首页 (郑云)基于ADAMS的断路器分断速度计算

(郑云)基于ADAMS的断路器分断速度计算

举报
开通vip

(郑云)基于ADAMS的断路器分断速度计算基于ADAMS的断路器分断速度计算 郑云  林川 德力西电气有限公司上海分公司 上海 201812 摘  要: 本文通过对断路器机构骨架简图的建立,并借助ADAMS的多体动力学计算能力,提出一种能准确计算断路器脱扣分断速度的方法。 关键词: 断路器;ADAMS;机构骨架;分断速度 The breaking speed of circuit breaker calculation based on ADAMS Zheng Yun   Lin Chuan DELIXI ELECTRIC CO.,LTD. SHANGH...

(郑云)基于ADAMS的断路器分断速度计算
基于ADAMS的断路器分断速度计算 郑云  林川 德力西电气有限公司上海分公司 上海 201812 摘  要: 本文通过对断路器机构骨架简图的建立,并借助ADAMS的多体动力学计算能力,提出一种能准确计算断路器脱扣分断速度的方法。 关键词: 断路器;ADAMS;机构骨架;分断速度 The breaking speed of circuit breaker calculation based on ADAMS Zheng Yun   Lin Chuan DELIXI ELECTRIC CO.,LTD. SHANGHAI BRANCH  SHANGHAI  201812 Abstract: Through establish mechanismic skeleton of the circuit breaker,and with the help of ADAMS multi-body dynamics calculation ability, a method can accurately calculate circuit breaker breaking speed. Key words: Circuit breaker;ADAMS; Mechanismic Skeleton;Breaking speed 引言 断路器的机构是断路器的核心部分,而机构的分断速度是机构的一个关键因素,该参数直接决定了机构的动作时间,关系到断路器在大电流作用下能否有足够的分断能力达到保护其他电器的作用。由于该机构在分断时是由原先的四连杆机构变为多连杆机构,其复杂程度难以用人工计算得出准确的结果。但随着计算机技术的发展,美国MDI公司提出了多体动力学计算软件ADAMS,该软件很好的解决了断路器分断过程复杂的计算。本文就断路器机构的结构,通过建立机构骨架再结合ADAMS软件的计算能力,提出了一种通过验证能较准确获取分断速度和动作时间的方法。 1、 机构骨架及各构件间的运动关系 如图1所示是某小型断路器的机构骨架,其中AB为手柄,BC为二力杆,CD为跳扣,O’EF为锁扣,OD为支架,ON为触头,当前状态为断路器在合闸状态下的骨架简图,由于跳扣被锁扣锁住,OCD为一个整体可以等效为一个杆件,并绕O点可以转动,整个机构ABCO就是一个处于平衡状态下的四连杆机构[1]。在手柄受到开闸力和扭簧T1影响的时候AB杆绕A逆时针运动,同时OCD整体被带动绕O点逆时针运动,整个四连杆机构过死点后(如图2点划线位置) 会在G点撞击触头,最后在限位特征作用下呈稳定状态,实现分闸,如图2所示。该分闸过程是一个四连杆的变化过程,可以通过相关 计算公式 六西格玛计算公式下载结构力学静力计算公式下载重复性计算公式下载六西格玛计算公式下载年假计算公式 来计算,然而在大电流作用下产生的电磁力将EF点解锁时,跳扣CD和支架OD都为自由杆件,支架OD在压簧K和扭簧T2作用下绕O点逆时针高速运动在G点碰到触头ON实现分断,如图3所示,整个机构由原来的ABCO四连杆机构变为ABCDO五连杆机构,在此过程中由于EF两点的限位作用的解除,机构将多出两个自由度,该五连杆机构为二自由度的多杆机构,其运动具有不确定性,计算非常繁琐,本文就此分断过程借助ADAMS的多体动力学计算功能来完成脱扣分断速度的计算。 图1 合闸机构骨架 图2分闸机构骨架 图3脱扣机构骨架 2、根据机构骨架建模 2.1 导入骨架 由于ADAMS本身CAD功能较弱,在此需要借助辅助软件PRO/E的CAD能力,根据机构各构件连接关系和尺寸,提取对应图1骨架的关键杆件长度,选定O点为坐标原点,在PRO/E草绘里用约束的形式将机构在合闸稳定时的骨架呈现出来,如图4所示。将PRO/E里建立的骨架简图转化为x_t中间 格式 pdf格式笔记格式下载页码格式下载公文格式下载简报格式下载 ,必须选定O点坐标系,导入到ADAMS里,其主要目的为给ADAMS建模时提供关键点的位置。 图4  PRO/E骨架简图 2.2 ADAMS建模 根据PRO/E导入的简图,用ADAMS里面连杆模型通过每个关键点来建立每个构件,由于要计算的为脱扣的分断速度,不需要建立锁扣,只要模拟机构从跳扣解锁瞬间到达到最大开距的整个过程。 由于ADAMS选取系统内每个刚体质心在惯性参考系中的三个直角坐标和确定刚体方位的三个欧拉角作为笛卡尔广义坐标,用带乘子的拉格朗日第一类方程处理具有多余坐标的完整约束系统或非完整约束系统,导出以笛卡尔广义坐标为变量的动力学方程,以这些动力学方程来建立运动副约束各部件的自由度。 其动力学集成方程为[2]: (1) 式中q为建立的广义坐标,T为系统广义坐标表达的动能,P为系统的广义动量;H为外力的坐标转换矩阵,F为外力,Φ(q,t)为约束方程, Φq为雅克比矩阵,λ为拉格朗日乘子,u为运动学关系方程。 基于ADAMS计算原理,必须给定ADAMS计算所必须的质心、质量及转动惯量,用PRO/E分析质量属性功能可以获取每个零件质量及相对O坐标系的质心和转动惯量,见表1,必须保证ADAMS里和PRO/E原点坐标系都为O坐标系,才能保证数据一致。 表1 零件参数 零件名称 质量(g) 质心 转动惯量(kg*mm^2) 手柄 1.5 -14.13, 12.35, 8.76 Ixx3.03e-2,Ixy6.56e-3,Iyy2.93e-2, Izx8.9e-4,Iyz1.6e-3,Izz3.6e-2 二力杆 0.6 -4.25, 6.52, 13.8 Ixx2.7e-3,Ixy2.13e-3,Iyy2.15e-2, Izx1.4e-3,Iyz8.23e-4,Izz2.1e-2 跳扣 0.1 5.75, 7.83, 12.6 Ixx2.4e-4,Ixy3.1e-5,Iyy4.14e-4, Izx5.9e-5,Iyz4.48e-6,Izz5.25e-4 支架 0.8 3.5, 4.26, 9.25 Ixx1.78e-2,Ixy2e-3,Iyy1.45e-2, Izx3.14e-4,Iyz3.58e-4,Izz2.3e-2 触头 2.9 1, -8.58, 8.22 Ixx0.132,Ixy3.6e-2,Iyy2.92e-2, Izx3e-3,Iyz8.85e-3,Izz0.15         根据机构的运动关系,用对应的约束将构件间连接起来,并在铰链位置添加相应的摩擦力,最后添加必要的激励手柄扭簧、支架扭簧和压簧,将激励在脱扣瞬间对应的预载荷和刚度给定,见表2,完成整个模型的建立。在ADAMS里所建模型如图5所示,体现了骨架各个关键要素,忽略其外在形状。建立相应脚本即可以此模型模拟仿真脱扣分断的整个过程,并以图形界面直观的表现出各个杆件的运动规律,并可求得相应的分断速度、时间和开距间的相互关系。 图5  ADAMS模型 表2 激励 激励 预载荷 刚度 手柄扭簧 12 N.mm 6.7e-2N.mm/deg 支架扭簧 95 N.mm 2.875 N.mm/deg 压簧 8.3N 1.162N/mm       3 实验验证 3.1 ADAMS仿真结果 通过建立脚本,用以上模型仿真一个多步长,持续4ms的脱扣过程,保存仿真结果。通过ADAMS测量工具获取分断速度与时间的关系以及开距与时间的关系。如图6所示,从该曲线上可以得到在该产品 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 的最大开距5.2时对应的时间为2.9ms,即整个机构的动作时间,其从触头从开始分开到最大开距的时间为1.6ms。 图6 开距与时间关系曲线 同样可以得到机构分断速度与时间的关系,如图7所示: 图7 分断速度与时间关系曲线 取开距为横坐标,分断速度为纵坐标,如图8,可以直观的看到在触头打开距离与对应触头的速度,帮助分析机构是否能在分断产生电弧时迅速拉开电弧,有利熄灭电弧。 图8 分断速度与开距关系曲线 3.2 实验对比 本文采用一个简易的实验装置对该断路器在脱扣情况下,测量触头从开始打开瞬间到达到最大开距时的时间,将该时间对比仿真结果来验证正确性。所搭建的实验装置的线路图如图9所示[3]。 图9 实验电路图 该实验装置用到一个示波器、电源及两个小电阻,在断路器处于合闸时,示波器通道CH1处于高电平,CH2处于低电平,设置CH1为下降沿触发,用触发装置将锁扣拨动,使机构实现脱扣,脱扣后在触头分开瞬间CH1通道零电压将被触发,同时在触头达到最大开距时接通R2将触发CH2通道,对比测量两个通道获取波形在触发时的时间差即为触头从开始打开瞬间到达到最大开距时的时间。实验结果如图10所示,取6组实验结果做平均值计算为1.69ms。 (a) 第一次实验波形图                    (b) 第二次实验波形图 (c) 第三次实验波形图                      (d) 第四次实验波形图 (e) 第五次实验波形图                    (f)第六次实验波形图 图10 实验波形图 对比仿真结果与实验数据,在触头从打开瞬间到最大距离所用的时间分别为1.6ms和1.69ms,结果非常接近,从时间上验证该方法可以准确的模拟出机构在脱扣瞬间的分断速度及相关参数。 4、结论 本文就某小型断路器为例,通过PRO/E建立其在合闸稳定状态下的机构骨架,用该机构骨架给ADAMS建模奠定各杆件的关键点位置,再赋予各构件正确的质量、质心及转动惯量,可以正确的模拟出机构脱扣的分断过程。相比将整个模型导入ADAMS建模仿真,计算更快速更有针对性,结果更准确;模拟了分断过程机构复杂的变化过程;从实验来看触头的动作时间非常接近,从一方面验证了该方法的正确性,从仿真结果看该机构前1.3ms为脱扣瞬间到触头分开瞬间的时间,即机构动作的固有时间,在触头运行到最大开距5.2mm时,所用时间为2.9ms,此时速度为5.2m/s,与国内外相关文献获取的结果相仿[4],进一步说明这个方法较为准确,有一定的实际意义。 【参考文献】 [1] 孙恒 陈作模 葛文杰 著 机械原理[M]. 高等教育出版社2006.5 [2] 陈志伟 董月亮 MSC ADAMS 多体动力学仿真基础与实例解析[M] 中国水利水电出版社 2012.6 [3] 王伯雄 著 测试技术基础[M] 清华大学出版社 2003.4 [4] 叶析泉 断路器触头分断特性的分析和计算[J]  低压电器1996:36~40 作者简介: 郑云(1986-),男,硕士生,从事低压电器产品设计 林川(1986-),男,本科生,从事低压电器产品设计
本文档为【(郑云)基于ADAMS的断路器分断速度计算】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_321575
暂无简介~
格式:doc
大小:50KB
软件:Word
页数:0
分类:教育学
上传时间:2019-07-20
浏览量:18