首页 压缩机喘振

压缩机喘振

举报
开通vip

压缩机喘振0  引  言     压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这...

压缩机喘振
0  引  言     压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。喘振在运行中是必须时刻提防的问题。     在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。 1  喘振发生的条件     根据喘振原理可知,喘振在下述条件下发生: 1.1  在流量小时,流量降到该转速下的喘振流量时发生     压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。在一定转速下使流量大于喘振流量就不会发生喘振。 1.2  管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振     如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。 2  在运行中造成喘振的原因     在运行中可能造成喘振的各种原因有: 2.1  系统压力超高     造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。 2.2  吸入流量不足     由于外界原因使吸入量减少到喘振流量以下,而转速,使压缩机进入喘振区引起喘振。如下图1。这种情况的原因有:压缩机入口滤器阻塞,阻力太大,而压缩机转速未能调节造成喘振;滤芯太脏,或冬天结冰都可能发生这种情况;入口气源减少或切断,如压缩机供气不足,压缩机没有补充气源等等。所有这些情况如不及时发现及时调节。压缩机都可能发生喘振。 2.3  机械部件损坏脱落     机械密封,平衡盘密封,O型环等部件安装不全,安装位置不准或者脱落,会形成各级之间,各段之间串气,可能引起喘振;过滤器阻力太大,逆止阀失效或破损也都可以引起喘振。 2.4  操作中,升速升压过快,降速之前未能首先降压     升速、升压要缓慢均匀,降速之前应先采取卸压措施:如放空,回流等;以免转速降低后,气流倒灌。 2.5  工况改变,运行点落入喘振区     工况变化,如改变转速,流量,压力之前,未查看特性曲线,使压缩机运行点落入喘振区。 2.6  正常运行时,防喘振系统未投自动     当外界因素变化时,如蒸汽压力下降或气量波动;汽轮机转速下降而防喘振系统来不及手动调节;或来气中断等;由于未用自动防喘振装置可能造成喘振。    2.7  介质状态变化造成喘振     喘振发生的可能与气体介质状态有很大关系。因为气体的状态影响流量,从而也影响喘振流量,当然影响喘振。如进气温度,进气压力,气体成分即分子量等对喘振都有影响。当转速不变,出口压力不变时,气体入口稳度增加容易发生喘振;当转速一定,进气压力越高则喘振流量值也越大;当进气压力一定,转速不变,气体分子量减少很多时,容易发生喘振。 3  防止与消除喘振的方法 3.1  防止与消除喘振的根本措施是设法增加压缩机的入口气体流量     对一般无毒,不危险气体如空气,CO2等可采用放空;对合成气,天然气,氨等气体可采取回循环。采用上述方法后可使流经压缩机的气体流量增加,消除喘振;但压力随之降低,浪费功率,经济性下降。如果系统需要维持等压的话,放空或回流之后应提升转速,使排出压力达到原有水平。     在升压前和降速,停机之前,应当将放空阀或回流阀预先打开,以降低背压,增加流量,防止喘振。 3.2  根据压缩机性能曲线,控制防喘裕度     防喘系统在正常运行时应投入自动。 升速,升压之前一定要事先查好性能曲线,选好下一步的运行工况点,根据防喘振安全裕度来控制升压,升速。防喘振安全裕度就是在一定工作转速下,正常工作流量与该转速下喘振流量之比值,一般正常工作流量应比喘振流量大1.05~1.3倍,即:         裕度太大,虽不易喘振,但压力下降很多,浪费很大,经济性下降。     在实际运行中,最好将防喘阀门的整定值,根据防喘裕度来整定。太大则不太经济,太小又不安全。防喘系统根据安全裕度下整定好以后,在正常运行时防喘阀门应当关闭,并投入自动,这样既安全又经济。有的单位防喘振装置不投自动,而用手动,恐怕发生喘振而不敢关严防喘阀门,正常运行时有大量气体回流或放空,这既不经济又不安全;因为发生喘振时用手动操作是来不及的,结果不能防止喘振。 3.3  在升压和变速时,强调“升压必先升速,降速必先降压”的原则     压缩机升压应当在汽轮机调速器投入工作后进行;升压之前查好性能曲线,确定应该到达的转速,升到该转速后再提升压力;压缩机降速应当在防喘阀门安排妥当后再开始;升速,升压不能过猛过快;降速降压也应当缓慢,均匀。 3.4  防喘阀门开启和关闭必须缓慢,交替     防喘阀门操作不要太猛,避免轴位移过大,轴向推力和振动加剧,油密封系统失调。如压缩机组有两个以上的防喘阀门的话,在开或关时应当交替进行,以使各个缸的压力均匀变化,这对各缸受力,防喘和密封系统协调都有好处。 3.5  采用“等压比”升压法和“安全压比”升压法     为了安全起见,在升压时可以采用“等压比”升压法,这在前面已经介绍,这种方法有助于防止喘振。     “安全压比”升压法对升压时防止喘振是有效的。它的基本原理是根据压缩机各缸的性能曲线,在一定转速下有一个喘振流量值,它与转速曲线的交点便对应一个“喘振压比”(或排出压力)。在此转速下,升压比(或排出压力)达到此数值便发生喘振。因此控制压比也就是控制一定转速下的流量。如果根据防喘裕度,计算出不同转速下的正常流量,也就是安全流量,再查出对应的压比(或排出压力),在升压时根据转速,使压缩机出口压力值不超过安全压比计算出的出口压力,就不会发生喘振了。可以将不同转速下正常流量,排出压力绘成图表和曲线。在升速升压时,根据转速查出安全的出口压力,升压不超过此压力便不会喘振。它们的关系如下图2所示。     图2中QC为该转速下的喘振流量;εc对应的喘振流量的喘振压比(或排出压力);QN考虑安全裕度后的正常流量即安全流量;εa对应安全流量的安全压比。升压比ε与出口压力的关系为:         例:某厂合成气压缩机的“安全压比”计算数据如下表1。本机共有三个缸,选定五个转速即80%,85%,90%,95%,100%额度转速。     根据这些转速在性能曲线上查出喘振流量和对应的喘振压比,取防喘振裕度为1.43,正常流量为防喘振流量的1.43倍,这相当安全。再根据正常流量查对应的安全压比,从而算出相应的安全出口压力,再绘出曲线,见下图3。     在升速,升压时各转速下,控制出口压力不超过对应的安全出口压力,压缩机就不会喘振。     注:1.第一段,入口压力0.25MPa。入口温度小于38℃,分子量8.7;     2.第二段,入口压力取第一段压力降0.15MPa入口温度8℃;     3.第三段,循环气入口温度43℃,分子量10.94;     4.表中压力为绝对压力。一般出口降取0.15MPa。     各压缩机都可以根据这个原理算出并绘出安全压比曲线,供升压时使用以防发生喘振。 离心式压缩机发生喘振时,转子及定子元件受交变应力,级间压力失调引起的强烈振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。因此,离心式压缩机严禁在喘振区域内运行。 一、喘振机理 喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。当外界条件适合内在因素时,便发生喘振。 1. 喘振的内在因素 当在设计工况m点工作时q=q设(图1、图2),气流的进气角基本上等于叶轮的进口安装角,气流通畅地进入流道,基本上不出现气流附面层脱离现象,损失也很小。当q p2后,管网中气体又倒流向压缩机。如此周而复始地进行,压缩机时而有气流输出,时而气体由管路倒灌入机器,产生周期性气流脉动,出现喘振。喘振过程中参数变化的频率和幅度的大小与管网容量有很大关系。管网的容量相当于整个系统的基本谐振器。管网的容量愈大,喘振的频率愈低,振幅愈大;管网的容量愈小,喘振的频率愈高,振幅愈小。由此可知,发生喘振的根本原因就是低流量,在操作中造成低流量的因素很多,归纳为以下几个方面: (1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。稳定系统的压力高,造成压缩机出口憋压,气体倒流入压缩机,造成机内气体低流量。 (2)入口流量低于规定值,反飞动调节阀失灵。在一定转数和一定气体密度下,能维持一定压力,当开、停机时气体流量少,或者放空阀开得过大,最容易引起压缩机入口流量低。 (3)气体密度变化,在一定转数下,离心力下降,引起出口压力及排量下降,通常误认为是抽空现象。 (4)分馏系统操作不稳致使压缩机入口气体带油,液体组分进入机体。 (5)汽轮机的蒸汽压力低或质量差(温度低),机组出现满负荷,转速下降。 (6)调速系统失灵,辅助系统故障,真空效率下降,机组不能额定做功。 二、典型的喘振事例 例:前郭炼油厂一催化装置的mb-ch型7级串联水平中分离心式气体压缩机。 1.由转速变化引起的喘振 正常情况下,压缩机转速的改变由系统反应的压力信号控制,但机器发生故障时,压力信号不能使汽轮机转速自由调节。某年冬季,由于蒸汽量不足,蒸汽管网压力低,汽轮机用蒸汽经常出现0.7~0. 8mpa,机组出现满负荷状况非常多,转速上不去,有时只达到给定信号的80%~90%,常出现喘振。 2.气体分子量减小引起喘振 催化装置试验采用掺炼渣油,20天后由于渣油中重金属含量高,引起催化剂中毒,使裂化气体组成发生变化,富气中h2组分高达40%(体积百分比),富气分子量降低到35(原设计分子量是50)。分子量降低后,压缩机发生喘振。 3.压缩机出口管线节流引起喘振 在压缩机出口管路上入容器前打洗涤水,管内径是150mm,结垢后内径变成30mm,出口管路阻塞,管路性能曲线上移,工作点进入喘振区域,发生喘振。 4.入口节流(进口压力低)导致压缩机喘振。 一次,由于压缩机前油气分离罐破沫网脱落,被吸入压缩机入口管,形成节流,进口压力低,导致喘振。 三、防止喘振的措施 防止喘振的基本原理是使流量和压力远离喘振点,即保证流量在稳定工况范围内qmin
本文档为【压缩机喘振】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_866556
暂无简介~
格式:doc
大小:144KB
软件:Word
页数:6
分类:生产制造
上传时间:2011-08-02
浏览量:64