验信号应从源头端加入,并尽量通过物理量的实际变化产生。试验过程中如发现缺陷,应及时消除后重新试验(特殊试验项目除外)直至合格。 (3)规范保护信号的强制过程(包括强制过程可能出现的事故事前措施,信号、图纸的核对,审批人员的确认把关,强制过程的监护及监护人应对试验的具体操作进行核实和记录等),强调信号的强置或解除强置,必须及时准确地作好记录和注销工作。 (4)所有试验应有试验方案(或试验操作单)、试验结束后应规范的填写试验报告(包括试验时间、试验内容、试验步骤、验收结果及存在的问题),连同试验方案、试验曲线等一起归档保存。 3.4 继续做好基建机组、改造机组、检修机组的全过程热工监督工作 (1)对设备选型、采购、验收、安装、调试、竣工图移交等各个环节严把质量关,确保控制系统和设备指标满足要求。 (2)充分做好控制系统改造开工前的准备工作(包括设计、出厂验收、图纸消化等)。 (3)严格执行图纸 管理制度 档案管理制度下载食品安全管理制度下载三类维修管理制度下载财务管理制度免费下载安全设施管理制度下载 ,加强检修、改造施工中的图纸修改 流程 快递问题件怎么处理流程河南自建厂房流程下载关于规范招聘需求审批流程制作流程表下载邮件下载流程设计 管理,图纸修改应及时在计算机内进行,以 保证图纸随时符合实际;试验图纸应来自确认后的最新版本。 (4)计算机软件组态、保护的定值和逻辑需进行修改或改进时,应严格执行规定的修改程序;修改完毕应及时完成对保护定值清册和逻辑图纸的修改,组态文件进行拷贝,并与保护修改资料一起及时存档。 (5)机组检修时进行控制系统性能与功能的全面测试,确保检修后的控制系统可靠。 3.5 加强培训交流 (1)定期进行人员的 安全教育 有限空间作业人员安全教育培训制度有限空间安全教育培训制度有限空间作业专项安全教育培训制度安全教育培训制度范文安全教育培训制度范本 和专业技术培训,不断提高人员的安全意识和专业水平,提高人员对突发事件的准确判断和迅速处理能力。减少检修维护和人为原因引起的热工自动化系统故障。 (2)加强电厂间交流,针对热工中存在的问题,组织专业讨论会,共同探讨解决问题办法。 (3)完善热工保护定值及逻辑修改制度;认真组织学习、严格执行热工保护连锁投撤制度;实行热工保护定值及逻辑修改、热工保护投撤、热工保护连锁信号强制与解除强制监护制。
本文档为【【2017年整理】轴承的选用及安装方法】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_358746
暂无简介~
格式:doc
大小:73KB
软件:Word
页数:0
分类:工学
上传时间:2017-09-16
浏览量:25