首页 《高中数学联赛试题——立体几何》

《高中数学联赛试题——立体几何》

举报
开通vip

《高中数学联赛试题——立体几何》《高中数学联赛试题——立体几何》 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考 查内容。竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的 内容常会涉及角、距离、体积等计算。解决这些问题常会用到转化、分割与补形等重 要的数学思想方法。 。 (1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数 为 (A)4; (B)8; (C)12; (D)24。 一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边 必须是正方体的面对角线。考虑...

《高中数学联赛试题——立体几何》
《高中数学联赛试题——立体几何》 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考 查内容。竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的 内容常会涉及角、距离、体积等计算。解决这些问题常会用到转化、分割与补形等重 要的数学思想方法。 。 (1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数 为 (A)4; (B)8; (C)12; (D)24。 一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边 必须是正方体的面对角线。考虑正方体的12条面对角线,从中任取一条可与其他面 对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有 边共出现1224C,次,而每一个三角形由三边构成,故一共可构成的等边三角形个12 24数为个。 ,83 、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条 棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数 是 。 :就四棱锥P—ABCD而言,显然顶点P的颜色必定不同于A、B、C、D四点,于是分三种情况考虑: ? 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3A,60(种) 5 14? 若使用四种颜色,底面有一对对角线同色,其染色种数为:CA,,240(种) 25 5? 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:A,120(种) 5 故不同染色方法种数是:420种。 37 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种。其 中两条异面直线所成的角通过作两条异面直线的平行线找到 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示异面直线所成角的 相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平 面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的 办法得到,其角度范围是;二面角在求解的过程当中一般要先找到二面角的0,90::,, 平面角,三种方法:?作棱的垂面和两个半平面相交;?过棱上任意一点分别于两个 半平面内引棱的垂线;?根据三垂线定理或逆定理。另外还可以根据面积射影定理 ,,得到。式中表示射影多边形的面积,表示原多边形的面积,即为SS,,cos,SS, 所求二面角。 、直线,,,和平面斜交于一点,是在内的射影,是平面内OAOOBOAOC 过点的任一直线,设,,,,,,AOCAOBBOC,,,,,. OA 求证:coscoscos,,,,, B 如图,设射线任意一点,过作 AAOAO C , 于点,又作于点,连 BAB,,BCOC,C 接。有: AC OCOBOCcoscoscos,,,,,cos,cos,cos;,,,,,, 所以,。 OAOAOB 上述结论经常会结合以下课本例题一起使用。过平面内一个角的顶点作平面 的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定 会落在这个角的角平分线上。利用全等三角形即可证明结论成立。 ?从上述等式的三项可以看出cos,值最小,于是可得结论:平面的一条斜线 和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小。 (1997年全国联赛一试)如图,正四面体ABCD中,E在棱AB上,F在棱CD上, 38 AECF,使得:,记,其中表示EF与AC所成,,,,,,,0f,,,,,,,,,,,,EBFD 的角,其中,表示EF与BD所成的角,则: , (A)在单调增加; f,0,,,,,,,A (B)在单调减少; f,0,,,,,,, E (C)在单调增加;在单调减少; f,0,11,,,,,,,,, D B F (D)在为常数。` f,0,,,G ,,,,C :根据题意可首先找到与,,,对应的角。作EG?AC,交BC于G,连FG。显然 ,, FG?BD,?GEF=,,,?GFE=。 ,, ?AC?BD,?EG?FG ?,,,,:90 ,, 、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于,,则 。 sin,, :正方体的12条棱可分为三组,一个平面与12 C B 条棱的夹角都等于,只需该平面与正方体的过同一 D A 个顶点的三条棱所成的角都等于,即可。如图所示的 O 平面,,就是合乎要求的平面,于是: ABD C, B 3, A, Dsin,, 3 222设锐角coscoscos1,,,,,,,,,,,满足:。 CB1 1 求证:tantantan22,,,,,,。 D1 A1 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 :构造长方体模型。构造如图所示的长方体 ABCD—ABCD,连接AC、AC、BC、DC。 111111111C B 过同一个顶点的三条棱AD、AB、AA与对角线 1D A 39 AC所成的角为锐角,满足: ,,,,,1 222coscoscos1,,,,,, 不妨设长方体过同一个顶点的三条棱AD、AB、AA的长分别为。则: abc,,1 222222bcbccaacabab,,,222tan,tan,tan,,,,,,,,, aabbcc 以上三式相乘即可。 证明二:因为为锐角,故: ,,,,, 2222sin1coscoscos2coscos,,,,,,,,,,,,,, ?,,sin2coscos,,,同理:,三式相乘。 sin2coscos,sin2coscos,,,,,,,,,, 、(1994年全国联赛一试)在正n棱锥中,相邻两侧面所成的二面角的取值范围 是 n,2n,1,nn,,21,,,,,,,,(A) ,,,,,,,0,,,; (B) ; (C) ; (D) 。 ,,,,,,,,nnnn2,,,,,,,, :根据正n棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n边形的内角,同时小于,,于是得到(A)。 、(1992年全国联赛一试)设四面体四个面的面积分别为S、S、S、S,它们的1234 SSSS,,,1234最大值为S,记,,,则一定满足 ,S (A) ; (B) ; (C) ; (D) 。 24,,,34,,,2.54.5,,,3.55.5,,, :因为 SS, i,1,2,3,4,,i SSSS,,,1234所以 ,4。特别的,当四面体为正四面体时取等号。 S 另一方面,构造一个侧面与底面所成角均为的三棱锥,设底面面积为S,则: 45:4 40 SSSSSS,,,,,,:cos45SSSS,,,,,1231231234, ,,,,,122.5,SSSS,,,:cos45,,123 若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥, 另外此时有SSSS,,,,也就是,于是必须。故选(A)。,,2,,21234 、(2003年全国联赛一试)将八个半径为1的小球分两层放置在一个圆柱内,并 使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的 高等于 。 :立体几何问题的处理常需要抓住其主要特征,作为球体其主要特征无疑为球心 与球半径,将八个小球的球心独立出来即可得到一个如图所示的几何体。 ACEG—BFG1 1 DFH,此几何题每相邻两点间的距离为2, 1111H1 E1 显然,两底面ACEG与BDFH间的距离加上2即为所求 1111A1 B1 1 DC1 符合条件的圆柱体的高。于是将该几何体补形成为如图 所示的正八棱柱求其高,也就是求其中一个部分,三棱 F G H 锥BE —ABC的高,然后加上2即可。取AC的中点O,连 1O A D B C 接BO、B3O,易知:BO= 11 ,2sin,42在等腰三角形ABC中,AC=2,,,,,tan21ABC=,BO=, ,135:,82,1cos,142(线段BO的长度也可以通过正八边形外接圆半径2减去正方形边长的一半1得到) 在直角三角形BBO中: 1 2244BBh,,82=?所求圆柱体的高: 321228,,,,1,,,, 、(2001年全国联赛一试)正方体ABCD—ABCD的棱长为1,则直线AC与BD1111111 41 C1 1 的距离是 。 F D在立体几何中求距离,最常用的解题思想是转化。 AB1 1 线线距转化为线面距、线面距转化为面面距、面面距转 E D C 化为点面距、点面距转化为点线距,最终常常化为在一 个平面内求一点到一条直线的垂线段的长度。 A B 连接BD交线段AC于点F,取BB的中点E,连接AE、CE,显然,BD?平面ACE。 1111111111 于是,将两条异面直线之间的距离转化为直线与平面之间的距离,易知,所求距离为 3。 4 (1997年全国联赛一试)已知三棱锥S—ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S、A、B、C四点都在以O为球心的某个球面上, 则点O到平面ABC的距离为 。 S :作SD?平面ABC于D,连接BD,因为SA=SB=SC=2, 所以点D为底面三角形ABC的外心,即D为AB的中点, 同时,球心O必在线段SD上。所求点O到平面ABC的 O A 距离即为线段OD的长。设球半径D rx,OD=,则: B C 22,rx,,13,x, 解得:。 ,3rx,,3,, 、(1996年全国联赛一试)高为8的圆台内有一个半径为2的球O,球心O在11 圆台的轴上,球O与圆台的上底面、侧面都相切。圆台内可再放入一个半径为3的球1 O,使得球O与球O、圆台的下底面及侧面都只有一个公共点。除球O,圆台内最多2212 还能放入半径为3的球的个数是 (A) 1 ; (B) 2 ; (C) 3; (D) 4 。 :根据所放球的特点,加入的小球和球O应该都与球O、圆台的下底面及侧面都21 只有一个公共点,即加入小球的球心与O均匀分布在与底面距离为3,圆台轴的周围。2 42 如图:作OO?轴OO于O,则: 21 A 1 O O2 O OO 2 B 22OO,,,,,,,,238232594 ,,,,2 原问题即需考查在半径为4的圆周上,均匀分布着几个半径为3且不相交的圆。设: 3?AOO,=?BOO=,则,显然,,故可排列3个圆。即可加sin,,4560:,,:,224 入两个小球。 、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起, 恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两点间的距离是 。 :设正三棱锥的底面边长为a,侧棱长为,则: bP 2a2ab,2ba322F 即: ,,,b222223aaA abb,,,C 44O D bE B 3b化简得: a, 2, P所以,,,ab,,3,2。于是可求得线段的长:。于是有最远距pp,,,2432PP 离为底边长3。 、(1992年全国联赛一试)设l、m是两条异面直线,在l上有A、B、C三个点,且AB=BC,过A、B、C分别作m的垂线AD、BE、CF,垂足依次为D、E、F,已知AD= 71510,BE=,CF=。求l与m的距离。 2 43 B l:设的公垂线段为LM,过点M作 lm, L C A ,,另作如图所示的垂线段。 ll H , l若点A、B、C在点L的同侧,设所求距离为, dm G I 27,,M 222F d,6 解得:, 21510,,,,,dddE ,,D 2,, 若点A、B、C在点L的两侧,如图所示有,即有等式: 2EHDIFG,, C A M B 27,,222 l, 21510,,,,,ddd,,2,, F H I 解得:d,6。 m G N E D 、(2003年全国联赛一试)在四面体ABCD中,设ABCD,,1,3,直线AB ,与的距离为2,夹角为,则四面体ABCD的体积等于 CD3A 3113 ; ; ; ABCD ,,,,,,,,2233 1E :根据锥体的体积公式我们知道:V=,,Sh。 3B D 从题目所给条件看,已知长度的两条线段分别位于 C 两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距。显然需要进行 转化。 作BE?CD,且BE=CD,连接DE、AE,显然,三棱锥A—BCD与三棱锥A—BDE 底面积和高都相等,故它们有相等的体积。于是有: 111VVVShABBEABEh,,,,,,,,,sin ABCDABDEDABEBDE,,,,362 22(2002年全国联赛一试)由曲线xyxyxx,,,,,,4,4,4,4围成的图形 44 绕轴旋转一周所得旋转体的体积为V,满足 y1 222222的点组成的图形绕轴旋转xyxyxy,,,,,,,,16,24,24xy,y,,,,,, 一周所得旋转体的体积为V,则: 2 12(A)V=V; (B)V=V; (C)V=V; (D)V=V; 21212121223 :我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖 暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则 这两个几何体的体积相等。运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算。如计算球的体积时我们可以将半球转化为圆柱与圆 锥的组合体。显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下: 取 ,则: yaa,,,,44,, 2 Saa,,,,,,162164,,,,,,1 222当时: Saaa,,,,,,,,,,,,,1642164a,0,,,,,,2 222当时: Saaa,,,,,,,,,,,,,1642164a,0,,,,,,2 显然,SS,VV,,于是有:。 1212 (2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的 棱长为a,则这个球的体积是 。 由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各 棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球 45 22ra,心,所以每组对棱间的距离即为内切球的直径,于是有: 2 3,,4223P ? ,,,,Vaa,, ,,,,3424,, :同样可用体积法求出棱长为a的正四面体的外 r 接球和内切球的半径。分析可知,正四面体的内切球 O C R 与外接球球心相同,将球心与正四面体的个顶点相连, A B D E 可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度 的四分之一,外接球半径即为高度的四分之三。故只要求出正四面体的高度即可。 2,,66326又:22Rara,,,,所以,。 haaaa,,,,,,,,412333,, 、(1999年全国联赛一试)已知三棱锥S--ABC的底面为正三角形,A点在侧面 SBC上的射影H是23SBC的垂心,二面角H-AB-C的平面角等于30,SA=。那么,,:S 三棱锥S-ABC的体积为 。 :在求解立体几何问题时,往往需要首先明白所要 D 考查对象的图形特点。连接BH并延长交SC于D,连AD。 H C ?H为A SBC的垂心 ,O E B ?BD?SC, 且 HD?SC ,故 AD?SC ,SC?平面ABC ?SC?AB 作SO?平面ABC于O,连接CO并延长交AB于E,易知:CE?AB,连DE。 ?AB=AC ?HB=HC,即A在平面SBC内的射影H在线段BC的垂直平分线上,而点H是SBC的, 垂心,可知SBC为SB=SC的等腰三角形。 , ?S在平面ABC内的射影O在线段BC的垂直平分线上。 46 3a故射影O为ABC的中心,三棱锥S—ABC为正三棱锥。设底面边长为,则CE=, ,2a?SA=SB=SC=23 22?SO=3,OC=CE= 3,3a33 11139? VSh,,,,,,,,3333SABCABC,,33224 、(1998年全国联赛一试)中,,是,,:,,:,CBAC90,30,2M,ABC 的中点。将沿折起,使A、B两点间的距离为,此时三棱锥A—BCM22AB,ACMCM 的体积等于 。 :关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题 的关键, A A 问题中经常会涉 D 及折叠图形形成 M D M F 二面角,在折叠 F B C B 前作一条直线与 C E E 折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终 能代表图形折叠所形成的二面角的大小。此外,通过分析可知解决本例的另一个关键 是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了。 如图,作BD?CM的延长线相交于D,AF?CM于F,并延长到E,使EF=BD,连BE。 显然,AF=EF=BD= 2223,EB=DF=2,所以: AE=AB-EB=8-4=4 三棱锥A—BCM的高即点A到平面BCM的距离也就是等腰AEF中点A到边EF的距离。,根据面积相等可求得: 23126,,h,,. 33 47 112622V,,,,,,231? 3233 、(1995年全国联赛一试)设O是正三棱锥P—ABC底面?ABC的中心,过O的动平面与P—ABC的三条侧棱或其延长线的交点分别记为Q、R、S,则和式111,, PQPRPS (A)有最大值而无最小值; (B)有最小值而无最大值; (C)既有最大值又有最小值,且最大值与最小值不等; (D)是一个与平面QRS位置无关的常量。 A :借助于分割思想,将三棱锥P—QRS Q 划分成三个以O为顶点,以三个侧面为 底面的三棱锥O—PQR,O—PRS,O—PSQ。 O S C 显然三个三棱锥的高相等,设为P ,又设 hB R ,,QPR,,,,RPSSPQ,,于是有: 1 VVVVSSSh,,,,,,,,,PQRSOPQROPRSOPSQPQRPRSPSQ,,,,,,,3 1,,,,,,,,PQPRPRPSPSPQhsin, ,,6 1又:VVPQPRPS,,,,,,sinsin,,, PQRSQPRS,,6 其中为PQ与平面PRS所成的角。 , ?,,,,,,,,,,,,PQPRPRPSPSPQhPQPRPSsinsinsin,,,,, 111sin,于是得:,,, hPQPRPS 、(1993年全国联赛一试)三棱锥S—ABC中,侧棱SA、SB、SC两两互相垂直,M为三角形ABC的重心,D为AB中点,作与SC平行的直线DP。 48 证明:(1)DP与SM相交; (2)设DP与SM的交点为,,则D为三棱锥S—ABC的外接球的球心。 D :根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C、M、D三点共线,显然,点C、S、D、M C G 在同一平面内。于是有DP与SM相交。 ,DDDM1又因为:H F ,而点D为长 ,,SCMC2 , D方体的底面SAEB的中心,故必有点,为 DS M B 对角线SF的中点,即为长方体的也是三棱 D A 锥的外接球的球心。 E 、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k条,使得其中任意两条线段所在的直线都是异面直线,则k的最大值是 。 本题可以采用构造法求解。考查图中的 C1 D1 四条线段:AAD、AC、BC、BD,显然其中任意 11111 B1 两条都是异面直线。另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, D C 因为5条线段中任意两条均为异面直线, A B 所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大 于或等于10个,这与题中的正方体相矛盾。故:。 k,4 、(1991年全国联赛一试)设正三棱锥P—ABC的高为PO,M为PO的中点,过AM作与棱BC平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比。 P :取BC的中点D,连接PD交AM于G,设 所作的平行于BC的平面交平面PBC于EF,由 F G 直线与平面平行的性质定理得:EF?BC,连接 M H E C AE,AF,则平面AEF为合乎要求的截面。 作OH?PG,交AG于点H,则:OH=PG。 A D O 49 B BCPDPGGDGDGDAD,5; ,,,,,,,,,111EFPGPGPGOHAO2 2V4VSEF4,,APEF,APEFPEF,,故:,;于是:。 ,,,,,V21VSBC25AEFBC,,,APBCPBC,, 50
本文档为【《高中数学联赛试题——立体几何》】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_841159
暂无简介~
格式:doc
大小:42KB
软件:Word
页数:15
分类:初中语文
上传时间:2017-10-11
浏览量:43