首页 01固体矿产地质勘查规范总则

01固体矿产地质勘查规范总则

举报
开通vip

01固体矿产地质勘查规范总则01固体矿产地质勘查规范总则 GB 中华人民共和国国家标准 GB,T 13908-2002 固体矿产地质勘查规范总则 General requirements for solidmineral exploration 2002-08-28发布 2003-01-01实施 GB,T13908-2002 前 言 本标准是根据GB,T17766—1999《固体矿产资源,储量分类》对GB,T13908—1992《固体矿产地质勘探规范总则》、GB,T13688-1992《固体矿产详查总则》、GB,T13687...

01固体矿产地质勘查规范总则
01固体矿产地质勘查 规范 编程规范下载gsp规范下载钢格栅规范下载警徽规范下载建设厅规范下载 总则 GB 中华人民共和国国家标准 GB,T 13908-2002 固体矿产地质勘查规范总则 General requirements for solidmineral exploration 2002-08-28发布 2003-01-01实施 GB,T13908-2002 前 言 本标准是根据GB,T17766—1999《固体矿产资源,储量分类》对GB,T13908—1992《固体矿产地质勘探规范总则》、GB,T13688-1992《固体矿产详查总则》、GB,T13687—1992《固体矿产普查总则》等三个标准进行修订,并合并为GB,T13908—2002《固体矿产地质勘查规范总则》。 本标准自实施之日起,代替GB,T13908—1992、GB,T13688—1992、GB,T13687—1992。 本标准的附录A是标准的附录,附录B、附录C是提示的附录。 本标准由国土资源部提出。 本标准由全国地质矿产标准化技术委员会归口。 本标准起草单位:国土资源部储量司、咨询研究中心、评审中心,国家有色金属工业局,国家石油和化学工业局。 本标准起草人:邵厥年、严铁雄、宾德智、张文海、邓善德、田绍东、王炳铨、甘先平。 本标准委托国土资源部储量司负责解释。 中华人民共和国国家标准 GB,T13908-2002 固体矿产地质勘查范围总则 代替GB,T13687—1992 GB,T13688—1992 GB,T13908—1992 General requirements for solidmineral exploration 1 范围 本标准规定了固体矿产地质勘查的目的任务、勘查工作、可行性评价工作,矿产资源,储量类型条件、矿产资源,储量估算等。 本标准适用于固体矿产地质勘查各阶段的总体工作部署;可作为评审、验收固体矿产地质勘查成果的总要求;也是制定各类(种)固体矿产地质勘查规范、规定、指南的总原则;还可作为矿业权转让、矿产勘查开发筹资、融资、股票上市等活动中评价、估算矿产资源,储量的依据。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB,T17766—1999 固体矿产资源,储量分类 3 矿产勘查的目的任务 矿产勘查最终的目的是为矿山建设 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 提供矿产资源,储量和开采技术条件等必需的地质资料,以减少开发风险和获得最大的经济效益。 固体矿产勘查工作分为预查、普查、详查、勘探4个阶段。 3.1 预查是通过对区普查是通过对矿化潜力较大地区开展地质、物探、化探工作和取样工程,以及可行性评价的概略研究,对已知矿化区作出初步评价,对有详查价值地段圈出详查区范围,为发展地区经济提供基础资料。 3.3 详查是对详查区采用各种勘查方法和手段,进行系统的工作和取样,、并通过预可行性研究,作出是否具有工业价值的评价,圈出勘探区范围,为勘探提供依据,并为制定矿山总体规划、项目建议书提供资料。 3.4 勘探是对已知具有工业价值的矿区或经详查圈出的勘探区,通过应用各种勘查手段和有效方法,加密各种采样工程以及可行性研究,为矿山建设在确定矿山生产规模、产品 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 、开采方式,开拓方案、矿石加工选冶工艺、矿山总体布置、矿山建设设计等方面提供依据。 4 矿产勘查工作 4.1 矿产勘查勘查区地质 搜集、研究与成矿有关的地层、构造、岩浆岩、变质岩、围岩蚀变等区域地质和矿区地质资料,对砂矿床还包括第四纪地质及地貌特征。 地层:应划分地层层序、岩性组合、岩相分带,确定含矿层位。对沉积矿产应研究含矿层的岩性组合、物质组成以及沉积环境与成矿关系等。 构造:应对控制或破坏矿床的主要构造进行研究,了解其空间分布、发育程度、先后次 序及分布规律等。 岩浆岩:对与成矿有关的岩浆岩应了解或查明其岩类、岩相、岩性、演化特点及其与成矿的关系等。 变质岩:对变质矿床应了解或研究变质作用的性质、强度、影响因素、相带分布特点及其对矿床形成或改造的影响。 围岩蚀变:应了解或研究矿床的围岩蚀变种类、规模、强度、矿物组成、分带性及其与成矿的关系。 4.1.2 矿体地质 矿体特征:应研究或控制矿体分布范围、数量、规模、产状、空间位置及形态、相互间关系及氧化带(风化带)的范围等;研究围岩、夹石的岩性、产状、形态等;研究成矿后断层对矿体的破坏情况,找出矿体的对比标志,使其合理地有依 据的连接。 矿石特征:包括矿石物质组成和矿石质量特征。 矿石物质组成:包括矿物组成及主要矿物含量、结构、构造、共生关系、嵌布粒度及其变化和分布特征;应划分矿石自然类型,矿石的蚀变和泥化特征,并研究各类型的性质、分布、所占比例及对加工、选冶性能试验的影响。 矿石质量特征:包括矿石的化学成分,有用组分、有益和有害组分含量、可回收组分含量、赋存状态、变化及分布特征;依据矿石的工艺性质及当前生产技术条件,划分矿石工业类型和品级,不同类型变化规律和所占比例,非金属矿产及固体燃料矿产,可据用途要求选择测定项目,用以确定该矿产的类型、品级。 4.1.3 开采技术条件 水文地质条件研究:调查矿区地下水的补给、径流、排泄条件,确定其汇水边界;查明含(隔)水层的分布、含水性质、构造破坏与含水层间的水力联系情况,主要构造破碎带、岩溶发育带与风化带的分布及其导水性,主要充水含水层的含水性及储水性、与矿层(体)的相对位置、连通其它含水层及地表水体和老窿水的情况,地下水的水头高度、水力坡度、径流场特征与动态变化,地表水体的分布、水文特征、连通主要充水含水层的可能途径及其对矿床开采的影响;确定矿床主要充水因素、充水方式和途径,建立水文地质模型,结合矿床可能的开拓方案,估算矿坑开拓水平的正常和最大涌水量以及矿区总涌水量。 调查矿区及其相邻地区的供水水源条件,结合矿山排水对矿山供水问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 及排供结合的可能性进行综合评价,指出矿山供水水源方向。缺水地区,应对矿坑涌水的利用价值进行评价。 工程地质条件研究:研究矿床开采区矿体及围岩的物理力学性质,岩体结构及其结构面发育程度、组合关系,评价岩体质量,调查影响矿床开采的不良工程地质岩组(风化层、软弱层、构造破碎带)的性质、产状与分布特征,结合矿山工程需要,对露天采矿场边坡的稳定性或井巷围岩及溶(熔)腔的稳固性作出初步评价,指出可能发生工程地质问题的地质体或不良地段。 环境地质研究:研究区域稳定性,矿区矿石加工选冶技术性能试验 根据试验的目的、要求、程度、其成果在生产实践中的可靠性,矿石加工选冶试验可分 为可选(冶)性试验、实验室流程试验、实验室扩大连续试验、半工业试验、工业试验5类。 非金属矿产的选矿加工技术试验是为了获取某些物理的技术工艺性能或特殊要求。 煤的选矿加工技术试验主要是通过筛分、浮沉及工艺性能试验,了解煤的可选性及加工工艺特性。 试验工作应根据矿产勘查阶段、由浅入深循序渐进。具体要求按有关规范执行。 4.1.5 综合评价 在勘查主矿产的同时,对于达到一般工业指标要求、又具有一定规模的共生矿产或伴生的其它矿产,应进行综合评价。对同体共生矿,应综合考虑,整体勘查,运用综合指标圈定矿体;对异体共生矿,应利用勘查主矿产的工程进行控制,其控制程度,视具体情况确定。 应据地质条件、产出特征、共伴生关系、价值大小、需求程度、开发利用的可能性等条件,对市场适销对路、经济价值较大、并能同时开采的共生矿,尤其是位于首采地段或露采境界放射性检查 一般矿产应做放射性检查,对于放射性矿产,在各勘查阶段均应按规范要求开展放射性测量工作。 4.2 矿产勘查的控制要求 4.2.1 勘查类型确定和划分 划分勘查类型是为了正确选择勘查方法和手段,合理确定勘查工程间距,对矿体进行有效的控制和圈定。 应根据矿体规模、矿体形态复杂程度、工程间距确定原则 工程间距是指最相邻勘查工程控制矿体的实际距离,其间距应根据反映矿床地质条件复杂程度的勘查类型来确定。首先要看矿体的整体规模,并结合其主要因素确定工程间距,即使是分段勘查,也要从整体规模人手。不同地质可靠程度、不同勘查类型的勘查工程间距,视实际情况而定,不限于加密或放稀一倍。当矿体沿走向和倾向的变化不一致时,工程间距要适应其变化;矿体出露地表时,地表工程间距应比深部工程间距适当加密。 工程间距通常采用与同类矿床类比的办法确定。也可根据已完工的勘查成果,运用地质统计学的方法或用SD法确定,见附录C(提示的附录)。 由于矿床的形成条件各异,勘查工程间距的确定应充分考虑矿床自身特点,并应在施工过程中进行必要的调整。各矿种(类)勘查规范可制定相应的参考工程间距要求。 4.2.3 工程布置、施工原则、控制程度 工程布置:应根据矿体地质特征和矿山建设的需要,参考同类矿床勘查的经验进行。一般情况下,地表应以槽井探为主,浅钻工程为辅,配合有效的物探、化探方法,深部应以岩心钻探为主;当地形有利或矿体形态复杂,极复杂、物质组分变化大时,应以坑探为主配以钻探;当采集选矿大样时,也可动用坑探工程;对管条状和形态极复杂的矿体应以坑探为主。若钻探所获地质成果与坑探验证成果相近,则不强求一定要投入较多的坑探工程,可以钻探为主配合坑探进行。坑探应以脉矿产勘查各阶段要求 4.3.1 预查 全面收集调查区普查 通过1?25000,1?5000比例尺的地质填图和露头检查,对区内地质特征的查明程度应达到相应比侧尺的精度要求,成矿地质条件达到大致查明程度。 通过1?l0000,1?2000比例尺地质填图和有效的物探、化探、遥感、重砂等方法手段及数量有限的取样工程,大致控制主要矿体特征,地表要用取样工程稀疏控制,深都要有工程证实,不要求系统工程网度;大致查明矿石的物质组成、矿石质量,并进行相应的综合评价。对物探、化探异常进行?,?级验证。 大致了解开采技术条件,包括区域和测区范围内的水文地质、工程地质、环境地质条件,为详查工作提供依据。对开采条件简单的矿床,可依据与同类型矿山开采条件的对比,对矿床开采技术条件作出评价;对水文地质条件复杂的矿床,应进行适当的水文地质工作,了解地下水埋藏深度、水质、水量以及近矿围岩强度等。 对已发现的矿产,应与邻区同类型已开采矿山,从矿石物质组成、主要矿石矿物、脉石矿物、结构构造、嵌布特征、粒度大小、有害组分及影响选治条件等因素进行全面的对比,并就矿石加工选冶的性能作出概略评述。对无可类比的或新类型矿石应进行可选(冶)性试验或实验室流程试验,为是否值得进一步工作提 供依据。对饰面石材还应作出“试采”检查。 依据普查所获得的地质矿产资料及国内、外市场情况,进行概略研究,研究有无投资机会,是否值得转入详查,并采用一般工业指标估算资源量。 4.3.3 详查 通过:1?10000,1?2000地质填图,基本查明成矿地质条件,描述矿床的地质模型。 通过系统的取样工程、有效的物探、化探工作,控制矿体的总体分布范围,基本控制了主矿体的矿体特征、空间分布,基本确定了矿体的连续性;基本查明矿石的物质组成、矿石质量;对可供综合利用的共、伴生矿产,进行相应的综合评价。 对矿床开采可能影响的地区(矿山疏排水水位下降区、地面变形破坏区、矿山废弃物堆放场及其可能污染区)开展详细水文地质、工程地质、环境地质调查,基本查明矿床的开采技术条件。选择代表性地段对矿床充水的主要含水层及矿体围岩的物理力学性质进行试验研究,初步确定矿床充水的主(次)要含水层及其水文地质参数、矿体围岩岩体质量及主要不良层位,估算矿坑涌水量,指出影响矿床开采的主要水文地质、工程地质、环境地质问题;对矿床开采技术条件的复杂性作出评价。 对矿石的加工选冶性能进行试验和研究,易选的矿石可与同类矿石进行类比,一般矿石进行可选性试验或实验室流程试验,难选矿石还应作实验室扩大连续试验。饰面石材还应有代表性的试采资料。直接提供开发时利用,试验程度应达到可供设计的要求。 在详查区勘探 通过:1?10000,1?2000(必要时可用1?500)比例尺地质填图,加密各种取样工程及相应的工作,详细查明成矿地质条件及勘查工作质量 各项勘查工作都应执行相应规范、规定,保证质量要求。对勘查工作中出现的所有质量问题,都应该客观、详实地反映和评价,不允许用平均数来掩饰质量问题。 4.4.1 地形及工程测量 地形测量和勘查工程测量应采用全国通用的坐标系统和最新的国家高程基准点进行。对于边远地区小矿,周围没有可供联测的全国坐标系统基准点时,可采用全球卫星定位系统 (GPS)提供的当地数据,建立独立坐标系统测图。但必须详细说明所采用定位仪器的型号、定位的时间、程序、精度。测量的精度要求,应按有关规范执行。不同比例尺的勘探线剖面应当是实测剖面。 4.4.2 地质填图 不论哪种比例尺的地质填图,都应以地质观察为基础,其精度要求应按同比例尺地质测量规范要求。大比例尺地质填图是为矿产勘查、矿山建设设计服务的,比例尺的选择应以矿床的矿体规模、形态复杂程度以及各勘查阶段的要求为依据。地质点要布设在界线上或有特殊意义的地方,用仪器法展绘到图上。对于薄矿体(层)、标志层及其它有特殊意义的地质现象,必要时应扩大表示。 4.4.3 水文地质、工程地质、环境地质工作 各种比例尺的水文地质、工程地质测量和环境地质调查,均应符合相应比例尺规范的要求和相应勘查阶段对矿区水文地质、工程地质、环境地质工作的要求。 专门水文地质工作及岩矿石物理力学性质测定样的测试都应满足有关规定、规范的要求,以保证工作成果的可靠性。 4.4.4 物探、化探工作 各种比例尺的地球物理测量、地球化学测量的质量,都应符合相应比例尺规范的要求。各项测试数据应准确、可靠。 4.4.5 探矿工程 对覆盖层小于3m的浅部矿体可使用探槽、浅坑,大于3m应采用浅井。钻探 ,5m范围采样及测试(含工程的质量应符合钻探规程的要求,矿芯及顶、底板3 加工选冶试验样品) 必须严格执行采样规范的要求,不得混样、错号,严禁选择性采样。难以识别的矿石或可能矿化地段,应连续取样。煤质采样要根据不同煤类及其可能的工业用途、煤质主要指标的变化程度来确定。砂矿样的淘洗、称重按有关规范执行。金属、非金属矿产样品加工应严格遵循切乔特公式,样品加工重量总损失率不大于5,。样品分析、测试,应由国家认证的有资质的化验单位承担,严格执行 操作规程 操作规程下载怎么下载操作规程眼科护理技术滚筒筛操作规程中医护理技术操作规程 和质量标准。地质编录、综合整理 必须严格执行有关规范的要求。原始地质编录要在现场进行,应及时、准确、客观、齐全,综合整理要运用新理论、新方法,全面、深入的分析研究。鼓励使用计算机辅助野外采集系统,凡能用计算机成图、成表的资料,都应按标准化表格可行性评价工作 为适应市场经济发展的需要,使矿产勘查工作与矿山建设紧密衔接,减少矿产勘查和矿山开发投资的风险,提高矿产勘查和开发的经济、社会效益。在普查、详查和勘探3个阶段,都应进行相应的可行性评价工作。可行性评价包括概略研究、预可行性研究和可行性研究三个阶段。 5.1 概略研究 是对矿床开发经济意义的概略评价。通常是在收集分析该矿产资源在国预可行性研究 是对矿床开发经济意义的初步评价。预可行性研究需要比较系统地对国可行性研究 是对矿床开发经济意义的详细评价。可行性研究首先需要认真对国矿产资源,储量分类及类型条件 6.1 矿产资源,储量分类 根据矿产资源,储量的经济意义、可行性评价和地质可靠程度,将固体矿产资源,储量分为储量、基础储量和资源量三大类16种类型。[见附录A(标准的附录)] 6.1.1 储量 经过详查或勘探,达到了控制的或探明的程度,在进行了预可行性或可行性研究,扣除了设计和采矿损失,能实际采出的数量,经济上表现为在生产期内,每年的平均内部收益率高于行业基准内部收益率。储量是基础储量中的经济可采部分,又可分为可采储量(111)、探明的预可采储量(121)及控制的预可采储量(122)3个类型。 6.1.2 基础储量 经过详查或勘探,达到控制的和探明的程度,在进行了预可行性或可行性研究 后,经济意义属于经济的或边际经济的那部分矿产资源。基础储量又可分为两部分:即经济基础储量和边际经济的基础储量。经济基础储量是每年的资源量 可分为三部分,即矿产资源,储量类型条件 6.2.1 可采储量(111) 在勘探地段探明的预可采储量(121) 在勘探地段控制的预可采储量(122) 在详查地段探明的(可研)经济基础储量(111b) 在达到勘探阶段要求的勘探地段,地质可靠程度和经济意义同6.2.1所述,其中包括了可采储量。即经可行性研究后属经济的,是未扣除设计、采矿损失的部分。 6.2.5 探明的(预可研)经济基础储量(12lb) 在勘探地段控制的经济基础储量(122b) 在详查地段探明的(可研)边际经济基础储量(2M11) 在勘探地段探明的(预可研)边际经济基础储量(2M21) 在勘探地段控制的边际经济基础储量(2M22) 在详查地段探明的(可研)次边际经济资源量(2S11) 在勘探地段探明的(预可研)次边际经济资源量(2S21) 在勘探地段控制的(预可研)次边际经济资源量(2S22) 在详查地段探明的控制的推断的内蕴经济资源量(333) 在普查地段内,达到推断的程度,对矿体在地表或浅部沿走向有工程稀疏控制,沿倾向有工程证实,并结合地质背景、矿床成因特征和有效的物、化探成果推断、不受工程间距的限制, 进行了概略研究,尚无法确定其经济意义的那部分资源量。 6.2.16 预测的资源量(334)? 在预查区矿产资源,储量估算 7.1 工业指标 依据保护和合理利用矿产资源的方针以及国家经济政策、科技水平和经济效益所确定的,由矿石质量(化学的或物理的)指标和矿床开采技术条件两部分组成。预查、普查时,可用一般工业指标进行圈定和估算。详查、勘探所用指标通常应结合预可行性研究或可行性研究,依据当时的市场价格论证、确定的工业指标进行圈定和估算。供矿山建设设计利用所需的工业指标,应严格按国家规定的程序制定、下达。 7.2 矿产资源,储量估算一般原则 7.2.1 应按矿体、块段、矿产资源,储量类型、能分采的矿石类型、品级及不同工业用途分别估算矿产资源,储量。 7.2.2 已查明赋存状态,达到工业指标要求、具一定规模可以综合回收的共生矿产,应分别估算矿产资源,储量。有经济效益的伴生组分,也应分别估算矿产资源,储量。 7.2.3 参与矿产资源,储量估算的各取样工程、样品采集、加工、测试质量均应符合有关规范、规程及规定的要求。 7.2.4 矿体、不同矿石类型、品级的圈定,应遵循矿床自身的地质规律。矿体任意位置圈连的厚度,不得大于相邻地段工程实际控制的矿体厚度。厚大且能连 片的低品位矿石,应单独圈定。边缘见矿工程的控制范围,应根据矿床地质变量的变化特征、影响范围来确定。当边缘见矿工程出现薄而富的矿体时,可根据米百分值或米克,吨值,以该工程为截止点圈连矿体。 7.2.5 参与矿产资源,储量估算的参数一般包括面积、品位、厚度、体重等。详查、勘探阶段所用参数应是实际测定的,不论在数量上还是分布上,均应有代表性,数据要准确可靠。 面积:可用求积仪或几何图形法、座标计算法等多种方法求得。面积测定时, ,时,取均值。几何图形法要求图形尽可不得少于两次,当两次的差值不大于2 能简单,采用图件的比例尺视矿体规模而定,一般为1?1000。参与估算的面积应扣除采空区的面积。 品位:平均品位的计算,当样长不均匀时,或影响品位的其它因素不均匀时,以加权平均法求取,反之可用算术平均法。用几何图形法估算矿产资源,储量,当遇有特高品位存在时,应先处理特高品位,再求平均品位。特高品位值一般取矿体平均品位的6,8倍来衡量。当矿体品位变化系数大时采用上限值,变化系数小时采用下限值。其处理方法是用特高品位所影响块段的平均品位或单工程平均品位(厚度较大时)代替。用SD储量计算法时,用削减值代替特高品位,置于原始数据中参与计算。 厚度:一般用算术平均法求取平均厚度,但厚度的选取要视计算方法而定。用纵投影面积时,应计算平均水平厚度;用水平投影面积时,应计算平均垂直厚度,用真面积计算时,应计算平均真厚度。对于厚度变化很大的矿床,遇到特大厚度,应先进行特大厚度的处理,然后再求平均厚度。当工程分布很不均匀时,可据影响长度或面积加权。 体重:应分矿石类型或品级采集体重样。致密块状矿石采集小体重样。每种矿石类型不得少于30块;松散矿石则应采集大体重样,且不得少于3,4个;裂隙较发育的块状矿石,除按上述数量采集小体重样外,还应采集2,3个大体重样,对体重值进行校正,再参与矿产资源,储量估算。对于湿度较大的矿石,应采样测定湿度,当湿度大于3,时,体重值应进行湿度校正。 对于一些具有特殊性能的矿产,在估算矿产资源,储量时,应充分考虑其特殊的参数。如砂矿常用的松散系数,淘洗系数,砾石系数,石灰岩、白云岩矿床的岩溶率,汞矿的含矿系数等。 7.3 矿产资源,储量估算方法的选择 估算方法的选择,要根据矿床自身的特点,并结合勘查工作实际,以有效、准确、简便、能满足要求为依据。 估算矿产资源,储量的方法主要有几何图形法、地质统计学法和SD储量计算法(简称SD法)等。 几何图形法:是将矿体空间形态分割成较简单的几何形态,将矿石组分均一化,估算矿体的体积、平均品位、矿石量、金属量等。这种方法对于形态简单、矿化均一的矿体还是很有效的。 地质统计学法:是以区域化变量理论作为基础,以变异函数作为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究,估算时能充分考虑品位的空间变异性和矿化强度在空间的分布特征,使估算结果更加符合地质规律,置信度高,但需有较多的样本个体为基础。勘查过程中,针对矿床的地质特征,运用这种方法,还能制定或检验合理的勘探工程间距。 SD法:以最佳结构地质变量为基础,以断面构形替代空间构形为核心,以spline函数及分维几何学为工具的估算方法,立足于传统的断面法。它适用于不同矿床类型、矿体规模、产状、不同矿产勘查阶段,还可对估算的成果作精度预测。 提倡和鼓励运用新技术、新方法。对于矿产资源,储量计算的新方法或新研制的软件,必须经国务院地质矿产主管部门组织专家鉴定、验收并认可后,方可使用。 T13908-2002 GB, 附录A (标准的附录) 固体矿产资源,储量分类 表A.1固体矿产资源,储量分类 附录C (提示的附录) 确定勘查工程间距的方法 C1 地质统计学法确定矿产勘查的工程间距 应用地质统计学方法确定最佳工程间距,有以下几种情况: C1.1在新勘查区(或已勘查完毕,需进行矿产资源储量评估地区),可将区内按不同网度划分各种网形。计算每一结点(孔位)的估计方差,再计算每一网度(形)的平均估算方差,将每一网度(形)所花费的金额与平均估计方差进行对比(图C1),该图最优勘查网度在300,200m之间。当我们找到最佳勘查网(形)后,再利用每一结点上σ2 E绘制σ2E等值线图,在 估计方差较高的区域,利用C1.2所述方法,适当加密钻孔。一旦全部孔位确定后,应在相对收益较高地段优先施工。 图C1最优勘探网度的选择 C1.2勘查区内已有n个钻孔施工完毕,为提高矿产资源储量估算精度、减少风险、或为了增加矿产资源储量,要在n个钻孔的基础上再增加几个钻孔(图C2),可用估方差最佳孔位。 确定 图C2利用 最佳孔位 ; (1)计算当钻孔数为n时的估计方差确定的 ; (2)计算增加一个新孔Xi后,每一钻孔的估计方差 (3)计算每一钻孔的相对收益,见式(C1); „„„„„„„(C1) (4)绘制全区等相对收益线图,当Xi位置与该等相对收益线图的最高点吻合,则X1即为最佳孔位;否则,改变X1的位置,再计算,直至吻合。 (5)以同样方法确定其余的钻孔X1的位置。 C1.3一定方向上区域变化量(有用组分)变异函数的变程值(或略小于该值),可作为该方向上最大工程间距。 C2 SD法确定矿产勘查工程间距 SD法是动态分维几何学储量计算法的简称。以动态分维几何学和最佳结构地质变量为基础,以断面构形替代空间构形为核心,用Spline函数拟合的点列函数曲线,对其求解和积分,整个运算过程费贯了动态的“搜索”和“递进”原理。 SD分数维和结构地质变量是动态分维几何学的两个基本内容。前者是地质变量复杂性的表述,后者是地质变量可微性的表述。由此产生SD储量计算和精度计算。 SD精度具有度量地质可靠程度和确定的勘查工程间距的功能,按照对精度的要求计算工程间距。 SD法确定矿产勘查工程间距h的公式为式(C2): h=h2………………………(C2) 式中:h2——勘探线平均间距; Lj——第j条线两端点工程间距的总距离; K——勘探线数; N——根据要求的精度求取所需的工程数; η,——要求达到的精度值; α、β——初始递进计算SD精度过程中求取的系统值。 SD精度(η%):据地质可靠程度划分的区间。见图C3: 图C3SD精度与地质可靠程度关系应用图 探明的η?80% 控制的45%?η,65%; 推断的15%?η,30%; 预测的η,10%。 图中的几个可靠程度待定区间属何精度,需结合矿床地质复杂程度来定,简单者可归于高精度类,复杂者归于低精度类。 附录B (提示的附录) 固体矿产开采技术条件勘查类型划分及工作要求表 1.按钻孔单位涌水量分为:弱富水:q,0.1l,s.m;中等富水:0.1l,s.m,q,1.0l,s.m;强富水:1.0l,s.m,q,5.0l,s.m;极强富水:q,5.0l,s.m; 2.按天然泉水流量分为:弱富水Q,1.0l,s.m;中等富水:1.0l,s.m,Q,10.0l,s.m;强富水:10.0l,s.m,Q,50.0l,s.m;极强富水:Q,50.0l,s.m。
本文档为【01固体矿产地质勘查规范总则】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_729658
暂无简介~
格式:doc
大小:37KB
软件:Word
页数:0
分类:工学
上传时间:2017-10-22
浏览量:29