首页 数字化X线摄影技术

数字化X线摄影技术

举报
开通vip

数字化X线摄影技术数字化X线摄影技术 数字化X线摄影技术(DR) 一、 DR 的命名和分类 DR 的分类还是不很统一,归纳起来目前大致有以下几种方式 : 1. 按读出方式分类 读出方式是指从 X 射线曝光到图像的显示过程,可以分为直接读出方式 (Direct Readout) 和非直接读出方式 (Nondirect Readout) 。直接读出方式是指从 X 射线曝光到图像的显示过程没有更多的人为干预,病人经过 X 射线曝光后,医生即可在显示器上观察到图像。这一技术最先提出的是瑞士 Swissray 公司,它的产品称为 d...

数字化X线摄影技术
数字化X线摄影技术 数字化X线摄影技术(DR) 一、 DR 的命名和分类 DR 的分类还是不很统一,归纳起来目前大致有以下几种方式 : 1. 按读出方式分类 读出方式是指从 X 射线曝光到图像的显示过程,可以分为直接读出方式 (Direct Readout) 和非直接读出方式 (Nondirect Readout) 。直接读出方式是指从 X 射线曝光到图像的显示过程没有更多的人为干预,病人经过 X 射线曝光后,医生即可在显示器上观察到图像。这一技术最先提出的是瑞士 Swissray 公司,它的产品称为 dDR ,其中 d 的含义即为直接读出 (Direct Readout) 的意思。 dDR 有别于日本 Fuji 公司的 CR(Computed Radiography) ,因为后者需用成像板 (Imaging Plate ,简称 IP 板 ) 进行 X 射线曝光,之后 IP 板需要用读出器 (Reader) 去扫,再在显示器上显示,因此是一种非直接读出方式。 2. 按转换方式分类 可以分为直接转换方式 (Direct Convert) 和间接转换方式 (Indirect Covert) 。最早是杜邦公司的产品,命名为 DR-Direct RayTM ,其所谓的 Direct ( 直接 ) 就是指直接转换方式。这一方式采用的器件在经过 X 射线曝光后, X 射线光子直接转换为电信号,而不像间接转换方式的器件先要将 X 射线光子转变为可见光,然后再转换为电信号。 这两种转换方式的技术所采用的器件有平板检测器 (Flat Pannel Detector ,简称 FPD) ,也有采用其他器件和结构的。当然两种方式所采用的 FPD 结构是不同的。 3. 按工作方式分类 传统放射科工作分为透视和照相两大部分,因此人们将数字化技术也分为透视和照相两类,即数字化透视 (Digital Fluorography 简称 DF 或 DSI , DSF) 和数字化照相 (Digital Radiography 简称 DR) 。数字化透视有用影像增强器 (I.I.) 加上摄像机采集信号和用 FPD 采集信号两类。数字化照相则分为直接转换方式 (DDR , Direct Digital Radiography) 和间接转换方式 (IDR , Indirect Digital Radiography) 。直接方式采用的器件有用直接方式的 FPD 和电离室、硒鼓等 ; 间接方式采用的器件有用间接方式的 FPD 和其他器件如 CR 的 IP 板、电荷耦合器件 (Charge Coupling Device , CCD) 、互补型金属氧化物半导体 (Complementary Metal Oxide Semiconductor , CMOS) 等。 从以上的各种分类方法来看 DR 应该是一个泛指的、广义的名词,它包括了各类数字化 X 射线摄影 (Digital Radiography) 技术。单从 DR 这一名称,无法了解设备的技术和性能,并且常常会被由其带来的一些模糊概念所混淆。因此应从技术的角度了解其技术基础和实现这一技术所采用的器件才能对设备有正确的了解。以下简单地介绍目前采用各类技术的有关公司,以便了解各公司产品所采用的技术。 1. 成像板技术 (IP Technique) 即 CR(Computed Radiography) 。 CR 是用类似增感屏的 IP 板经 X 射线曝光后,再经读出器用激光扫描并光电转换后获得电信号,后者再经 A/D 转换、处理、形成数字图像。虽然 CR 也属于 DR 范畴,不过多年来已成为一特定的名词,因此已不陌生也不会为人们所混淆。目前采用此技术的公司有三类 : 其一是各胶片制造商,如 Fuji ,柯达, Agfa , Konica 公司等 ; 第二类是 X 射线主机生产厂,如西门子 ( 机型为 DLR , DIGISCAN 3) ,飞利浦 ( 机型为 PCR , AC 500 , AC 5000) 公司等,第三类是有些数字化仪 (Digitizer) 生产厂或小公司如 Lumisys , Angstrom , PhorMax , Orex 公司等。 2. 平板检测器技术 (FPD Technique) FPD 可分为直接和间接两类。 直接 FPD 的结构主要是由非晶硒层 (amorphous Selemium , a-Se) 加薄膜半导体阵列 (Thin Film Transistor array , TFT) 构成的平板检测器。由于非晶硒是一种光电导材料,因此经 X 射线曝光后由于电导率的改变就形成图像电信号,通过 TFT 检测阵列,再经 A/D 转换、处理获得数字化图像在显示器上显示。采用这一技术的有 DRC ,东芝,岛津, AnRad 公司等。 间接 FPD 的结构主要是由闪烁体或荧光体层加具有光电二极管作用的非晶硅层 (amorphous Silicom , a-Si) 再加 TFT 阵列构成的平板检测器。此类平板的闪烁体或荧光体层经 X 射线曝光后,可以将 X 射线光子转换为可见光,而后由具有光电二极管作用的非晶硅层变为图像电信号,经过 TFT 阵列其后的过程则与直接 FPD 相似,最后获得数字图像。间接 FPD 由于有可见光的转换过程,因此会有光的散射问题,而影响图像的分辨率。闪烁体目前主要有碘化铯 (CsI) ,荧光体则有硫氧化钆 (GdSO , GdSO 一般用的是柯达公司的 Lanex 增感屏 ) ,采用 CsI+a-Si+TFT 结构的有 Trixell 和 GE 公司等,而采用 GdSO+a-Si+TFT 有 Canon 和瓦里安公司等。 3. 其他技术 包括采用 CCD 或 CMOS 器件以及线扫描技术等。其中采用 CCD 和 CMOS 器件的结构,包括可见光转换屏,光学系统和 CCD 或 CMOS 。 X 射线是先通过由闪烁体或荧光体构成的可见光转换屏,将 X 射线光子变为可见光图像,而后通过光学系统由 CCD 或 CMOS 采集转换为图像电信号。它所用的可见光转换屏同样有用 CsI 和 GdSO 两类材料之分。采用 CsI+CCD 有 Swissray(4 片 CCD 元件 ) , Wuestec(2 片 CCD 元件 ) , AID(1 片 CCD 元件 ) , Apelem , Trex 等公司。采用 GdSO+CCD 有 Raysis 公司 (1 片 CCD 元件 ) ,在 CCD 和闪烁体层之间则有光学系统—透镜或光导纤维连接。采用 CsI+CMOS 的有 Cares built 公司 (400 片 CMOS 电路 ) , GdSO+CMOS 的有 Tradix 公司 (16 片 CMOS 电路 ) 等公司。而采用线扫描技术则有 Fisher 公司 ( 条状 CCD 结构,用线扫描的方式掠过被照体 ) ,以及我国的航天中兴公司的 LDRD ( 电离室技术 ) 等。 研制生产以上这些技术和器件的公司除了有的自行生产数字 X 射线摄影 X 射线整机外,还以 OEM 方式将 FPD 提供给其他 X 射线整机生产厂。 DRC 公司的直接 FPD 除了提供给 Hologic , Lorad ,柯 达公司外,我国的东健公司、友通公司也采用 DRC 的 FPD 配套生产数字化 X 射线整机。 Trixell 公司的间接 FPD 提供给西门子,飞利浦以及我国的东软公司等。瓦里安公司的 FPD 提供给瓦里安,皮克,及我国的东软、万东等公司。 GE 公司的血管机和 DR 机则采用其自行生产的间接 FPD 。 Canon 公司的间接 FPD 提供给 Canon , Trex 等公司。 这几年来在市场并购、重组的形势下许多公司已经消失和更名了。如生产 CR 的 Lumisys 公司为柯达兼并,生产直接 FPD 的 Dupont 公司几经变化从 Sterling 到 DRC ,前年又为 Hologic 公司所兼并,生产间接 FPD 的 EG & G 公司也已为 GE 公司所兼并, dpiX 公司被瓦里安公司兼并,这种模式已是目前市场经济发展的趋势,从技术的垄断直到达到市场垄断的目的。 二、新的技术和应用 1. 数字化 X 射线透视 (DF) 方面 目前有两个趋向,一是从沿用多年的摄像管 (Pickup Tube) 技术向 CCD 摄像机转换,目前大多数的血管机和多功能数字化 R/F 机均已采用了 CCD 摄像机,今年 RSNA 会上西门子公司宣布其血管机 Axion 系列已全部改用了 CCD 摄像机,这当然与 CCD 技术的成熟和性能的提高分不开。目前 1K × 1K , 12 bits 的 CCD 是主流。在今年的会上日本的日立公司也重点介绍了他们今年推出的采用 2K × 2K , 12bits CCD 的高图像质量 Clavis 多功能胃肠机。数字化透视的第二个趋向是影像增强器 (I.I.) 终究会被 FPD 所取代。这个趋势今年是明显可见的,主要的原因是动态 FPD 有了长足的进展,除了已经商品化的 GE 公司的 Innova 2000 心血管机已采用了 FPD 取代 I.I. 外 ; 东芝、岛津、瓦里安的动态 FPD 都有进展。去年东芝和岛津公司的直接转换方式的动态 FPD 展示的仅仅是模型或动物试验,而今年已有人体应用的图片。东芝公司展示了 FPD 与机器配套的装置,岛津公司也预言两年内所有的 I.I. 将被 FPD 所取代,他们并且已为目前多功能机做了升级的准备。瓦里安公司在会上展出了 30cm × 40cm 的大尺寸间接方式的动态 FPD ,日立公司也采用了瓦里安的间接方式动态 FPD 装在多功能透视机上,目前正在东京的国立癌中心进行 I.I. 和 FPD 的临床对照试验。预言 1~2 年即可投放市场。这些都预示着 FPD 取代沿用 40 余年的 I.I. 技术的日子将会很快到来。 2. 数字化 X 射线摄影 (DR) 方面 重点介绍几个公司今年发布或展出的一些新技术。 a. Fuji 公司 Fuji 公司是 CR 的创始者,今年它在以往 100m 乳腺 CR 的基础上,又推出了 50m 乳腺 CR ,较大程度地改善了图像质量,为了提高 DQE 又采取了双面扫描读出器,并且在暗盒结构上也作了改进,新的暗盒只有三面有边框,一面没有边框以便使 IP 板更好地贴近胸壁,能更多的包括乳腺组织,以免遗漏病灶 ( 图 4) 。他们在乳腺 CAD 方面也进行了研究工作。另外为了解决脊柱侧弯的手术测量需要,开发了用两个装有 IP 板暗盒同时曝光和再进行图像拼接技术解决了脊柱全长摄影,另外此次也展出了用 IP 板的 CR 方式 X 射线摄影床。 在新的功能方面他们开发了 CR 能量减影 (Energy Subtraction) 和时间减影 (Tempolar Subtraction)( 去年这一技术尚为 WIP) 。由于胸部 X 射线片大约有 40% 的病灶被肋骨重叠,特别有时一些小的结节病灶往往被肋骨重叠而漏诊,因此很多公司均在数字化图像的基础上开发能量减影技术,用高能量曝光获得的肋骨片与 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 片相减,把标准片上的肋骨重叠影去除,而使被遮盖的小病灶得以显示。 Fuji 公司在能量减影方面采用了在两片 IP 之间加一片 0.3mm Cu 的滤过板 ( 图 6) ,装入暗盒,一次曝光可以得到三幅图像,一是普通标准胸片,一幅高能量胸片 ( 主要是骨结构 ) ,另一幅减影后的肺组织片。由于是一次曝光,所以它的减影效果比较好。时间减影则是将不同时间的两幅数字化胸片相减以尽早发现病变或可以进行病灶的随访比较。由于两幅不同时间的照片位置难免有错位,在处理时会发生定位错误 (Missregistration) , Fuji 公司采用的是在一张照片上采用周边 4 个点和中央一点的参考点校正方法,与别的公司有所不同。 b. DRC 公司 DRC 公司是最先发明直接转换方式平板检测器技术的公司,今年宣布采用非晶硒技术直接方式的 70m 乳腺 FPD 已研制成功,并和 Lorad 公司合作生产了新一代数字化乳腺机,并进行了临床的试用,其图像质量与 Lorad 公司采用通常的 CCD 方式的数字化乳腺机相比较有明显的提高。目前正等待美国 FDA 的批准。另方面为了提高直接方式 FPD 的 DQE 指标, DRC 公司正在进行硒板的掺杂工作,掺杂的元素有 Cl , As 等。至于动态的直接方式 FPD 也在研究中。 c. Fisher Imaging 公司 在本次展会上 Fisher 公司展出了 SenoScan 数字化乳腺机。它是采用条状探测器,用线扫描技术得到数字化乳腺图像,条状探测器是由将 X 光子转换为可见光的闪烁体和四片 CCD 构成,扫描范围 21cm × 29cm 。它的特点是由于是采用窄缝曝光线扫描,因此大大减少了散乱线 ( 图 9) ,也减少了乳腺的皮肤剂量和提高了分辨率。其图像象素在高分辨率模式时可以达到 25mm ,标准分辨率图像的象素则为 50mm 。但是由于是线扫描因此曝光时间较长,整个曝光时间约 5s(250ms/cm) ,另外球管的热容量要高,所以它的 X 射线管的阳极是采用铼钨合金靶。 d. Cares Built 公司 Cares Built 公司是生产以 CMOS 器件为基础的平板检测器公司,其 FPD 用了 400 片 CMOS ,它的矩阵可达 7K ,象素为 70mm ,是目前较少的几个象素小于 100mm 的公司之一。几年来深为大家所关注,今年在会上宣布它已得到美国 FDA 的批准。并且配套生产了整机。 e. 瓦里安公司 瓦里安公司在兼并了 dip X 公司以后,在后者的基础上对平板检测器继续进行研究,在今年会上展示了大面积的间接方式的动态 FPD 。其结构为 GdSO+ a-Silicon+TFT ,面积达到 30 × 40cm ,速度可达 30f/s 。日本日立公司正在应用这一动态平板检测器配合多功能胃肠机进行平板检测器和影像增强器的对比试验,估计 1~2 年内将会推向市场。 f. Trex enterprises 公司 Trex enterprises 公司在会上推出了便携式数字化 X 射线机 (Portable Digital X-ray System) 型号为 PDX 2000( 图 10) 。它所采用的器件是日本 Canon 公司 CXDI-22 间接方式平板检测器,其象素为 160mm ,而新一代平板检测器的象素则已经可以达到 100mm 。这是便携式数字化 X 射线机的一个先例,目前是用于军用,是否也可以用于床旁照相值得关注。 g. GE 公司 GE 公司是生产医学影像设备的一个大公司,它既有生产 X 射线整机的能力又具备自行生产间接方式平板检测器的能力,因此它在 DR 技术发展是迅速的。它的数字化多功能机、心血管机、数字化 X 射线摄影机均已推出多年,去年又推出具有动态 FPD 的心血管专用机 Innova 2000( 图 11) 。在此基础上它在数字化技术的应用方面也进行了大量的工作,为 X 射线应用开拓新的领域。在这些方面有能量减影 (Energy Subtraction) 、时间减影 (Temporal Subtraction) 、断层合成 (Tomosynthesis) 、组织均衡化 (Tissue Equalization) 、数字减影乳腺摄影 (Digital Subtraction Mammography) 等,其中有些技术已较成熟并开始临床使用,大部分则尚属处在研究开发中 (WIP) 。 GE 的能量减影与前述 Fuji 公司有所不同,它是两次分别用不同的能量 (kV) 进行曝光,分别获得一幅高能图像和一幅标准图像,再将两者相减得到减影图像。由于两次曝光之间时间相隔仅为 200ms ,因此一般情况不会由于呼吸或其他运动影响减影图像的质量。它的时间减影则将图像分割为许多小区,采取多个参考点纠正的方法。 会上发布和展出的内容很多,由于时间的限制以及个人认识的局限性,因此挂一漏万在所难免,只能重点介绍以上一些,以飨读者。 三、 DR 和 CAD 每年 RSNA 开幕式的大会上都会安排一个主题的学术报告,今年开幕式的主题学术报告为计算机辅助诊断 (CAD) ,共有两个报告分别是美国芝加哥 Heber MacMahon 的胸部成像的计算机辅助诊断 (Computer-assisted Diagnosis in Chest Imaging) 和纽约 Robert A.Schmidt 的乳腺成像的计算机辅助诊断 (Computer-assisted Diagnosis in Mammography) 。 MacMahon 介绍了 CAD 的理论、人工神经网络 (Artificial Neural Network , ANN) 和在胸部病变的应用,特别是能量减影和时间减影的应用,目前在胸部除了结节病灶外还用于肺的间质病变、气胸以及心脏扩大等方面。 Schmidt 介绍了乳腺计算机辅助诊断,采用了计算机对乳腺癌诊断无论是敏感性或特异性均有提高。并且谈到目前广泛采用的基于胶片数字化仪的信息采集方式可以提高检测的敏感性,对特异性也不会有明显的降低,但是假如采用了数字化乳腺摄影则将有助于诊断结果的更进一步提高。这些论点是一个重要的信号,它提示我们 CAD 将是人们应该关注的一个热点。 计算机辅助诊断可以追溯到上一个世纪 70 年代,当时是医生从病人的 X 线照片读取诊断信息,借助从经验获得和积累了大量诊断信息的数据库,利用统计学的原理,通过计算机处理获得最后的诊断。当时用来进行诊断的病种局限在某些具有明显诊断特征的病种,如乳腺癌、先天性心脏病、某些骨肿瘤等。这一方法信息的采集是依靠医生的双眼,这就必然地受到医生的经验,主观意识的干扰以及胶片质量等等的影响,而最终影响诊断的结果。因此在 70 到 80 年代之间计算机辅助诊断的进展不是很快。但是人们总在设想,会有一天机器能代替人眼,摆脱一切干扰的因素,获得正确的诊断结果。 到上一个世纪 90 年代由于数字化仪 (Digitizer) 的问世,人们可以把 X 线胶片的模拟图像转变为数字化图像,代替肉眼采集诊断信息。而后进行计算机处理,试图得到疾病的诊断。也就实现了计算机辅助诊断,但是研究的对象也还是局限于一些具有特殊诊断特征的病种如乳腺癌、肺部结节病灶等。 用数字化仪来采集诊断信息,比起医生肉眼观察图像已有了很大的进步,但是也还存在一定的缺点,就是其结果会受照片质量的影响,特别是胶片处理过程中的影响。因此要达到人们的初衷,即达到诊断的目的还是有一定的距离,因此更多的是把 CAD 中的 D-Diagnosis 诊断改写为 Detection ——检测, Computer Aided Detection( 计算机辅助检测 ) 。也就是代替人眼发现某些由于人眼的疲劳、疏忽等原因而遗漏的诊断信息。在这方面具有大量经验的 R2 公司介绍了 1083 例包括乳腺癌在内的乳腺筛选照片,显微钙化的发现率可达到 98.3% ,肿块可达 85.7% 。在今年的展会上,尽管大多数开发 CAD 的公司仍然采用数字化仪来采集图像,但是已有不少开发 DR 的公司如 GE , Fuji 等公司也在同时开发 CAD ,或者和开发 CAD 的公司合作,直接用从 DR 采集获得的数字图像来进行 CAD 的开发研究。这无疑能使 CAD 从信息的采集开始直到分析、诊断基本上可以脱离人为的干预而达到计算机辅助诊断的目的。当然计算机辅助诊断的基础还是脱离不了必需依靠大量的医生经验积累的信息数据库,软件的开发需要人的智慧以及需要人对机器的“训练”等等。没有人的思维,机器再智能也是无法完成的,因此计算机永远也只能是辅助诊断。 尽管目前 CAD 的敏感性和特异性还不尽人意,各种疾病、各个作者报告的结果也不一致,进展也还不是很快。但是 DR 的出现无疑给 CAD 提供了技术上强有力的支持,当会加速其进程,这将是值得我们关注的热点技术之一。 四、 小结 学校三防设施建设情况幼儿园教研工作小结高血压知识讲座小结防范电信网络诈骗宣传幼儿园师德小结 DR 是一个泛指的、广义的名词,它包括了各类数字化 X 射线摄影技术。目前的重要性已不仅仅是为了提供实现 PACS 和无胶片化放射科所必需的数字化 X 射线图像,而且由于 DR 的出现,拓展了放射诊断应用的范围,也为 CAD 创造了条件。它的出现给今天的放射科创造了一个崭新的园地。 -------<中国人民解放军第二五一医院放射科> DR系统介绍 DR(Digital Radiography),即直接数字化X射线摄影系统,是由电子暗盒、扫 描 控制器、系统控制器、影像监示器等组成,是直接将X线光子通过电子暗盒转换为数 字 化图像,是一种广义上的直接数字化X线摄影。而狭义上的直接数字化摄影即DDR (DirectDigit Radiography),通常指采用平板探测器的影像直接转换技术的数字 放 射摄影,是真正意义上的直接数字化X射线摄影系统。 DR与CR的共同点都是将X线影像信息转化为数字影像信息,其曝光宽容度相对于普 通的增感屏-胶片系统体现出某些优势:CR和DR由于采用数字技术,动态范围广,都有 很宽的曝光宽容度,因而允许照相中的技术误差,即使在一些曝光条件难以掌握的部位, 也能获得很好的图像;CR和DR可以根据临床需要进行各种图像后处理,如各种图像滤波, 窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度测量等丰富的功能,为影像诊 断中的细节观察、前后对比、定量分析提供技术支持。对两者的性能比较如下: 1.成像原理:DR是一种X线直接转换技术,它利用硒作为X线检测器,成像环节少; CR是一种X线间接转换技术,它利用图像板作为X线检测器,成像环节相对于DR较多。 2.图像分辨率:DR系统无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大 小决定;CR系统由于自身的结构,在受到X线照射时,图像板中的磷粒子使X线存在着散射,引起潜像模糊;在判读潜像过程中,激光扫描仪的激发光在穿过图像板的深部时产生着散射,沿着路径形成受激荧光,使图像模糊,降低了图像分辨率,因此当前CR系统的不足之 处主要为时间分辨率较差,不能满足动态器官和结构的显示。 3.DR是今后的发展方向,但就目前而言,DR电子暗盒的结构14 in×17 in(1 in=2.54 cm)由4块?5 in ×8 in 所组成,每块的接缝处由于工艺的限制不能做得没缝,且一旦其 中一块损坏必将导致4块全部更换,不但费用昂贵,还需改装已有的X线机设备,而CR相 对费用较低,且多台X线机可同时使用,无需改变现有设备。 4.CR系统更适用于X线平片摄影,其非专用机型可和多台常规X线摄影机匹配使用, 且更适用于复杂部位和体位的X线摄影;DR系统则较适用于透视与点片摄影及各种造影 检查,由于单机工作时的通量限制,不易取代大型医院中多机同时工作的常规X线摄影 设备,但较适用于小医疗单位和诊所的一机多用目的。事实上,CR和DR系统在相当长 的一段时间内将是一对并行发展的系统。 数字化X线影像技术的特点 数字X线机是计算机数字图像处理技术与X射线放射技术相结合而形成的一种先进的 X线机。在原有的诊断X线机直接胶片成像的基础上,通过A/D转换和D/A转换,进行实 时图像数字处理,进而使图像实现了数字化。它的出现打破了传统X线机的观念,实现了 人们梦寐以求的模拟X线图像向数字化X线图像的转变。 特点: 第一,它最突出的优点是分辩率高,图像清晰、细腻,医生可根据需要进行诸如数 字减影等多种图像后处理,以期获得理想的诊断效果。 第二,该设备在透视状态下,可实时显示数字图像,医生再根据患者病症的状况进 行数字摄影,然后通过一系列影像后处理如边缘增强、放大、黑白翻转、图像平滑等功能,可从中提取出丰富可靠的临床诊断信息,尤其对早期病灶的发现可提供良好的诊断条件。 第三,数字化X线机形成的数字化图像比传统胶片成像所需的X射线计量要少,因而 它能用较低的X线剂量得到高清晰的图像,同时也使病人减少了受X射线辐射的危害。 第四,由于它改变了已往传统的胶片摄影方法,可使医院放射线科取消原来的图像管 理方式和省去片库房,而可采用计算机无片化档案管理方法取而代之,可节省大量的资金 和场地,极大地提高工作效率。此外,由于数字化X线图像的出现,结束了X线图像不能进 入医院PACS系统的历史,为医院进行远程专家会诊和网上交流提供了极大的便利。另外, 该设备还可进行多幅图像显示,进行图像比较,以利于医生准确判别、诊断。通过图像滚 动回放功能,还可为医生回忆整个透视检查过程。 数字化X线的临床应用 数字化的图像质量与所含的影像信息量可与传统的X线成像相媲美。图像处理系统 可调节对比。故能达到最佳的视觉效果;摄照条件的宽容范围较大;患者接受的X线量减 少。图像信息可由磁盘或光盘储存,并进行传输,这些都是数字化图像的优点。 数字化图像与传统X线图像都是所摄部位总体的重叠影像,因此,传统X线能摄照 的部位也都可以用DR成像,而且对DR图像的观察与分析也与传统X线相同。所不同的是 DR图像是由一定数目的象素所组成。 数字化图像对骨结构、关结软骨及软组织的显示优于传统的X线成像,还可行矿物 盐含量的定量分析。数字化图像易于显示纵隔结构如血管和气管。对结节性病变的检出 率高于传统的X线成像,但显示肺间质与肺泡病变则不及传统的X线图像。DR在观察肠 管积气、气腹和结石等含钙病变优于传统X线图像。 用数字化图像行体层成像优于X线体层摄影。胃肠双对比造影在显示胃小区、微小病 变和肠粘膜皱襞上,数字化图像优于传统的X线造影。 DR是一种新的成像技术,在不少方面优于传统的X线成像,但从效益-价格比,尚 难于替换传统的X线成像。在临床应用上,DR不像CT与MRI那样不可代替。
本文档为【数字化X线摄影技术】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_594905
暂无简介~
格式:doc
大小:34KB
软件:Word
页数:15
分类:生活休闲
上传时间:2017-11-26
浏览量:41