下载

0下载券

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 63引力常量的测定(63 determination of gravitational cons…

63引力常量的测定(63 determination of gravitational constants).doc

63引力常量的测定(63 determination of g…

傅昭质
2018-11-20 0人阅读 举报 0 0 0 暂无简介

简介:本文档为《63引力常量的测定(63 determination of gravitational constants)doc》,可适用于社会民生领域

引力常量的测定(determinationofgravitationalconstants)引力常量的测定(determinationofgravitationalconstants)GuidanceoflearningmethodThecontentsofthissectionofthestudy,topayattentiontothebasicknowledge,basicgraspofthelawsofimplementation,tounderstandthebasiclawsofplanetaryellipticaloperationanditscauses,tousethepreviousknowledgecombinedwithKepler'slawofuniversalgravitationderivedexpressions,thissectionwillbemoretolearninsolvingphysicsproblemsassociatedwithNewtonorganiclawcomprehensiveanalysis,toanalyzethecharacteristicsofgravityandaccelerationofgravityonearthwithlatitudeusingtheformulaofcentripetalforceincircularmotionInthissectionthecutfillmethod,measuringtheopticalgravitationalconstantmagnificationmethodphysicalmethodssuchasinspirationfortheirownthinkingHardtodialFocushowtocorrectlyapplythelawofuniversalgravitationtocalculatethegravitationalattractionbetweentwoobjectsdifficultythegravitationalandgravitationalaccelerationofobjectsneartheearth'ssurfaceisrelatedtohBytheobjectsonthegroundbytheearthgravityisappliedonthebodygravitygeneratedbygravityproducestwoeffects:onecomponentistoprovidetheobjectwiththerotationoftheearthanddouniformcircularmotionofthecentripetalforcerequiredF=Mr,anothercomponentofthesameobjectisgravityonthesurfacepositionofthehigherlatitudes,thesmallertheR,withtheearthtodocircularmotionofthecentripetalforceofthesmallF,thegreaterthegravity,thesameobject,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Becausetheangularvelocityoftheearth'srotationissmall,thecentripetalforcerequiredbytheobjecttodothecircularmotionwiththeearthissmaller,andthegravityoftheobjectcanbeapproximatelythegravitationalattractionoftheearthtotheobject,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>pointerrorproneellipticalmotionofcelestialbodies,nottoNewton'ssecondlawanalysisofthecharacteristicsoftheapplicationacceleration,theerrorthattheellipticmotionwhentheforceisstillpointingtothecenteroftheellipseTheclassicexampleofreproductionanalyticalemphasiscasesinFigure,inaradiusofR=cm,M=kguniformqualitycopperball,diggingasphericalhole,theholeradiusisR,andthetangentandtheball,thecopperballhavingauniformballqualitym=kg,theballislocatedintheconnectionlinethecopperballcenterwiththecenterofthehole,andtheholeside,twocenterisd=m,findthemutualattractionbetweenthem<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Thegravitationalattractionofacopperballtoasmallspherecanberegardedastheresultantforceofthegravitationalattractionofasmallsphereinthetwopartofaspherethatisdugoutofasphericalholeandaspherethatisdugout,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>IndicatesthelawofgravityisonlyapplicabletotwoBecausetheballwasdugbetweenparticlesofcopperballcannotberegardedastheparticleSothedirectapplicationofthelawofuniversalgravitationformulatocalculatethesizeofgravitybetweenthemisimpossibleIfitwillbedugoutofthecopperballbackup,itcanberegardedasauniversalcopperballparticlesAttractionbetweenthecopperballandtheballofthefullforceofgravitycanbecalculated,andthecopperballballgravitationcanbeviewedasthefillbackcopperballandtheballwasdugoutofthegravitationandthelittlecopperball,thatisanobjectwithanotherobjectgravitationequivalenttothetwocomplementarypartsobjectsrespectivelywithanotherobjectofthegravityforce(ieand),thismethodbelongstotheproblemsinphysicsequivalentmethodcommonlyusedinphysicsTheequivalentthinkingmethodinPhysicsMethodsofphysicalproblems,findingthecenterofgravityinmechanicswhenweapplythismethod(iepatchingmethod),behindtheDCcircuitanalysismethodforcalculationofequivalentresistance,electromagneticequivalentvelocityandequivalentlength,alternatingcurrenteffectivevalueareappliedtotheequivalentthinkingmethodWeusuallylearninweshouldgraspthismethod,manycomplexproblemsintheapplicationoftheequivalentmethodcanbesatisfactorilyresolvedExampleThetimerequiredforaplanettospinoneweekishonearthOnthisplanet,theweightofanobjectismeasuredwithaspringAttheequatoroftheplanet,theweightoftheobjectisofthereadingsmeasuredatthepoles,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>analysisatthepoles,thedistancefromtheobjecttotheplanetfromtheaxisiszero,withoutcircularmotion,andgravityisthegravityoftheobject,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Ontheequator,objectsmoveinacirclewiththeplanets,onecomponentofgravityisgravity,anothercomponentprovidesthecentripetalforceofobjectstodocircularmotion,whichisderivedfromNewton'ssecondlawandthelawofuniversalgravitation:<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Thecoachingattheequatorandpoles,thedifferenteffectsofgravity,tounderstandthegravityontheplanettworespectivelyisequaltothenumber,canbedeterminedbyNewton'slawofmotionAtthepoles,objectsundergravityandgroundsupportforce,andthetwoforcesforabalanceofsupportforce,planetaryobjectsforceisequaltothegravity,thatisequaltothegravityobjectsizeinpolargravitysizetheequator,gravityandplanetaryobjectstosupportNprovidesthecentripetalforceforce,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>ItisshownthatthesupportforceNissmallerthantheuniversalgravitation,thatis,gravityissmallerthanuniversalgravitationIndealingwiththegravityofobjectswithlatitude,weshouldpayspecialattentiontothedifferencesbetweenthetwoconceptsofgravitationandgravityanalysisofdifficultiesExampleifoneday,forsomereason,theearthrotatesfaster,howwillthegravityoftheearthobjectchangeWhentheangularvelocityisequalto,<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Thegravityoftheobjectontheearth'ssurfacepointstothecenteroftheearthOnecomponentisperpendiculartotheaxisoftheearthtoprovidethecentripetalforceneededforrotation,andtheothercomponentisgravity<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Icaughtintheearth'ssurfacebygravitationalforcehasaverticalaxiswiththerotationoftheearthtoprovidethecentripetalforce,theotherpartisgravityThegravitysizeandlatitudeAttheequatorandpolesarerespectivelytheminimumandmaximum<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>Howmanytimesisthedistanceoftherocketfromtheearth'ssurfacetotheearth'sradiustheanalysisofthequalityoftheobjectism,theradiusoftheearthisR,therocketishhighfromthegroundsurface,theaccelerationofgravityisg,onthesurfaceathighaccelerationofgravityisg',then:<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>answertherocketistimestheheightoftheearthfromthegroundclickerrorpronepointsExampleasatellitemovesaroundtheearthinanellipticalorbitThedistancefromthecenteroftheearthtotheearthisaThedistancefromthecenteroftheearthtotheearthisbTherateofthesatelliteattheperigeeisv,andthespeedofthesatelliteattheapogeeis()<imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp><imgsrc=c:generallearninghighphysicsgravitationalconstantmeasurementbmp>

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

评分:

/7

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利