首页 数字功放原理.doc

数字功放原理.doc

举报
开通vip

数字功放原理.doc数字功放原理.doc 数字功放原理 数字功放也称D类功放,与模拟功放的主要差别在于功放管的工作状态。传统模拟放大器有甲类、乙类和甲乙类、丙类等。一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25% 。乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效率高达78.5%。但因为这样的放大,小信号时失真严重,实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降,虽然高频发射电路中还有一种丙类,即C类放大,效率可...

数字功放原理.doc
数字功放原理.doc 数字功放原理 数字功放也称D类功放,与模拟功放的主要差别在于功放管的工作状态。传统模拟放大器有甲类、乙类和甲乙类、丙类等。一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25% 。乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效率高达78.5%。但因为这样的放大,小信号时失真严重,实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降,虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质差,音频放大中一般都不用,这几种模拟放大电路的共同的特点是晶体管都有工作在线性放大区域中,它按照输入音频信号大小控制输出的大小,就像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能。 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗。所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高。 图1是数字D类功放的工作原理框图。D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中。 图示是音频信号的一种PWM调制 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,最为直观;较多采用的是以脉冲密度来 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低。双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负。因为这种信号并不需要与外接设备直接相连,也就不需要 格式 pdf格式笔记格式下载页码格式下载公文格式下载简报格式下载 完全统一,各厂可按自行研发的最佳 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 调制。 音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频。二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码。获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码。输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定。功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便。由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠。 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确。 数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小。所以,首先在笔记本电脑、有源音箱和声卡上采用。带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多。随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio“黄金时代”,令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的 三诺公司也在研发数字功放的有源音箱。国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件。一场功放革命正在悄然兴起。 从图1可以看出数字功放的另一优点是可以直接放大数字音频信号。CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出。而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大。省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低。 利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线。简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减。这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小。而且也不能用于数字音频直接输入系统。 较好的方案是采用调节电源电压的方式来衰减音量,以改变加到低通滤波器上的脉冲电压幅度来改变输出功率。这样量化比特率仍可充分利用,由于电压下降,量化噪声也随之下降,所以音量减小,但信噪比和动态范围仍能保持不变。由于功放电源的功率较大,改变电源电压不能用电阻衰减或分压方式来实现,必须从电源整流稳压部分就开始。TACT公司采用的方法是在数字稳压电源的DC-DC逆变过程中,改变占空比来改变最终输出电压。这类方案目前还只能在分立元件做功率输出部分的整机中采用,集成化数字功放IC仍用衰减模拟输入为主来调节音量。 从现状来看,数字功放已能商品运用在功率一般的普通用途放大器上性价比和小型、节电等方面都有长处。几瓦的小功率型集成功放芯片,控制电路和功率开关器件已一体化,使用非常方便。几十瓦以上的大功率用数字功放芯片,一般只集成控制电路部分,大功率开关器件需另外集成或自行配置,以便整机设计灵活。在Hi Fi领域中,数字功放还只能算是在探索,离商品化还有一段过程。但数字功放是功率放大后起之秀这点是不容置疑的。 D类功放的设计原理 时间:2010-03-20 来源:压电晶体网 D类功放的设计原理 在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为清新透明,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B类功放虽然效率提高很多,但实际效率仅为50,左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相通之处,进一步显示出D类功放 的发展优势。 D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管于的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100,,B类功放的效率为78(5,,A类功放的效率才50,或25,(按负载方式而定)。 D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也 就是产生数字信号的功能)随着数字音频技术研守的不断深入,用于Hi—Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关键的一步就是对音频信号的调制。第一部分为调制器,最简单的只需用一只运放构成比较器即可完成。把原始音频信号加上一定直流偏置后放在运放的正输入端,另通过自激振荡生成一个三角形波加到运放的负输入端。当正端上的电位高于负端三角波电位时,比较器输出为高电平,反之则输出低电平。若音频输入信号为零、直流偏置置三角波峰值的1,2,则比较器输出的高低电平持续的时间一样,输出就是一个占空比为1:1的方波。当有音频信号输入时,正半周期间,比较器输出高电平的时间比低电平长,方波的占空比大于1:1;负半周期间,由于还有直流偏置,所以比较器正输入端的电平还是大于零,但音频信号幅度高于三角波幅度的时间却大为减少,方波占空比小于1:1。这样,比较器输出的波形就是一个脉冲宽度被音频信号幅度调制后的波形,称为四M(Pulse Modula60n脉宽调制)或四M(PulseDuring on Modulation脉冲持续时间调制)波形。音频信息被调制到脉冲波形中。 第二部分就是D类功放,这是一个脉冲控制的大电流开关放大器,把比较器输出的抓M信号变成高电压、大电流的大功率四M信号。能够输出的最大功率由负载、电源电压和晶体管允许流过的电流来决定。 第三部分需把大功率四M波形中的声音信息还原出来。方法很简单,只需要用一个低通滤波器。但由于此时电流很大,RC结构的低温滤波器电阻会耗能,不能采用,必须使用LC低通滤波器。当占空比大于1:1的脉冲到来时,C的充电时间>放电时间,输出电平上升:窄脉冲到来时,放电时间长,输出电平下降,正好与原音频信号的幅度变化相一致,所以原音频信号被恢复出来,D类功放设计考虑的角度与甲类功放完全不同。此时功放管的线性已没有太大意义,更重要的是开关响应和饱和压降。由于功放管处理的脉冲频率是音频信号的几十倍,且要求保持良好的脉冲前后沿,所以管子的开关响应要好。另外,整机的效率全在于管子饱和压降引起的管耗。所以,饱和管压降小不但效率高,功放管的散热结构也能得到简化。若干年前,这种高频大功率管的价格昂贵,在一定程度上阻碍了D类功放的发展。现在小电流控制大电流的M0SFET已普通运用于工业领域,特别是近年来UDICM0S已在Hi—Fi功放上应用,器件的障碍已经消除。 调制电路也是D类功放的一个特殊环节。要把20kHz以下的音频调制成PWM信号,三角被的频率至少要达到加44.1kHz。频率过低达到同样要求的11扔 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 ,对无源比低通滤波器的元件要求就高,结构复杂。频率高,输出波形的锯齿小,更加接近原波形,贝扔就小,而且可以用低数值、小体积和精度要求相对差一些的电感和电容来制成滤波器,造价相应降低。但此时晶体管的开关损耗会随频率上升而上升,无源器件中的高频损耗、射频的趋肤效应都会使整机效率下降。更高的调制频率还会出现射频干扰,所以调制频率也不能高于1MHz。 同时,三角波形的形状、频率的准确性和时钟信号的抖晃都会影响到以后复原的信号与原信号不同而产生失真。所以要实现高保真,出现了很多与数字音响保真相同的考虑。 还有一个与音质有很大关系的因素就是位于驱动输出与负载之间的无源滤波器。该低温滤波器工作在大电流下,负载就是音箱。严格地讲,设计时应把音箱阻抗的变化一起考虑进去,但作为一个功放产品指定音箱是行不通的,所以D类功放与音箱的搭配中更有发烧友驰骋的天地。实验证明,当失真要求在0(5,以下时,用二阶BunerworLh最平坦响应低通滤波器就能达到要求。如要求更高则需用四阶滤波器,这时成本和匹配等问题都必须加以考虑。 近年来,一般应用的D类功放已有集成电路芯片,用户只需按要求设计低通滤波器即可。上面授到的TPA以旧刃2有2wRIbl3功率输出,462负载,1HD十N已达0(5,,是上一世纪70年代D类功放8,一10,的TI仍川所望尘莫及的。TDA7582提供的功率已高达23w,足够任何便掳式音响产品使用。该机采用数字调制技术,直接把CD输出的PCM数字信号变成PWM码。这是一种DSP运算,只要正确读出原码,就可无误差地运算出新的PVM码。 TACT公司在这款数字功放中还采用了公司开发的等比特变换技术。框图中看不到模拟电路的传统负反馈结构,它是在DSP中把输出脉冲的宽度进行再计算,然后去补偿从抓rM变换到模拟输出时出现的非线性失真。变换器也采用了CD的超取样和噪声整形技术。先把PCM信号通过八倍超取样数字滤波器,然后把数据的16bit字长截尾到8bit,以重建动态范围。而从截去的最后8bit中产生一个校正信号,用以进行噪声和失真的补偿,最终把噪声和失真推到可听域以外的频段。 从PCM码直接变换到PWM码的一大好处是CD的数码输出不再需要进行D,A变换。无论从降低造价还是“简单即好”的发烧理念来看都是有利的。D,A变换器是影响数字音频还原质量的一大关键,而“黄金时代”的D类功放把CD解码器的整个工序完全顶替,对整个还原系统的保真度十分有利。“黄金时代”功放只有数字音频输入口,不设模拟输入,要求周边设备定位档次较高。对于数字音频直接由转盘供给信号,不考虑中低档CD唱机输入。若是U等模拟音源再后接一个数字音频导向器或A仍转换器等,则可避免系统中出现A,D和D,A变换等互补的多余环节。 但直接数字输入需要解决音量控制方法,PCM码是满幅度量化的,音量处于0dB位置。 传统放大器的音量控制是以改变输入信号幅度来实现的。对于D类功放来说有以下两点:第一,必须把PCM码经财A变换成模拟量再加以衰减:第二,大信号输入时用三角形波对其调制,调制的幅度能充分利用,信噪比最高,而小信号时调制幅度小,调制噪声占有的比重上升,可用的动态范围没有充分利用,实际信噪比较低。 当然也可把衰减网络放到输出的大电流电路中,但却会白白消耗大量电能,D类功放的高效率全部丧失。“黄金时代”采用改变电源电压的方法来控制音量。整机由开关电源供电,音量调节实际上是通过改变开关电源振荡脉冲的占空比来改变输出电压。当电源电压为满幅度时,电源通过低通滤波器加到负载上的功率最大。若占空比下降到原来的1煌,电压就降至原来的一半,负载上的功率就降至1,4。但对原信号的调制还是在满信号输入时进行,所以音频信号的动态、细节分辨率都得到充分利用。
本文档为【数字功放原理.doc】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_153723
暂无简介~
格式:doc
大小:60KB
软件:Word
页数:8
分类:生活休闲
上传时间:2017-10-14
浏览量:52