首页 中频感应加热电源的设计及原理

中频感应加热电源的设计及原理

举报
开通vip

中频感应加热电源的设计及原理编号: 0096编号: 毕业设计论文 课 题: 中频感应加热电源的设计 院 (系): 机电与交通工程系 专 业: 电气工程及其自动化 学生姓名: 吴 科 虎 学 号: 020120221 指导教师单位: 电气工程教研室 姓 名: 何 少 佳 职 称: 高级实验师 题目类型: 理论研究 实验研究 工程设计√ 工程技术研究 软件开发 2006年 06月 03 日 摘 要 中频感应加热以其加热效率高、速度快,可控性好及易于实现机械化、自动化等优点,已在熔炼、铸造、弯管、热锻、焊接和表面热处理...

中频感应加热电源的设计及原理
编号: 0096编号: 毕业 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 论文 课 题: 中频感应加热电源的设计 院 (系): 机电与交通 工程 路基工程安全技术交底工程项目施工成本控制工程量增项单年度零星工程技术标正投影法基本原理 系 专 业: 电气工程及其自动化 学生姓名: 吴 科 虎 学 号: 020120221 指导教师单位: 电气工程教研室 姓 名: 何 少 佳 职 称: 高级实验师 题目类型: 理论研究 实验研究 工程设计√ 工程技术研究 软件开发 2006年 06月 03 日 摘 要 中频感应加热以其加热效率高、速度快,可控性好及易于实现机械化、自动化等优点,已在熔炼、铸造、弯管、热锻、焊接和表面热处理等行业得到广泛的应用。 本设计根据设计任务进行了 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 设计,设计了相应的硬件电路,研制了20KW中频感应加热电源。 本设计中感应加热电源采用IGBT作为开关器件,可工作在10 Hz~10 kHz频段。它由整流器、滤波器、和逆变器组成。整流器采用不可控三相全桥式整流电路。滤波器采用两个电解电容和一个电感组成Ⅱ型滤波器滤波和无源功率因数校正。逆变器主要由PWM控制器SG3525A控制四个IGBT的开通和关断,实现DC-AC的转换。 设计中采用的芯片主要是PWM控制器SG3525A和光耦合驱动电路HCPL-316J。设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。由于HCPL-316J具有快的开关速度(500ns),光隔离,故障状态反馈,可配置自动复位、自动关闭等功能,所以选择其作为IGBT的驱动。 对原理样机的调试结果表明,所完成的设计实现了设计任务规定的基本功能。此外,为了满足不同器件对功率需要的要求,设计了功率可调。这部分超出了设计任务书规定的任务。 关键词:感应加热电源;串联谐振;逆变电路;IGBT Abstract The Intermediate Frequency Induction Heating has been widely applied in melting, casting, bend, hot forging, welding, Surface Heat Treatment due to its advantages of high heating efficiency、high speed、easily controlled、easily being mechanized and automated. The scheme has made a plan of designs based on the task of design, designed corresponding hardware circuit and developed 20kW intermediate frequency induction heating power system. The thesis discusses the Choice of converter scheme in detail. Series Resonance Inverter has another name is Voltage Inverter. Its Output Voltage approaches square wave and load current approaches sine-wave. Inversion must follow the Principles of break before make and there is enough dead-time between turn-off and turn on in order to avoiding direct through in upper and lower bridges. The thesis discussed the Choice of converter scheme in detail as well as introduced the control circuit of this power source and its design principle. Develop 20kW intermediate frequency induction heating power system with switch element IGBT. Make a research on Converter Circuit, control circuit, driver circuit etc. The CMOS chip that is applied in the design is mainly PWM Controller SG3525A and optical coupler Drive Circuit HCPL-316J. The controlled feature of PWM Controller SG3525A is fully utilized in the process of design, which has wide adjustable operating frequency and dead time, input under voltage lock function and twin channel output current. The optical coupler Drive Circuit HCPL-316J is chosen as the driven of IGBT due to its functions, such as fast switch speed (500ns), optical isolation, the feedback of fault situation, wide operating voltage (15V~30V), automatic reset and automatic close down etc. Key words:Induction heating power supply; series resonance;inverse circuit;IGBT 目 录 TOC \o "1-3" \h \z \u 引言 1 1 绪论 2 1.1 感应加热的工作原理 2 1.2 感应加热电源技术发展现状与趋势 3 2 感应加热电源实现方案研究 5 2.1 串并联谐振电路的比较 5 2.2 串联谐振电源工作原理 7 2.3 电路的功率调节原理 8 2.4 本课题设计思路及主要设计内容 8 3 感应加热电源电路的主回路设计 9 3.1 主电路的主要设计元器件参数 9 3.2 感应加热电源电路的主回路结构 9 3.2.1主回路的等效模型 10 3.2.2整流部分电路 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 13 3.2.3逆变部分电路分析 15 3.3 系统主回路的元器件参数设定 16 3.3.1整流二极管和滤波电路元件选择 16 3.3.2IGBT和续流二极管的选择 17 3.3.3槽路电容和电感的参数设定 18 4 控制电路的设计 19 4.1控制芯片SG3525A 19 4.1.1内部逻辑电路结构分析 20 4.1.2芯片管脚及其功能介绍 21 4.2 电流互感器 23 5 驱动电路的设计 24 5.1 绝缘栅双极型晶体管(IGBT)对驱动电路的要求 24 5.1.1门极电压对开关特性的影响及选择 24 5.1.2门极串联电阻 对开关特性的影响及选择 25 5.2 IGBT过压的原因及抑制 25 5.3 IGBT的过流保护 26 5.3.1设计短路保护电路的几点要求 27 5.4 集成光电隔离驱动模块HCPL-316J 27 5.4.1器件特性 27 5.4.2芯片管脚及其功能介绍 28 5.4.3内部逻辑电路结构分析 28 5.4.4器件功能分析 29 5.4.5驱动电路的试验和注意问题 30 6 辅助直流稳压电源 31 6.1 三端固定稳压器 31 6.2 本次设计用的的电源 32 6.2.1 18伏,15伏稳压电压电源 32 6.2.2 ±12伏,±5伏双路稳压电源 32 6.2.3元器件选择及参数计算 33 7 硬件调试 34 8 结论 35 致谢 37 参考文献 38 附录一 整体电路原理图 39 附录二控制电路PCB 40 引言 随着功率器件的发展,感应加热电源的频率也逐步提高,经历了中频、超音频、高频几个阶段。在感应加热电源的应用中,淬火、焊管、焊接等工艺都要求高频率高功率的电源。功率MOSFET虽然可以实现高频工作,但其电压、电流容量等级低,大功率电源需采用串、并联技术,影响了电源运行的可靠性。绝缘栅双极晶体管(IGBT)比较容易实现电源高功率化,但在高频情况下,其开关损耗,尤其是IGBT关断时存在的尾部电流,会限制工作频率的进一步提高。 本文论述的中频感应加热电源采用功率自关断功率器件IGBT,负载频率是开关管工作频率的二倍,间接拓宽了IGBT的使用频率;功率管工作于零电流开关状态,彻底消除了尾部电流引起的关断损耗,理论上可实现零开关损耗;同时采用死区控制策略后,可实现负载阻抗调节。以往一般采用晶闸管来实现逆变电路,但是晶闸管关断期反压太低,参数匹配麻烦,输出频率仍然偏低;而采用IGBT后,并让电路工作在电流断续状态下,这些问题都得到很好地解决。 为满足中小工件加热的需要,研制了一种新型线效的中频感应加热电源。该电源具有输出电压低圈匝数少、不需要中频变压器降压、结构简单、效率高。 1 绪论 感应加热具有加热效率高、速度快、可控性好及易于实现自动化等优点,广泛应用于金属熔炼、透热、热处理和焊接等工业生产过程中,成为冶金、国防、机械加工等部门及铸、锻和船舶、飞机、汽车制造业等不可缺少的技术手段。 1.1 感应加热的工作原理 感应加热原理为产生交变的电流,从而产生交变的磁场,在利用交变磁场来产生涡流达到加热的效果。如图1.1: 图1.1 感应电流图示 当交变电流通入感应圈时,感应圈内就会产生交变磁通 ,使感应圈内的工件受到电磁感应电势 。设工件的等效匝数为 。则感应电势:            (1-1) 如果磁通是交变得,设 ,则        有效值为:       (1-3) 感应电势E在工件中产生感应电流 使工件内部开始加热,其焦耳热为:       (1-4) 式中: ——感应电流有效值(安),R——工件电阻(欧),t——时间(秒)。 这就是感应加热的原理。感应加热与其它的加热方式,如燃气加热,电阻炉加热等不同,它把电能直接送工件内部变成热能,将工件加热。而其他的加热方式是先加热工件表面,然后把热再传导加热内部。 金属中产生的功率为:   (1-5) 感应电势和发热功率不仅与频率和磁场强弱有关,而且与工件的截面大小、截面形状等有关,还与工件本身的导电、导磁特性等有关。 在感应加热设备中存在着三个效应——集肤效应、近邻效应和圆环效应。 集肤效应:当交变电流通过导体时,沿导体截面上的电流分布式部均匀的,最大电流密度出现在导体的表面层,这种电流集聚的现象称为集肤效应。 近邻效应——当两根通有交流电的导体靠得很近时,在互相影响下,两导体中的电流要重新分布。当两根导体流的电流是反方向时,最大电流密度出现在导体内侧;当两根导体流的电流是同方向时,最大电流密度出现在导体外侧,这种现象称为近邻效应。 圆环效应:若将交流电通过圆环形线圈时,最大电流密度出现在线圈导体的内侧,这种现象称为圆环效应。 感应加热电源就是综合利用这三种效应的设备。在感应线圈中置以金属工件,感应线圈两端加上交流电压,产生交流电流 ,在工件中产生感应电流 。此两电流方向相反,情况与两根平行母线流过方向相反的电流相似。当电流 和感应电流 相互靠拢时,线圈和工件表现出邻近效应,结果,电流 集聚在线圈的内侧表面,电流 聚集在工件的外表面。这时线圈本身表现为圆环效应,而工件本身表现为集肤效应。 交变磁场在导体中感应出的电流亦称为涡流。工件中产生的涡流由于集肤效应,沿横截面由表面至中心按指数规律衰减,工程上规定,当涡流强度从表面向内层降低到其数值等于最大涡流强度的1/e(即36.8% ),该处到表面的距离△称为电流透入深度。由于涡流所产生的热量与涡流的平方成正比,因此由表面至芯部热量下降速度要比涡流下降速度快的多,可以认为热量(85~90%)集中在厚度为△的薄层中。透入深度△由下式确定: (1-6) 式中: ρ——工件电阻率(Ω•m ), μ。——真空磁导率4π×10(H/m). μ——工件磁导率(H/m ), μ——工件相对磁导率, ω——角频率(rad/s ), f——频率(HZ)。 将μ。和π的数值代入,即可得公式: (1-7) 从上式可以看出,当材料电阻率、相对磁导率给定后,透入深度△仅与频率f平方根成反比,此工件的加热厚度可以方便的通过调节频率来加以控制。频率越高,工件的加热厚度就越薄。这种性质在工业金属热处理方面获得了广泛的应用。 1.2 感应加热电源技术发展现状与趋势 (1)感应加热电源技术发展现状 感应电源按频率范围可分为以下等级:500Hz以下为低频,1-10KHz为中频;20KHz以上为超音频和高频。感应加热电源发展与电力电子器件的发展密切相关。1970年浙大研制成功国内第一台100KW/1KHz晶闸管中频电源以来,国产KGPS系列中频电源已覆盖了中频机组的全部型号。在超音频电源方面,日本在1986年就利用SITH研制出100KW/60KHz的超音频电源,此后日本和西班牙又在1991年相继研制出500KW/50KHz和200KW/50KHz的IGBT超音频电源。国内在超音频领域与国外还有一定差距,但发展很快,1995年浙大研制出50KW/50KHz的IGBT超音频电源,北京有色金属研究总院和本溪高频电源设备厂在1996年联合研制出100KW/20KHz的IGBT电源。在高频这一频段可供选择的全控型器件只有静电感应晶闸管(SITH)和功率场效应晶闸管(MOSFET),前者是日本研制的3KW~200KW,20KHz~300KHz系列高频电源,后者由欧美采用MOSFET研制成功输出频率为200~300KHz,输出功率为100~400KW的高频电源。与国外相比,国内导体高频电源存在较大差距,铁岭高频设备厂1993年研制成功80KW/150KHz的SIT高频电源,但由于SIT很少进入国际化流通渠道,整机价格偏高,并没有投入商业运行。现在,电力电子应用国家工程中心设计研制出了5~50KW/100~400KHz高频MOSFET逆变电源。上海宝钢1420冷轧生产线于1998年引进了日本富士公司的71~80KHz,3200KW高频感应加热电源,是目前世界上最为先进的逆变电源。 总体说来,国内在感应加热电源的设计开发和产品化方面虽有发展,但远不能适应我国工业发展的要求,对于应用范围越来越广泛的高频感应加热电源领域的研究尤为薄弱,处于刚刚起步阶段。 (1)感应加热电源技术发展与趋势 感应加热电源的水平与半导体功率器件的发展密切相关,因此当前功率器件在性能上的不断完善,使得感应加热电源的发展趋势呈现出以下几方面的特点。 ①高频率 目前,感应加热电源在中频频段主要采用晶闸管,超音频频段主要采用IGBT,而高频频段,由于SIT存在高导通损耗等缺陷,主要发展MOSFET电源。感应加热电源谐振逆变器中采用的功率器件利于实现软开关,但是,感应加热电源通常功率较大,对功率器件,无源器件,电缆,布线,接地,屏蔽等均有许多特殊要求,尤其是高频电源。因此,实现感应加热电源高频化仍有许多应用基础技术需要进一步探讨。 ②大容量化 从电路的角度来考虑感应加热电源的大容量化,可将大容量化技术分为二大类:一类是器件的串、并联,另一类是多台电源的串、并联器件的均流问题,由于器件制造工艺和参数的离散性,限制了器件的串、并联数目,且串、并联数越多,装置的可靠性越差。多台电源的串、并联技术是在器件串、并联技术基础上进一步大容量化的有效手段,借助于可靠的电源串、并联技术,在单机容量适当的情况下,可简单地通过串、并联运行方式得到大容量装置,每台单机只是装置的一个单元或一个模块。感应加热电源逆变器主要有并联逆变器和串联逆变器,串联逆变器输出可等效为一低阻抗的电压源,当二电压源并联时,相互间的幅值、相位和频率不同或波动时将导致很大的环流以致逆变器器件的电流产生严重不均,因此串联逆变器存在并机扩容困难;而对并联逆变器,逆变器输入端的直流大电抗器可充当各并联器之间的电流缓冲环节,使得输入端的AC/DC或DC/AC环节有足够的时间来纠正直流电源的偏差,达到多机并联扩容。 ③负载匹配 感应加热电源多用于工业现场,其运行工况比较复杂,它与钢铁、冶金和金属热处理行业具有十分密切的联系,他的负载对象各式各样,而电源逆变器与负载是一有机的整体,负载直接影响到电源的运行效率和可靠性。对焊接、表面热处理等负载,一般采用匹配变压器连接电源和负载感应器,对高频、超音频电源用的匹配变压器要求漏抗很小,如何实现匹配变压器的高输入效率,从磁性材料选择到绕组结构的设计已成为一重要课题,另外,从电路拓扑上负载结构以三个无源元件代替原来的二哥无源元件以取消匹配变压器,实现高效、低成本隔离匹配。 ④智能化控制 随着感应热处理生产线自动化控制程度及对电源可靠性要求的提高,感应加热电源正向智能化控制方向发展。具有计算机智能接口、远程控制、故障自动诊断等控制性能的感应加热电源正成为下一代发展目标。 2 感应加热电源及其实现方案研究 2.1 串并联谐振电路的比较 感应加热电源根据补偿形式分为两种,并联谐振式(电流型)电源 和串联谐振式(电压型)电源。 图2.1感应加热电源主电路图 并联谐振式电源采用的逆变器是并联谐振逆变器,其负载为并联谐振负载。通常需电流源供电,在感应加热中,电流源通常由整流器加一个大电感构成。由于电感值较大,可以近似认为逆变器输入端电流固定不变。交替开通和关断逆变器上的可控器件就可以在逆变器的输出端获得交变的方波电流,其电流幅值取决于逆变器的输入端电流值,频率取决于器件的开关频率。 串联谐振式电源采用的逆变器是串联谐振逆变器,其负载为串联谐振负载。通常需电压源供电,在感应加热中,电压源通常由整流器加一个大电容构成。由于电容值较大,可以近似认为逆变器输入端电压固定不变。交替开通和关断逆变器上的可控器件就可以在逆变器的输出端获得交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。 串联谐振逆变器和并联谐振逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联; (1)串联谐振逆变器的输入电压恒定,输出电流近似正弦波,输出电压为矩形波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压-φ角。 并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压 -φ角。这就是说,两者都是工作在容性负载状态。 (2)串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流己逐渐减少到零,因而关断时间短,损耗小。在换流时,关断的晶闸管受反压的时间较长。 并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。相比之下,串联谐振逆变器更适宜于在工作频率较高的感应加热装置中使用。 (3)串联谐振逆变器起动较容易,适用于频繁起动工作的场所;而并联谐振逆变器需附加起动电路,起动较为困难,起动时间长。至今仍有人在研究并联谐振逆变器的起动问题。 串联谐振逆变器晶闸管暂时丢失脉冲,会使振荡停止,但不会造成逆变颠覆。而并联谐振逆变器晶闸管偶尔丢失触发脉冲时,仍可维持振荡。 (4)串联谐振逆变器并接大的滤波电容器,当逆变失败时,浪涌电流大,保护困难。但随着保护手段的不断完善以及器件模块本身也有自带保护功能,串联谐振逆变器的保护不再是难题。 并联谐振逆变器串接大电抗器,但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。 (5)串联谐振逆变器感应线圈上的电压和补偿电容器上的电压,都为谐振逆变器输出电压的Q倍。当Q值变化时,电压变化比较大,所以对负载的变化适应性差。流过感应线圈上的电流,等于谐振逆变器的输出电流。 并联谐振逆变器的感应线圈和补偿电容器上的电压,都等于逆变器的输出电压,而流过它们的电流,则都是逆变器输出电流的Q倍。逆变器器件关断时,将承受较高的正向电压,器件的电压参数要求较高。 (6)串联谐振逆变器的感应加热线圈与逆变电源(包括补偿电容器)的距离较远时,对输出功率的影响较小。而对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是补偿电容器),否则功率输出和效率都会大幅度降低。 综合比较串、并联谐振逆变器的优缺点,决定对串联谐振式电源进行研究。 2.2 串联谐振电源工作原理 串联谐振逆变器也称电压型逆变器,其原理图如图2.2所示。串联谐振型逆变器的输出电压为近似方波,由于电路工作在谐振频率附近,使振荡电路对于基波具有最小阻抗,所以负载电流 近似正弦波同时,为避免逆变器上、下桥臂间的直通,换流必须遵循先关断后导通的原则,在关断与导通间必须留有足够的死区时间。 图2.2 串联逆变器结构 (a)容性负载 (b)感性负载 图 2.3负载输出波形 当串联谐振逆变器在低端失谐时(容性负载),它的波形见图2.3(a)。由图可见,工作在容性负载状态时,输出电流的相位超前于电压相位,因此在负载电压仍为正时,电流先过零,上、下桥臂间的换流则从上(下)桥臂的二极管换至下(上)桥臂的MOSFET。由于MOSFET寄生的反并联二极管具有慢的反向恢复特性,使得在换流时会产生较大的反向恢复电流,而使器件产生较大的开关损耗,而且在二极管反向恢复电流迅速下降至零时,会在与MOSFET串联的寄生电感中产生大的感生电势,而使MOSFET受到很高电压尖峰的冲击当串联谐振型逆变器在高端失谐状态时(感性负载),它的工作波形见图2.3(b)。由图可见,工作在感性负载状态时,输出电流的相位滞后于电压相位,其换流过程是这样进行的,当上(下)桥臂的MOSFET关断后,负载电流换至下(上)桥臂的反并联的二极管中,在滞后一个死区时间后,下(上)桥臂的MOSFET加上开通脉冲等待电流自然过零后从二极管换至同桥臂的MOSFET.由与MOSFET中的电流是从零开始上升的,因而基本实现了零电流开通,其开关损耗很小。另一方面,MOSFET关断时电流尚末过零,此时仍存在一定的关断损耗,但是由于MOSFET关断时间很短,预留的死区不长,并且因死区而必须的功率因数角并不大,所以适当地控制逆变器的工作频率,使之略高于负载电路的谐振频率,就可以使上(下)桥臂的MOSFET向下(上)桥臂的反并联的二极管换流其瞬间电流也是很小的,即MOSFET关断和反并联二极管开通是在小电流下发生的,这样也限制了器件的关断损耗。上述分析可知,串联谐振型逆变器在适当的工作方式下,开关损耗很小因而,可以工作在较高的工作频率下这也是串联谐振型逆变器在半导体高频感应加热电源中受到更多重视的主要原因之一。 2.3 电路的功率调节原理 电源工作在开关频率大于谐振频率状态,负载呈感性,负载电流滞后于输出电压r角。所以在高频条件下输出功率表达式为: 式中的0. 9是因为矩形波所乘的波形率。从式中可以看出当输入电压一定时,可以通过调节输出电流滞后输出电压的滞后角r来调节输出功率。而滞后角r是由谐振参数和开关管工作频率共同决定的。 从上式可以看出当系统工作在谐振频率时 =1,即r为0度,系统输出的功率最大。当开关频率提高时,滞后角r同时开始增大,输出功率开始下降,从而完成功率调节。 2.4 本课题设计思路及主要设计内容 本课题研究的是一种感应加热电源。系统原理图见图2.4 图2.4系统原理结构 本文主要设计内容: (1)给出系统理论模型和主要设计内容。 (2)主回路部分,进一步介绍了整个系统的总体工作过程,分析了主回路的等效模型,通过计算选择主回路元器件参数。 (3)控制系统及实验论证,介绍了控制回路硬件原理和控制模块SG3525A及其组成方案。 (4)驱动电路部分,给出了IGBT驱动电路的要求和驱动模块HCPL-316J,及其在本系统的用途,并分析了其短路方法。 (5) 辅助直流稳压电源,对系统设计过程需要的直流供电稳压电源作了具体分析。 (6)硬件调试部分,分析了系统硬件调试需要注意的问题及本系统调试过程中出现的问题。 (7)结论部分,对设计方案进行了综合和总结,并提出了进一步的工作设想,还附带了经过本次毕业设计的心得体会。 3 感应加热电源电路的主回路设计 3.1 主电路的主要设计技术参数 电网供电电压:3相380V 感应加热电源输出功率:15kW 输出电流频率:20KHz 输出电流值:30A 3.2 感应加热电源电路的主回路结构 主电路结构框图如图3.1所示: 图3.1 感应加热电源主结构框图 感应加热电源主电路图,如图3.2所示 图3.2 感应加热电源的主电路图 如图3.2所示,它由整流器、滤波器和逆变器组成。整流器采用不可控三相全桥式整流电路。 、 和 (C1、C2)构成Ⅱ型滤波器。两个电解电容C1,C2串联以减小单个电容的承受的电压,R2 , R3起均压作用。R1为限流电阻,当系统开始上电时,由于电容两端电压为零,故刚开始对电容充电时,电流将很大,加上限流电阻R1后则就电流不会很大了。当电容两端电压达到一定数值时,交流接触器K1闭合,将限流电阻短接。系统即可正常工作。 逆变器采用单相变逆变桥,经变压器和串联谐振电路相接。利用轮流驱动单相对角的两组IGBT工作,把恒定的直流电压变成10 Hz~10 kHz方波电压输出给负载。 3.2.1主回路的等效模型 (1)从图3.2可知,开始工作时,首先给电容 充电。电路等效为一个一阶RC零状态响应电路,把整流器理想化为一个直流电压源。如右下图所示,开关 闭合前电路处于零初始状态,即 。在 时刻,开关 闭合,电路接入直流电压源 。根据基尔霍夫电压定律(KVL),有       把 代入,得电路微分方程    求解微分方程得出: (2) 以指数形式趋近于它的最终恒定值 ,达到该值后,电压和电流不再变化,电容相当于开路,电流为零。 当电解电容 充满电后,相当一个直流电压源。 和 导通时,整流后的直流电开始给负载供电,电流的流向 —R—L— — ,则主回路等效于一个一阶 零状态响应电路。电路图如右下图。                              开关S接通后, ( )= ( )=0,电路的微分方程为           初始条件为 ( )=0时,电流 的通解为 : = + 式中 τ= 为时间常数。 特解 = ,积分常数 A=- ( )=- 所以 = (1- ) (3) 继续导通,电压源提供的电流为0,此时,电感储存的能量通过 和续流二极管D o2形成回路,等效为一个一阶 零输入响应电路。如右下图所示。电路在开关 动作之前电压和电流已恒定不变,电感中有电流 。具有初始电流 的电感 和电阻 连接,构成一个闭合回路。在 >0时,根据KVL,有 而 ,电路的微分方程为           其特征根为 故电流为 电阻和电感上电压分别为: (4)当 和 关断, 和 到通时,电感的自感电流比整流电流大,通过二极管 、 续流,等效为一个 二阶零输入响应电路。如下图所示,为 串联电路,假设电容原已充电,其电压为 ,电感中的 初始电流为 。则 =0时,开关 闭合, 此电路的放电过程即是二阶电路的零输 入响应。在指定的电压、电流参考方向 下,根据KVL可得 ,电压 , 。把它们代入上式,得                                       上式以 (令 = 以方便求解)为未知量的 串联电路放电过程的微分方程。求解后,特征方程为 解出特征根为 根号前有正负两个符号,所以 有两个值。为了兼顾这两个值,电压 可以写成 = 其中 可见,特征根 和 仅与电路参数和结构有关,而与激励和初始储能无关。 根据给定的两个初始条件结合电压 的表达式,可得 将解得的 和 代入电压 的表达式 = ,就可以得到 串联电路零输入响应的表达式: 3.2.2 整流部分电路分析 (1)基本工作原理 为了尽可能减小整流器直流输出电压中的纹波,通常在整流器直流一侧并联容量较大的滤波电容。 本设计采用目前应用最为广泛的三相桥式全控整流电路,其原理图如图3.2所示,习惯将其中阴极连接在一起的3个二极管(Dl、D3、D5)称为共阴极组;阳极连接在一起的3个二极管(D4、D6、D2)称为共阳极组。此外,习惯上希望二极管按从1至6的顺序导通,为此将二极管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个二极管分别为D1,D3,D5,共阳极组中与a、b、c三相电源相接的3个二极管分别为D4、D6、D2;从以下的分析可知,按此编号,二极管的导通顺序为D1—D2—D3—D4—D5—D6。 图3.3 电容滤波的三相桥式不可控整流电路的波形 对共阴极组的3个二极管,阳极所接交流电压值最高的一个导通。而对共阳极组的3个二极管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,加于负载上的电压为某一线电压。此时电路工作波形如图3.3所示。 从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组二极管导通时,整流输出电压Ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压Ud2为相电压在负半周的包络线,总的整流输出电压 ,是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。 直接从线电压波形看,由于共阴极组中处于通态的二极管对应的是最大(正得最多)的相电压,而共阳极组中处于通态的二极管对应的是最小(负得最多)的相电压,输出整流电压 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压 波形为线电压在正半周期的包络线。 由图3.2知,第Ⅰ阶段,a相电位最高,共阴极组 导通,b相电位最低,共阳极组D6导通。电流流通路径为a-- --R--L—D6--b,负载上的电压 = - = ,变压器在a、b两相工作,共阴极组a相电流为正,共阳极组的b相电流为负。 第Ⅱ阶段,a相电位仍为最高, 继续导通,但c相电位最低,D2导通,电流从b相换至c相。D2因承受反向电压而关断。这时电流流通路径为:a-- --R—L--D2--c, 负载上的电压 = - = 第Ⅲ阶段,b相电位最高,D3导通,则共阴极组换相至D3,电流从a相换至b相, 因为承受反向电压而关断,D2因为c相电位仍为最低,而继续导通,电流流通路径为:b--D5--R--L--D2--c,负载上电压 = - = 。 以下Ⅳ、Ⅴ、Ⅵ段依次类推。在Ⅳ段, 、D4导通, = 。以后重复上诉过程。可知二极管导通顺序为 、 — 、 — 、 — 、 — 、 — 、 — 、 。 3.2.3逆变部分电路分析 (1)全桥逆变电路基本工作原理 电压型全桥逆变电路的原理图己在图3.2中给出,它共有4个桥臂,可以看成由两个半桥电路组合而成。把桥臂l和4作为一对,桥臂2和3作为另一对,成对的两个桥臂同时导通,两对交替各导通 . 每个桥臂由一个IGBT和一个反并联二极管组成。在直流侧接有一个足够大的电解电容。负载接在两对桥臀联结点之间。 设四个IGBT有两组的栅极信号在一个周期内各有半周正偏,半周反偏,且二者互补。当负载为感性时,其工作波形如图3.4所示。输出电压 为矩形波,其幅值为Um=Ud,输出电流 波形随负载情况而异。设t2时刻以前T1,T4通态,T2,T3为断态。t2时刻给T1,T4关断信号,给T2,T3开通信号,则T1,T4关断,但由于感性负载中的电流 ,不能立即改变方向,于是VD2,VD3导通续流。当t3时刻 降为零时,VD2,VD3截止,T2,T3开通。 开始反向。同样,在t4时刻给T2,T3关断信号,给Tl,T4开通信号后,T2,T3关断,D1,D4先导通续流,t5时刻T1,T4才开通。各段时间内导通器件的名称标于图3.4。 图3.4 单相全桥电压型逆变电路工作波形 当T1、T4或T2、T3为通态时,负载电流和电压同方向。直流侧向负载提供能量;而当D1,D4或D2,D3为通态时,负载电流和电压反向,负载电感中贮藏的能量向直流侧反馈,即负载电感将其吸收的无功能量反馈回直流侧。反馈回的能量暂时储存在直流侧电容器中,直流侧电容器起着缓冲这种无功能量的作用。因为二极管Dl、D4、D2、D3是负载向直流侧反馈能量的通道,故称为反馈二极管;又因为Dl、D2、D3、D4 起着使负载电流连续的作用,因此又称续流二极管。 (2)无源功率因数校正 所谓无源功率因数校正,就是通过在电路中加入无源电感L或加入无源电感L和无源电容而使整流器输入端电流接近于正弦的方法,这是人们最早采用的方法。 无源功率因数校正由三种比较基本的方法:一种是在整流器与直流滤波电容之间串入无源电感Ld;二是在整流器输入端串入无源LC串并联槽路;三是利用电容和二极管网络构成填谷方式。 本设计采用的是在整流器与直流滤波电容之间串入无源直流电感Ld的无源校正电路,在实际应用时,常常有少量改进,如图3.5所示 图3.5无源功率因数校正的电路 这种少量的改进,主要是在整流器与直流电感 之间并入一个数值较小的电容 ,使 、 和 构成Ⅱ型滤波器,以对输出直流电压有更好的滤波作用,使输出电压的纹波更小。由于 << ,所以其上的电压还是可以随着输入电压而波动,再则 的值也很小,因此对输入电流的畸变没有什么影响,整流二极管的导通角也不会因此而减小。 3.3 系统主回路的元器件参数设定 3.3.1整流二极管和滤波电路元件选择 (1)整流二极管的选择 ①整流输出的电压平均值为: = U≈2.34U =2.34×220V=514.8V ②电流平均值 : 输出电流平均值 为 = / R 与单相电路情况一样,电容电流平均值 为零、因此 = 在一个电源周期中, 有6个波头,流过每一个二极管的是其中的两个波头,因此二极管电流平均值为 的l/3,即 = /3= /3 ③二极管D可能承受的最大正向电压为线电压峰值的1/2,即( )/2,即 ×220V/2≈269.5V。 ④二极管D可能承受的最大反向电压为线电压峰值 U= ×220V≈539V 根据工程设计技术经验和工艺要求,整流二极管采用4个IN4007。IN4007反向耐压为1000V,封装形式DO-41。 (2)滤波电容的选择 滤波电容器 主要起滤波和稳定电压的作用。由于采用三相桥式整流电路,其电压纹波脉动为300Hz,为保证给逆变电路提供稳定的直流电压,滤波电路的时间常数,也即滤波电容器Ca与直流电源的等效负载电阻Rd的乘积,必须为纹波中基波的周期时间的6倍以上,这里取8,即 则 电容电压必须高于 440(V)。可以选用4700uF/400V的电解电容2只串联。 3.3.2 IGBT和续流二极管的选择 当三相交流电380V整流变成直流电时,其有效值大约在311.8V左右,当IGBT关断时,续流二极管导通,稳压电源的全部输入电压都加在IGBT集-射极的两端。因此,开关管的集-射额定电压UCE必须大于稳压电源的输入电压。 IGBT受到的最大正向电压为逆变器输入端电压源的电压 ,考虑到开关时的浪涌电压,取额定电压: =1.5× =1.5×311.08=466.62 (V) 额定电流: IM= ×30=42.4 (A) 另外,考虑与专用驱动芯片HCPL316J的兼容性,故选用型号为G80N60,其有关参数如下: 表3.4 G80N60 的性能参数 开启电压 5V±1V 栅极击穿电压 ±20V 集射电压 600V 集电极电流 80A 集射峰值电流 320A 耗散功率 320W 集射截止电流IGES 0.5mA 饱和压降 2.7V 正向跨导 36 输入电容 3000pF 下降时间 43ns 根据续流二极管的正向额定电流必须等于开关管的最大集电极电流,以及当开关管截止时,输入电压加在续流二极管的两端,因此,续流二极管的耐压值必须大于输入电压。再者,因为开关管的工作频率很高,续流二极管也只是在IGBT管关断的很短一段时间内工作,因此这种二极管的恢复时间还必须远远小于开关管的工作周期,这样也只有200ns以下的快速恢复二极管能满足要求。 3.3.3槽路电容和电感的参数设定 (1) 槽路电容设计 由于此感应加热电源不采用阻抗匹配变压器,因此在设计槽路电容时,主要考虑它与谐振电感的无功能量交换平衡。 感应加热电源直流侧电压为 ,逆变时在负载上产生正负交变的方波± , 经付氏级数展开基波电压有效值为 。 取Q=3,因此谐振时槽路电容两端的电压为: 420.4V 其阻抗为: 所以 所以可按420.4V、569nF选配槽路电容。 (2)谐振电感和电阻的设计 谐振时有 所以 由 所以槽路线圈和负载等效电阻 可按420.4V、30A、112μH设计加热线圈,负载和线圈等效电阻为3Ω左右。 4​ 控制电路的设计 在中小容量变频电源的设计中,采用自关断器件的脉宽调制系统比非自关断器件的相控系统具有更多的优越性。第一代脉宽调制器SG3525A应用于交流电机调速、UPS电源以及其他需要PWM脉冲的领域。其外围电路可对串联谐振式逆变电源进行多功能控制,实现H桥式IGBT脉宽调制PWM信号的生成和逆变电源的保护功能,以及变频电源工作过程中谐振频率的跟踪控制。 控制电路(图4.1)的核心为PWM控制器SG3525A,用SG3525A发出的PWM脉冲,来控制逆变器VT1、 VT4和VT2、VT3轮流导通,从而控制逆变电压和逆变频率。图4.1中SG3525A的6脚连接电阻R,改变R的大小,这样就可调控SG3525输出的PWM脉冲频率。同时通过调节SG3525的9脚电压来改变输出脉宽。 图4.1控制电路原理图 反馈电路如上图4.1所示,当电流互感器从负载端感应出交流电流,通过桥式整流器把他转化为直流电,在滑动变阻器PR2上产生电压。由滑动端输出的信号接到SG3525A的10脚上,当脚10电压大于0. 7V时,芯片将进行限流操作,当脚10电压超过1.4V时,将使PWM锁存器关断,直至下一个时钟周期才能够恢复。 以下分别独立介绍感应加热电源控制电路各个组成部分的基本原理、功能及参数计算。 4.1 控制芯片SG3525A 设计电路的控制电路是整个电路的主要部分。如何保证系统稳定且可靠工作,又使系统的开发周期短,性价比高,是一个需要综合考虑的问题。目前实际产品应用中有各种典型的控制电路,鉴于对电源和驱动的要求,结合本次毕业设计选择了SG3525A. 4.1.1内部逻辑电路结构分析 SG3525A的内部结构见图4.2,由基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软起动电路、输出电路构成。 (1)欠压锁定功能 基准电压调整器受巧脚的外加直流电压 的影响,当 低于7V时,基准电压调整器的精度值就得不到保证,由于设置了欠压锁定电路,当出现欠电压时,欠压锁定功能使A端线由低电压上升为逻辑高电平,经过SG3525A的13脚输出为高电平,功率驱动电路输出至功率场效应管的控制脉冲消失,逆变器无电压输出。 图4.2 SG3525A内部结构 (2)系统的故障关闭功能 集成控制器SG3525A内部的T3晶体管基极经一电阻连接10引脚。过流保护环节检测到的故障信号使10脚为高电平。由于T3基极与A端线相连。故障信号产生的关闭过程与欠电压锁定过程类似。在电路中,过流保护环节还输出一个信号到与门的输入端,当出现过流信号时,检测环节输出一低电平信号到与门的输入端,使脉冲消失,与SG 3525的故障关闭功能一起构成双重保护。 (3)软起动功能 软起动功能的实现主要由SG3525A内部的晶体管T3和外接电容C3及锁存器来实现的。当出现欠压或者有过流故障时,A端线高电平传到T3晶体管基极,T3导通为8引脚外接电容C3提供放电的途径。C3经T3放电到零电压后,限制了比较器的PWM脉冲电压输出,电压上升为恒定的逻辑高电平,PWM高电平经PWM锁存器输出至D端线仍为恒定的逻辑高电平,C3电容重新充电之前,D端线的高电平不会发生变化,封锁输出。当故障消除后,A端线恢复为低电平正常值,T3截止,C3由50μA电流源缓慢充电,C3充电对PWM和D端线脉冲宽度产生影响,同时对P1和 P2输出脉冲产生影响,其结果是使P1和P2脉冲由窄缓慢变宽,只有C3充电结束后,P1和P2的脉冲宽度才不受C3充电的影响。这种软起动方式,可使系统主回路电机及功率场效应管承受过大的冲击浪涌电流。 4.1.2芯片管脚及其功能介绍 SG3525脉宽调制型控制器是美国通用电气公司的产品,作为SG3524的改进型,更适合于运用MOS管作为开关器件的DC/DC变换器,它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。它的主要特点是:输出级采用推挽输出,双通道输出,占空比0-50%可调,每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管,工作频率高达400KHz,具有欠压锁定、过压保护和软启动等功能。该电路由基准电压源、震荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关断电路等组成,可正常工作的温度范围是0-700℃。基准电压为5.1 V士1%,工作电压范围很宽,为8V到35V。 SG3525采用16端双列直插DIP封装,引脚图及各端子功能介绍如下: 图4.3 SG3525A的引脚图 INV.INPUT(反相输入端1):误差放大器的反相输入端,该误差放大器的增益标称值为80db,其大小由反馈或输出负载来决定,输出负载可以是纯电阻,也可以是电阻性元件和电容元件的组合。该误差放大器共模输入电压范围是1. 5V-5. 2V。此端通常接到与电源输出电压相连接的电阻分压器上。负反馈控制时,将电源输出电压分压后与基准电压相比较。 NI.NPUT(同相输入端2):此端通常接到基准电压16脚的分压电阻上,取得2. 5V的基准比较电压与INV. INPUT端的取样电压相比较。 SYNC(同步端3):为外同步用。需要多个芯片同步工作时,每个芯片有各自的震荡频率,可以分别他们的4脚和3脚相连,这时所有芯片的工作频率以最快的芯片工作频率同步。也可以使单个芯片以外部时钟频率工作。 OSC.OUTPUT(同步输出端4):同步脉冲输出。作为多个芯片同步工作时使用。但几个芯片的工作频率不能相差太大,同步脉冲频率应比震荡频率低一些。如不需多个芯片同步工作时,3脚和4脚悬空。4脚输出频率为输出脉冲频率的2倍。输出锯齿波电压范围为0. 6V到3. 5V。 Cr(震荡电容端5):震荡电容接至5脚,另一端直接接至地端。其取值范围为0.001u F到0. 1 u F。正常工作时,在Cr两端可以得到一个从0.6V到3. 5V变化的锯齿波。 (震荡电阻端6):震荡电阻一端接至6脚,另一端直接接至地端。 的阻值决定了内部恒流值对Cr充电。其取值范围为2K欧到150K欧 和Cr越大充电时间越长,反之则充电时间短。 DISCHATGE RD(放电端7):Cr的放电由5、7两端的死区电阻决定。把充电和放电回路分开,有利于通过死区电阻来调节死区时间,使死区时间调节范围更宽。其取值范围为0欧到500欧。放电电阻RD和CT越大放电时间越长,反之则放电时间短。这样,SG3525A的振荡频率可由下面的公式进行计算: SOFTSTATR(软启动8):比较器的反相端即软启动器控制端8,端8可外接软启动电容,该电容由内部 的50uA恒流源充电。 COMPENSATION(补偿端9):在误差放大器输出端9脚与误差放大器反相输入端1脚间接电阻与电容,构成PI调节器,补偿系统的幅频、相频响应特性。补偿端工作电压范围为1. 5V到5. 2V。 SHUTDOWN(关断端10):10端为PWM锁存器的一个输入端,一般在10端接入过流检测信号。过流检测信号维持时间长时,软起动端8接的电容C被放电。一般用法是将过流脉冲信号送至关闭控制端10脚,当脚10电压大于0. 7V时,芯片将进行限流操作,当脚10电压超过1.4V时,将使PWM锁存器关断,直至下一个时钟周期才能够恢复。 OUTPUT A, OUTPUT B(脉冲输出端11、14):输出末级采用推挽输出电路,驱动场效应功率管时关断速度更快。11脚和14脚相位相差180°,拉电流和灌电流峰值达200mA。由于存在开闭滞后,使输出和吸收间出现重迭导通。在重迭处有一个电流尖脉冲,起持续时间约为l00ns。可以在 处接一个约0. lμf的电容滤去电压尖峰。 GROUND(接地端12):该芯片上的所有电压都是相对于GROUND而言,即是功率地也是信号地。在实验电路中,由于接入误差放大器反向输入端的反馈电压也是相对与12脚而言,所以主回路和控制回路的接地端应相连。 VC(推挽输出电路电压输入端13):作为推挽输出级的电压源,提高输出级输出功率。可以和15脚共用一个电源,也可用更高电压的电源。电压范围是4.5V-35V 。 +VIN(芯片电源端15):直流电源从15脚引入分为两路:一路作为内部逻辑和模拟电路的工作电压;另一路送到基准电压稳压器的输入端,产生5.1士1%V的内部基准电压。如果该脚电压低于门限电压(Turn-off=8V),该芯片内部电路锁定,停止工作(基准源及必要电路除外)使之消耗的电流降至很小(约2mA)。另外,该脚电压最大不能超过35V,使用中应该用电容直接旁路到GROUND端。 VREF(基准电压端16):基准电压端16脚的电压由内部控制在5. 1 V土1%。可以分压后作为误差放大器的参考电压。 由于本设计中的输出电流频率为20KHz,所以由频率公式,CT可取1nf,RT可用100K的滑动变阻器来调节频率。RD可取300 。 4.2 电流互感器 (1)电流互感器原理及接法 测量高压线路里的电流或测量大电流,不宜将仪表直接接入电路,而用一台有一定变比的升压变压器,即电流互感器,将高压线路隔开,或将大电流变小,再用电流表进行测量。电流表读数按额定变流比放大,得出被测电流的实际值,或者电流表指示数值就是电流的实际值,电流互感器一次侧额定电流的范围可为5-25000A,二次侧电流均为5A或1A。 为了保证安全,且防止静电荷的累积,影响仪表读数,所以电流互感器二次侧必须有一端接地。因电流互感器二次侧接入电流表或其他测量仪表的电流线圈,其阻抗很小,则电流互感器使用时,相当于一台二次侧处于短路状态的升压变压器。 电流互感器存在变流比和相位两种误差。这些误差是由电流互感器本身的励磁电流和漏阻抗以及仪表的阻抗等一些因素引起,可以从设计和材料两方面去减小这些误差。按额定变流比误差,电流互感器分成0.2、0.5、1.0、3.0、10.0五个等级。 在使用电流互感器时,要注意二次侧绝对不能开路!要接入仪表,或要拆除仪表时必须先将二次侧短路,否则它将处于空载状态。在这种情况下,被测线路中的大电流全部变成互感器的空载电流,使铁心中的磁密大为提高,从而使二次绕组感应出十分高的电动势,可使绝缘击穿,且危及工作人员。 只要知道一次侧的最大允许电流就可以选择电流互感器的型号。 (2)电流互感器在本设计中的应用 电流互感器运用于电流取样反馈电路,电流互感器从主电路变压器负载大电流二次侧取出交流信号,经过电容滤波的单相桥式不可控整流电路,成为直流信号,然后通过反相放大器放大到所需值后进入比例放大器进行调制。 (3)元器件参数选择 ①电流互感器 由本设计的参数要求,应该选择8000A/1A的电流互感器。 ②整流电路相关参数 四个整流二极管可以选择IN4001,根据工作经验,负载电阻R1取1Ω,由式RC≥(3~5)T/2,T为交流电源的周期,应为1/500Hz,取C=2T/R1=2×0.002ms/1Ω=4 F. 5 驱动电路的设计   驱动电路的作用是将控制电路输出的PWM脉冲放大到足以驱动IGBT,所以单从原理上讲,驱动电路主要起开关
本文档为【中频感应加热电源的设计及原理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_300612
暂无简介~
格式:doc
大小:1MB
软件:Word
页数:46
分类:生产制造
上传时间:2011-02-22
浏览量:67