首页 土的物理性质与工程分类

土的物理性质与工程分类

举报
开通vip

土的物理性质与工程分类土的物理性质与工程分类 第二章 土的物理性质与工程分类 自然界中土的性质是千变万化的,在工程实际中具有意义的往往是固、液、气三相的 比例关系,相互作用以及在外力作用下所表现出来的一系列性质。土的物理性质是指三相 的质量与体积之间的相互比例关系及固、液二相相互作用表现出来的性质。前者称为土的 基本物理性质,主要研究土的密实程度和干湿状况;后者主要研究粘性土的可塑性、胀缩 性及透水性等。土的物理性质在一定程度上决定了它的力学性质,其指标在工程计算中常 被直接应用。 土的工程分类是岩土工程学中重要的基础理论课题。对...

土的物理性质与工程分类
土的物理性质与工程分类 第二章 土的物理性质与工程分类 自然界中土的性质是千变万化的,在工程实际中具有意义的往往是固、液、气三相的 比例关系,相互作用以及在外力作用下所表现出来的一系列性质。土的物理性质是指三相 的质量与体积之间的相互比例关系及固、液二相相互作用表现出来的性质。前者称为土的 基本物理性质,主要研究土的密实程度和干湿状况;后者主要研究粘性土的可塑性、胀缩 性及透水性等。土的物理性质在一定程度上决定了它的力学性质,其指标在工程计算中常 被直接应用。 土的工程分类是岩土工程学中重要的基础理论课题。对种类繁多、性质各异的土,按 一定的原则,进行分门别类,给出合适的名称,可以概略评价土的工程性质。 第一节 土的基本物理性质 土的三相组成实际上是混合分布的,为了使三相比例关系形象化和阐述方便,将它们 分别集中起来画出土的三相示意图(图2-1)。 图2-1 土的三相示意图 33V—土的总体积,cm; m—土的总质量,g; V—土中固体颗粒实体的体积,cm; s 3m—土的固体颗粒质量,g; V—土中孔隙体积,cm; m—土中液体的质量,g; svw 33V—土中液体的体积,cm; m—土中空气的质量,(m=0); V—土中气体的体积,cm。 waaa 一、土粒密度 土粒密度是指固体颗粒的质量与其体积之比,即单位体积土粒的质量。 m3 s, (g/cm) (2-1) ,sVs 23 3之间(表2-1)。一情况下,随有机质含量增多而减小,随铁镁质矿物增 多而增大。它是土中各种矿物密度的加权平均值。 土粒密度大小决定于土粒的矿物成分,与土的孔隙大小和含水多少无关,它的数值一 般在2.60~2.80g/cm 表2-1 各种主要类型土的土粒密度 土的种类 砾类土 砂类土 粉土 粉质粘土 粘土 2.65~2.75 2.65~2.70 2.65~2.70 2.68~2.73 2.72~2.76 土粒密度 常见值 3(g/cm 2.66 2.68 2.71 2.74 ) 平均值 土粒度密度是实测指标,可在实验室内直接测定。该指标一方面可以间接地说明土中 矿物成分特征,另一方面主要用来计算其他指标。 二、土的密度与重度 3土的密度是指土的总质量与总体积之比,即单位体积土的质量,其单位是g/cm,根据 土所处的状态不同,土的密度可分为如下几种情况: (一)天然密度 天然状态下单位体积土的质量,称天然密度,即: m,mm3sw , (g/cm) (2-2) ,,VV,Vsn 天然密度的大小取决于矿物成分、孔隙大小和含水情况,综合反映了土的物质组成和 结构特征。土越密实,含水量越高,则天然密度就越大,反之就越小。由于自然界土的松 3密程度与含水量变化较大,故天然密度变化较大,一般值为1.6~2.2g/cm,小于土粒密度值, 它是一个实测指标。 (二)干密度 土的孔隙中完全没有水时的密度,称土的干密度,指单位体积干土的质量,即 m3s (g/cm) (2-3) ,,dV 干密度与土中含水多少无关,只取决于土的矿物成分和孔隙性。对于某一种土来说,矿物 成分是固定的,土的密度大小只取决土的孔隙性,所以干密度能说明土的密实程度。其值 越大越密实,反之越疏松。干密度可以实测,但一般用其他指标计算求得,土的干密度一 3般在1.4~1.7g/cm之间。 (三)饱和密度 土的孔隙完全被水充满时的密度称为饱和密度,是指土孔隙中全部充满液态水时的单位 体积土的质量,即 mV,.,3svw (g/cm) (2-4) ,,satV 33式中:,为水的密度(g/cm),常近似取1.0g/cm。 w 工程实际中,常将土的密度换算成土的重度(),重度等于密度乘以重力加速度g,即 , 3 (kN/m) (2-5) ,,,,g 24 233, 当=1.0g/cm ,则=10kN/m。与天然密度、干密度、,, 饱和密度对应的重度分别称之为天然重度()、干重度()及饱和重度( ,)。另外,,,satd式中的重力加速度常近似取10m/s 处于地下水位以下的土层,如果土层是透水的,此时土受水的浮力作用,土的实际重量将 减小,那么这种处于地水位以下的有效重度常特称为土的浮重度(′)即 , mVmmV(,,,),,,,3sswsww , (kN/m) (2-6) g,,,,VV 浮重度等于土的饱和重度减去水的重度(,),即: w ,,,,,, (2-7) satw 对于同一种土来讲,土的天然重度、干重度、饱和重度、浮重度在数值上有如下关系: ,,,,,,,, satd 三、土的含水性 土的含水性指土中含水情况,说明土的干湿程度,有含水量与饱和度两个指标。 (一) 含水量 土中所含水分的质量与固体颗粒质量之比,以百分数表示,又称土的含水率。 mw,,100% (2-8) wms 一般所说的含水量指的是天然含水量,土的含水量由于土层所处自然条件(如水的补 给、气候、离地下水位的距离等),土层的结构构造(松密程度)以及沉积历史等的不同, 其数值相差较大。如近代沉积的三角洲软粘土或湖相粘土,含水量可达100%以上,有的甚至高达200%以上;而有些密实的第四纪老粘土(Q以前沉积),孔隙体积较小,即使孔隙3 中全部充满水,含水量也可能小于20%。干旱地区,土的含水量可能微不足道或只有百分 之几。一般砂类土的含水量都不会超过40%,以10 ~30%为常见值,一般粘性土的常见值 为20~50% 土的孔隙中全被水充满时的含水量,称为饱和含水量w。 sat ,,Vwv,,100% (2-9) wsatms 饱和含水量既能反映土孔隙中全部充满水时含水多少。又能反映土的孔隙率大小。 (二) 饱和度 土孔隙中所含水的体积与土中孔隙体积的比值称为土的饱和度,以百分数表示。 Vw,,100% (2-10) SrVn 或天然含水量与饱和含水量之比: 25 wS,,100% (2-11) rwsat 饱和度可以说明土孔隙中充水的程度,其数值为0~100%。干土:S=0;饱和土:S=100%。rr工程实际中,饱和度主要用于评述砂类土的含水状况(或湿度),按饱和度大小常将砂类土 划分为如下三种含水状况: S<50% 稍湿的 r 50%?S?80% 很湿的 r S>80% 饱和的 r 饱和度是一个计算指标,对粘性土,由于主要含结合水,结合水膜厚度的变化将引起 土体积的膨胀或收缩,改变原状土中孔隙的体积。另外,结合水的密度大于1,计算饱和度 3时,一般取水的密度为1.0g/cm。因此,最终计算得到的饱和度值常大于100%,显然与实际不符。工程实际中,一般不用饱和度评价粘性土的湿度。 四、土的孔隙性 土中孔隙大小、形状、分布特征、连通情况与总体积等,称为土的孔隙性。其主要取 决于土的颗粒级配与土粒排列的疏密程度。实际上土的孔隙性指标一般反映的是土中孔隙 体积的相对含量,主要有孔隙度和孔隙比两个指标。孔隙性指标只能反映土内孔隙总体积 的大小,不能反映单个孔隙体积的大小。 (一)孔隙度 孔隙度又称孔隙率,指土中孔隙总体积与土的总体积之比,用百分数表示。 Vv (2-12) n,,100%V 土的孔隙度取决于土的结构状态,砂类土的孔隙度常小于粘性土的孔隙度。土的孔隙 度一般为27~52%。新沉积的淤泥,孔隙度可达80%。土的孔隙度是一个计算指标。 (二)孔隙比 孔隙比指土中孔隙体积与土中固体颗粒总体积的比值,用小数表示, Vv (2-13) e,Vs 土的孔隙比说明土的密实程度,按其大小可对砂土或粉土进行密实度分类。如在《岩 土工勘察规范》(GB50021-94)中,用天然孔隙比来确定粉土的密实度。e<0.75 为密实,0.75?e?0.9为中密,e>0.9为稍密的粉土。工程实际中,除了用孔隙比评价砂类土或粉土 的密实程度外,还用于地基沉降量的计算。土的孔隙比系一计算指标。 孔隙度与孔隙比的关系为 enn,或e, (2-14) 1,e1-n (三)砂土的相对密度 砂土的密实程度还可用相对密度(D)来表示。 r 26 e,emaxD, (2-15) re,emaxmin 式中:e为最大孔隙比,即最疏松状态下的孔隙比;e为最小孔隙比,即紧密状态下的maxmin 孔隙比;e为天然孔隙比,即通常所指天然状态下的孔隙比。 砂土的天然孔隙比界于最大和最小孔隙比之间,故相对密度D=0—1;当e=e时,则rmaxD=0,砂土处于最疏松状态;当e=e时,则D=1,砂土处于最紧密状态。工程实际中,rminr 常用相对密度判别砂土的震动液化,或评价砂土的密实程度。按相对密度值可将砂土分为 三种密实状态:D?0.33为疏松的砂,0.330.67为密实的砂。 rrr 砂土的最疏松与最密实的状态可在实验室由人工制备。实际上,由于砂土原状样不易 取得,测定天然孔隙比较为困难,加上实验室测定砂土的e 与e精度有限,因此计算maxmin的相对密度值误差较大。 五、土的基本物理性质指标之间的关系 上述表示土的三相比例关系的指标一共有9个,即:土粒密度、天然密度、干密度、 饱和密度、浮重度、含水量、饱和度、孔隙度、孔隙比。它们主要反映了土的密实程度与 干湿状态,而且相互之间都有内在联系。其中土粒密度、天然密度、含水量是三个基本实 测指标、即通过试验直接测定。其余六个指标均可由三个实测指标换算取得,常称为导出 指标或计算指标。 由实测指标换算求取六个导出指标可直接用简单的数学演算 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,如: mm,,/mmVss,,,,,,,dmm,sw/1,VVmmmwsms ,,VV,Vm(1,w)VVvsssse,,,,1,,,1,,1,,1,,VVVVmsssssd 应用三相比例关系(简化的三相图),按照各指标的定义来计算导出指标更为简便。在图2-1三相示意图中,令V,,,=1,则V= e,V=1+e,m=,m=w?,m=(1+w),则各导出指sv sw sss标便很容易求得: VwVm(1,),v e,,,1,,1,,1 (2-16) VVV,,,sss ,,m,sss (2-17) ,,,,,d(1,w),sV1,e1,w1,,1, m,V,,,,e,,svwsw (2-18) ,,,,,,n,,satdwV1,e m,V,,(,),,,,,,,sswswsw,,,g,,g,,g (2-19) ,V1,e(1,w),s 27 ,,,Vevn,,,1,,100% (2-20) ,,V1,e(1,w),,,s /,Vm,w,wwws,,,,100% (2-21) sr,Vee,nw 因此只要测得三个实测指标,其余导出指标便可求得,三个基本实测指标的精度直接 影响着各导出指标的精度。为此在测定三个指标的时候应力求原状土样未受扰动,仪器设 备可靠,操作过程要认真细致。 表2-2将土的基本物理性质指标汇总在一起,以便复习和比较。 33【2-1】,某原状土样,经试验测得ρ=1.85g/cm, w=25%, =2.70g/cm,求 ,s ρ,e,n,S。 dr ,1.853解: ,,,1.48g/cm,d1,w1,0.25 ,,ss(1,)w2.70,,1,,1,,1,0.824e,,1.48d 0.824e ,,,45.2%n1,1,0.824e ,,w0.25,2.70sS,,,81.9%r,0.824,1.0e,w 28 性 指标 符常见表2-2 土的基本物理性质指标 定义 表达式 单位 求法及常用换算公式 实际意义 影响因素 质 名称 号 值 土 m粒土的固体颗粒直接测定 1.换算n,e,S1.矿物成分 2.65- r 3s 土粒密度 ρ,, g/cm Ss2.75 密单位体积质量 (扰动样) 2.颗粒 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 计算用 2.土类 Vs度 天然状态下土1.矿物成分 ,n,e 直接测定 1.换算ρmd1.60- 3天然密度 ρ 的单位体积质2.孔隙大小 g/cm ,2.20 2.工程计算应用 (原状样) V量 3.水分多少 直接测定(原状样)或换土土的单位体积1.换算n,e m1.矿物成分 1.30- 3s的,干密度 ρ中固体颗粒的 g/cm2.评定土的密实程度 d ,, d1.70 算求得 2.孔隙大小 ,,dV密质量 3.检验填土质量 1,w度 孔隙中全部充mV,,svw换算求得 满液态水时,土1.矿物成分 1.80- 3,,sat饱和密度 ρ g/cm1.工程计算应用 sat V2.30 的单位体积质,,,,n, 2.孔隙大小 satdw 量 天然状态下,土,S,n,e 1.所处自然条1.换算ρdrm天然含水中水分的质量直接测定 w w,w 2.估算土干湿状况 件 % 10-50 量 与固体颗粒质(扰动样) m含s3.估算液性指数 2.受力历史 量之比 水 换算求得 性 土中水的体积1.说明孔隙中充水程1.土的埋藏条V40- ww,,饱和度 S S, 与孔隙体积之% 度 件 srr S,100 Vre,,比 2.评定土干湿程度 2.气候因素 w 换算求得 土的孔隙体积等 1.换算e、ρVsav,孔隙度 n 与土的总体积% 33-50 ,dnn,1, 2.工程计算用 1.颗粒级配 V之比 孔,s2.结构 隙等 1.换算n、Sr3.矿物成分 换算求得 土的孔隙体积性 V2.压缩试验用 0.5- v4.受力历史 ,孔隙比 e 与固体颗粒体 e, se,-1 1.0 3. 评定土的密度 Vs积之比 ,d4.地基变形计算 29 第二节 粘性土的稠度与可塑性 粘性土的稠度与可塑性是土粒与水相互作用后所表现出来的物理性质。 一、粘性土的稠度状态 粘性土因含水多少而表现出的稀稠软硬程度,称为稠度。因含水多少而呈现出的不同 的物理状态称为粘性土的稠度状态。土的稠度状态因含水量的不同,可表现为固态,塑态 与流态三种状态。 固态:含水量相对较少,粒间主要为强结合水连结(强结合水或固定层重叠),连结牢 固,土质坚硬,力学强度高,不能揉塑变形,形状大小固定。 塑态:含水量较固态为大,粒间主要为弱结合水连结(即弱结合水或扩散层重叠),在 外力作用下容易产生变形,可揉塑成任意形状不破裂、无裂纹,去掉外力后不能恢复原状。 流态:含水量继续增加、粒间主要为液态水占据,连结极微弱,几乎丧失抵抗外力的 能力,强度极低,不能维持一定的形状,土体呈泥浆状,受重力作用即可流动。 上面三种稠度状态中的每一种还可以进一步细分为两种稠度状态,见表2-3。 表2-3 粘性土的稠度状态和稠度界限 体积缩 含水率 稠度状态 特征 稠度界限 小方向 减小方向 流 液流状态 土呈液体状,薄层状流动 触变限 态 粘流状态 土似粘滞液体,厚层状流动 液限wL 土具塑性体性质,可塑成任意形粘塑状态 (塑性上限) 状,且能粘着于其他物体上 塑 态 土具塑性体性质,可塑成任意形粘着限 稠塑状态 状,但不能粘着其他物体 土近似固体,力学强度较大,形状塑限w P半固体状态 固定,不能揉塑变形 固 (塑性下限) 态 土具固体性质,力学强度高,形状体积不收缩限w S固体状态 大小固定 变 粘性土的稠度状态的变化是由于土中含水量的变化而引起的,粘性土由一种稠度状态 转变为另一种稠度状态,相应于转变点(临界点)的含水量称为稠度界限(界限含水量)。 目前世界各国普遍应用的是由瑞典农学家阿登堡(Atterberg, 1911)制定的稠度状态与相应的稠度界限 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 (表2-3),稠度界限中最具实际意义的是由固态转变到流态的界限含水量, 称为塑限(w),由塑态转变到流态的界限含水量,称为液限(w)。粘性土随含水量的变化PL 而表现出不同的稠度状态,是一种复杂的物理化学过程,其实质是与粘性土周围水化膜的 变化有直接关系。 土处于何种稠度状态取决于土中的含水量,但是由于不同土的稠度界限是不同的,因 此天然含水量不能说明土的稠度状态。为判别自然界中粘性土的稠度状态,通常采用液性 指数(I)进行评价,即: L 30 w,wPI (2-22) ,Lw,wLP 当w>w时,I>1,则土处于流态;当w1.00 LLLLLL 稠度状态 坚硬 硬塑 可塑 软塑 流塑 稠度状态能说明粘性土的强度与压缩性,处于坚硬与硬塑状态的,土质较坚硬,强度 较高且压缩性较低(变形量较小),处于流塑与软塑的土,土质软弱且压缩性较高,处于可 塑态的土,其性质界于前二者之间。 粘性土的液限与塑限一般在室内进行测定,液限常采用瓦式液限仪,塑限常采用搓条 法。 用液性指数判别粘性土稠度状态时,测得的液限与塑限用的是扰动土样,忽视了自然 界原始土层的结构影响。因而有时天然含水量大于液限情况下,原始土层并不表现出流塑 状态;或者天然含水量大于塑限时不显示塑态而呈固态。为了避免与实际的出入,有人建 议用锥式液限仪直接测定具有天然结构与天然含水量的原状土样的锥体沉入深度(液限与 塑限的锥体入土深度都有对应的值),判断其实际的稠度状态,虽然式(2-22)与实际有所不符,但在实际中,目前仍然主要采用上述的液性指数I来判断粘性土的稠度状态,这一L 方面是生产单位的习惯用法,另一方面其精度也能满足生产实际的需要。 二、粘性土的可塑性 粘性土中含水量在液限与塑限两个稠度界限之间时,土处于可塑状态,具有可塑性, 这是粘性土的独特性能。由于粘性土的可塑性是含水量界于液限与塑限之间表现出来的, 故可塑性的强弱可由这两个稠度界限的差值大小来反映,这差值称为塑性指数I。即 P I=w-w (2-23) PLP 实际应用中,常将界限含水量的百分符号省去。塑性指数越大,意味着粘性土处于可 塑态的含水量变化范围越大,其可塑性就越强。说明土中弱结合水膜(扩散层)厚度越大, 土中粘粒含量越多,且含亲水性强的矿物成分越多;反之亦然。所以在工程实际中直接按 塑性指数大小对一般粘性土进行分类,1994年国家标准《岩土工程勘察规范》按塑性指数 I将粘性土分为两类,I>17为粘土,17?I>10为粉质粘土,I?10为粉土或砂类土。在以PPPP 往的分类方案中,很多部门对粘性土多采用按颗粒级配进行分类,经研究表明,粘性土按 塑性指数分类比按颗粒级配分类更能反映实际土体的工程特性,因为对粘性土,其性质不 仅与颗粒级配有关,而且还与粘粒的形状、粘粒的亲水性强弱有关,而塑性指数综合反映 了粘粒的含量及其亲水性。因此,目前新的规范 要求 对教师党员的评价套管和固井爆破片与爆破装置仓库管理基本要求三甲医院都需要复审吗 主要按塑性指数对粘性土进行分类。 粘性土可塑性强弱主要取决于粒间弱结合水膜厚度的大小,那么影响弱结合水膜(扩 散层)厚度的因素主要是土的颗粒级配、矿物成分,水溶液的化学成分、浓度及pH值。因 此,粘性土的可塑性强弱也受到这些因素的影响。 31 第三节 土的透水性 土中孔隙一般情况下是互相连通的,当饱和土中的两点存在能量差(水头差或压力差) 时,水就在土的孔隙中从能量高的点向能量低的点流动。土的渗透性就是指水在土孔隙中 渗透流动的性能。在计算基坑涌水量、水库与渠道的渗漏量,评价土体的渗透变形,分析 饱和粘性土在建筑荷载作用下地基变形与时间的关系(渗透固结)等方面都与土的渗透性 有密切关系。 一、土的渗透规律 法国工程师达西(H.Darcy, 1856)对均匀砂进行了大量的渗透试验,得出了层流条件下 (渗流十分缓慢,相邻两个水分子运动的轨迹相互平行而不混掺),土中水渗透速度与能量 (水头)损失之间的渗透规律,即达西定律。该定律认为,渗出水量Q与圆筒过水断面积A和水力梯度I成正比,且与土的透水性质有关,其表达式为: Q= k,A,i (2-24) Q 或 v,,k,i (2-25) A 式中:v——渗透速度(cm/s);k——渗透系数(cm/s) 上式中的渗透速度不是地下水的实际流速,而是通过过水断面的地下水流量与垂直水 流的过水断面面积的比值,即单位时间通过单位截面积水量。渗透系数是反映土的透水性 能的比例系数,是水力梯度为1时的渗透速度,其量纲与渗透速度相同。其物理含义是单 位面积单位水力梯度单位时间内透过的水量。土的渗透系数是一个很重要的物理性质指标, 是渗流计算时必须用到的一个基本参数,不同类型的土,k值相差较大,表2-5列出了渗透系数经验值。 表2-5 土的渗透系数参考值 k (m/s) k (m/s) 土类 k(m/s) 土类 土类 -6-5-9-4-4~10 粘土 <5×1010 ~5×10 粉砂 粗砂 2×10-5-5-9-8-4-310~5×10 粉质粘土 5×105×10~10 ~10 砾石 细砂 -5-4-8-6-3-35×10~2×10 粉土 5×1010~10 中砂 卵石 ~5×10 -8一般认为k<10m/s的土为相对隔水层(不透水层)。 准确测定土的渗透系数是一项十分重要的工作,其测定方法主要分实验室与现场测定 两大类。现场测定常用井孔抽水试验或井孔注水试验,比室内测定准确,但费用高。室内 试验可分为常水头与变水头法两种。 1.砂土、粉土的渗透规律 砂土、粉土的水流基本属于层流,故其渗透规律服从达西定律,即: v = k?i (6-26) 32 2 1 ba0000 图2-2土的渗透曲线 图2-3粘性土渗透曲线 1-砂、粉土 2-纯砾以上很粒的土 2.纯砾以上很粗的土的渗透规律 水力梯度较大时,水在这类土中的流态已不再是层流,而是紊流。这时达西定律不适 用,渗透速度与水力梯度之间的关系不再保持直线而变为次线性的曲线。有的学者认为当 流速v大于0.003~0.005m/s时,达西定律应修改为: m(m <1) (2-27) v,k,i 3.粘性土的渗透规律 目前对饱和均质粘性土中水的渗透规律有着不同的认识。不少研究者曾进行过大量的 粘性土室内渗透试验,但得出的结果并不相同。其中,图2-3所示的渗透规律曲线被大多数人所接受。从该图中可以看出,粘性土的v - i关系可大致分为三个阶段。点a为实际起始水力梯度(i′),即用于克服结合水抗剪强度的那部分水力梯度。当水力梯度大于i′后,00渗透才会发生。在ab段,v-i的关系才近似于直线。此时粘性土的透水性才可近似地用达 西定律表示。由于a点的位置不易测定,即i′值不易确定,常用v-i直线段延长线在横坐0 标上的截距i。代之,故在实际中用的起始水力梯度是i,因此粘性土的渗透规律为: 0 v = k(i -i) (2-28) 0 二、影响土的渗透性的因素 土的渗透性受很多因素影响,不同类型的土,其影响因素及影响程度各不相同。影响 土的渗透性的主要因素有如下几方面: 1.颗粒极配。颗粒极配对土的渗透性影响最大。尤其在由粗大土粒组成的土中表现更 为明显。一般情况下,土粒越细或粗大颗粒间含细颗粒越多,土的渗透性越弱;相反,渗 透性越强。 2.矿物成分。不同类型的矿物对土的渗透性的影响是不同的。原生矿物成分的不同, 决定着土中孔隙的形态,致使透水性有明显差异。常见几种原生矿物组成土的透水性规律 33 是:浑圆石英>尖角石英>长石>云母。粘土矿物的成分不同,形成结合水膜的厚度不同,所以由不同粘土矿物组成的土,其渗透性也是不同的。一般情况下,随土中亲水性强的粘土 矿物增多,渗透性降低。 3.土的密度。对同一种土来说,土越密实,土中孔隙越小,土的渗透性也就越低。故 土的渗透性随土的密实程度增加而降低。 4.土的结构构造。土体通常是各向异性的,土的渗透性也常表现出各向异性的特征。 如黄土具有垂直节理,因而铅直方向的渗透性比水平方向强。海相沉积物的水平微细夹层 较发育,因而水平方向的渗透性要比铅直方向强。具有网状裂隙的粘土,可能接近于砂土 的渗透性。 5.水溶液成分与浓度。一般情况下,粘性土的渗透性随着溶液中阳离子价数和水溶液 浓度的增加而增大。 第四节 土的工程分类 一、工程分类的一般原则和类型 国内外各种土的工程分类方案很多,但都是按一定的原则,将客观存在的各种土划分 为若干不同的类型。基本原则是所划分的土类能反映土性质的变化规律。土的工程分类总 起来可以归纳为三级分类。 土的第一级分类是成因类型分类,主要按土的成因和形成年代作为最粗略的分类标准, 如Q湖积土,Q冲积土等。这种分类可作为编制一般小比例尺概略图划分土类之用,为规34 划阶段制定规划方案,以说明区域工程地质条件。在岩土工程勘察中,也经常用到时代成 因分类。如《岩土工程勘察规范》将土按堆积年代划分为三类:1. 老堆积土,第四纪更新 世Q及其以前堆积的土层;2.一般堆积土,第四纪全新世(文化期以前Q)堆积的土层;34 3.新近堆积土,文化期以来Q新近堆积的土层,一般呈欠固结状态。 4 土的第二级分类是土质类型分类,主要考虑土的物质组成(颗粒级配和矿物成分)及 其与水相互作用的特点(塑性指标),按土的形成条件和内部连结,将土划分为最常见的“一 般土”和由于一定形成条件而具有特殊成分和结构,表现出特殊性质的“特殊土”。土质分 类可初步了解土的特性及其对工程建筑的适宜性以及可能出现的问题。这种分类可作为大 中比例尺工程地质图划分之用。 土的第三级分类是工程建筑类型分类。主要考虑与水作用的特点(饱和状态、稠度状 态、胀缩性、湿陷性等)、土的密实度或压缩固结特点将土进行详细的划分。这些划分必须 测得土的专门性试验指标。在实际工程中,这种分类大多体现在对土层的描述与评价中。 土的工程分类的类型概括在表2-6中。 土的第一级和第三级分类经常联合运用于土的综合定名,如《岩土工程勘察规范》中 规定:对特殊成因和年代的土类尚应结合其成因和年代特征定名,如新近堆积砂质粉土, 残坡积碎石土等。对特殊性土,尚应结合颗粒级配或塑性指数综合定名,如淤泥质粘土、 弱盐渍砂质粉土、碎石素填土等。对同一土层中相间成韵律沉积,当薄层厚层的比为1/10~1/3 34 第一级成因类型 第二级土质类型 第三级工程建筑类型 表2-6 土的工程分类表 按密实度或压按地质成因划分 按形成条件、颗粒级配或塑性 按与水的关系 缩性 土 壤 ,漂石(块石)碎 ,风 化 卵石(碎石),石 残积土 ,残积土 园砾(角砾)土 ,按密实度: 按饱和状态: 一 密实的 饱和的 坠积土 中密的 砾砂,很湿的 如含有其它主要土 崩 塌 稍密的 ,砂 稍湿的 粗砂 ,重力 堆积土 般 松散的 类应冠以相应定语,类 中砂,堆积土 土 ,滑 坡 细砂 ,堆积土 ,粉砂土 , 坡积土 粉土 粉土:砂质粉土,粘质粉土 按压缩性: 高压缩性 按稠度状态: 粉质粘土 中压缩性 地表流水洪积土 粘性土 坚硬 粘土 低压缩性 沉积土 硬塑 当小于0.075mm的土的塑可塑 淤泥质土:淤泥质粉土(粉质粘土),淤泥(按灵敏度: 冲积土 淤有流塑 质粘土,e=1.0-1.5,W>W L高灵敏度 性指数大于10时,应冠以泥机软塑 类湖积土 (典型)淤泥:e>1.5,W>W中灵敏度 静水沉积L土含粘性土定语 土 低灵敏度 土 沼泽土 泥炭:有机质含量大于 60% ) 泻湖 红粘土 同 上 沉积土 滨海 黄土状土:黄土状粉土(粉质粘土),黄土按湿陷性: 沉积土 状粘土 海洋沉积黄 非湿陷性 按湿陷情况: 土 浅海 轻湿陷性 自重湿陷的 沉积土 土 中湿陷性 非自重湿陷的 (典型)黄土 深海 强湿陷性 特 沉积土 冰积土 按含盐数量: 盐 氯盐盐渍土 弱盐渍土 冰川堆积 渍 硫酸盐盐渍土 中等盐渍土 冰水 土 殊 土 碳酸盐盐渍土 强盐渍土 沉积土 超盐渍土 按膨胀性: 风力堆积自由膨胀率?40%的粘性土 弱膨胀性 风积土 膨胀土 土 土 属膨胀土 中膨胀性 强膨胀性 人 按密实度 素填土:天然土经人类扰动堆积形成 工 (粗粒土) 冲填土:人工水力冲填泥砂形成 填 按压缩性 杂填土:垃圾或工业固体废料堆积 土 人工堆积 人工土 按冻胀性: 土 ,季节冻土非冻胀土 砾质冻 , 瞬时冻土弱冻胀土 砂质,土 ,中冻胀土 粘质多年冻土,强冻胀土 35 时,宜定名为夹层,厚的土层写在前面,如粘土夹粉砂层。厚度比大于1/3时,宜定名为“互层”,如粘土与粉砂互层。厚度比小于1/10时,且有规律地多次出现时,宜定名为“夹薄层”, 如粘土夹薄层粉砂。对混合土,应冠以主要含有的土类定名,如含碎石粘土、含粘土角砾 等。 目前,国内外使用的土名和土的分类法并不统一。一方面是土的复杂性,另一方面是 各个部门实际应用时侧重点不同,一时难以改变。但其共同点多于不同点。在实际应用中, 可根据各部门的需要和实际情况选择合适的分类方案。 土的第二级分类即土质分类考虑了决定土的工程地质性质的最本质因素,即土的颗粒 级配与塑性特性,是土分类的最基本形式,在实际中应用较广。 二、我国主要的土质分类简介 影响土的工程性质的三个主要因素是土的三相组成、土的物理状态和土的结构。在这 三者中,起主要作用的无疑是三相组成。在三相组成中,关键是土的固体颗粒,首先是颗 粒的粗细。按实践经验,工程上以土中粒径d>0.075mm(有的规范用0.1mm)的质量占全部土粒质量的50%作为第一个分类的界限。大于50%的称为粗粒土,小于50%的称为细粒土。粗粒土的工程性质主要取决于土的颗粒级配,故粗粒土按其颗粒级配再分成细类。细 粒土的工程性质不仅取决于其颗粒级配,而且还与土的矿物成分和形状均有密切关系。直 接量测和鉴定土的矿物成分和形状(反映比表面积大小)均较困难,但是它们直接综合表 现为土的吸附结合水的能力。因此,目前国内外的各种规范中多用吸附结合水的能力作为 细粒土的分类标准。反映土吸附结合水能力的特性指标有液限、塑限或塑性指数。经多次 统计分析表明,这三个指标中,塑性指数I 与液性指数w与土的工程性质关系密切,规律pL性更强。因此国内外对细粒土的分类多用I或w加I作为分类标准。下面主要介绍我国水pLp 利部与建设部颁布的两种应用较广的土质分类。 (一)水利部的土质分类标准 我国水利部主编的《土的分类标准》(GBJ145-90)代表我国引进美国ASTM(American Society for Testing Materials)分类方法所积累的研究成果水平。这个分类标准将土分为巨粒 土、含巨粒的土、粗粒土和细粒土四个大类。 试样中巨粒组质量多于总质量的50%的土称为巨粒土;巨粒组质量为总质量的 15%~50%的土称为巨粒混合土,巨粒土和含巨粒的土的分类定名方法,详见表2-7。 试样中粗粒组质量多于总质量50%的土称为粗粒土,粗粒土进一步细分为砾类土和砂类 土。砾粒组质量多于总质量的50%的土称砾类土;砾粒组质量少于或等于总质量的50%的土 称砂类土。此外,对粗粒土的划分应考虑细粒含量和颗粒级配,因细粒含量和颗粒级配不 同时,其物理力学性质差异很大。如细粒含量增加时,其亲水性与强度将增加,而渗透性 则降低几千倍。因此,对粗粒土必须考虑其细粒含量和颗粒级配进行进一步的划分,详细 划分标准见表2-8。 36 表2-7 巨粒土和含巨粒土的分类 土 类 粒组含量 土类代号 土类名称 漂石粒>50% B 漂石 巨粒含量 巨粒土 75~100% 漂石粒?50% C 卵石 b 漂石粒>50% BSI 混合土漂石 巨粒含量 混合巨粒土 50~75% 漂石粒?50% CSI 混合土卵石 b 漂石多于卵石 SIB 漂石混合土 巨粒含量 巨粒混合土 15~50% 漂石少于卵石 SIC 卵石混合土 b 注:定名时,应根据颗粒级配由大到小以最先符合者确定。 表2-8 粗粒土分类 土 类 粒组含量 土代号 土名称 级配Cu?5,Cc=1-3 GW 级配良好砾 砾 细粒含量<5% 级配不同时满足上述要求 GP 级配不良砾 砾 类含细粒土砾 细粒含量5-15% GF 含细粒土砾 土 细粒为粘土 GC 粘土质砾 细粒含量细粒土质砾 15-50% 细粒为粉土 GM 粉土质砾 级配Cu?5,Cc=1-3 SW 级配良好砂 砂 细粒含量<5% 级配不同时满足上述要求 SP 级配不良砂 砂 类含细粒土砂 细粒含量5-15% SF 含细粒土砂 土 细粒为粘土 SC 粘土质砂 细粒含量细粒土质砂 15-50% 细粒为粉土 SM 粉土质砂 试样中粗粒组质量少于总质量的25%的土,称为细粒土。粗粒组质量为总质量的 25%~50%的土称为含粗粒的细粒土。试样中含部分有机质的土称有机土。细粒土可以按塑性 图进行分类。塑性图是由美国学者卡萨格兰德(A.Casagrande)于本世纪30年代提出的,尔后应用于对细粒土的土质分类,目前在欧美和日本普遍推广使用。我国原水利电力部1979年颁布的《土工试验规程》(SD01-79)中,也提出了用于细粒土分类的塑性图。塑性图的 基本图式是以塑性指数I为纵坐标,液限w为横坐标,图上绘有两条(或两条以上)的直PL 线,如A、B线。A、B线将图分为4个区域,可区分出不同类型的细粒土。为了与国际上 的标准接轨,又考虑到我国的实际情况,《土的分类标准》(GBJ145-90)中规定了两种用于细粒土分类的塑性图。当取质量为76g、锥角为30?的液限仪锥尖入土深度为17mm对应的含水量为液限时(相当于欧美和日本普遍使用的卡氏碟式液限仪测定的结果),应按图2-4分类。当取质量为76g、锥角为30?的液限仪锥尖入土深度为10mm对应的含水量为液限时(这是我国过去长期使用的液限标准),应按图2-5分类。两种图的图式基本一致,但A、B线所在的位置不同。此外,搭界上(虚线所包围的区域)的划分标准也不同。图中A线以上为粘土,以下为粉土,B线右侧为高液限的,左侧为低液限的。英文代号分别为:C-粘土,M-粉土,H-高液限,L-低液限。具体名称见表2-9。 37 图2-4 我国采用的塑性图 表2-9 细粒土分类 土的塑性指标在塑性图中的位置 锥尖入土土代号 土名称 深度 塑性指数I 液限w PL ?40% CH 高液限粘土 I?0.63(w-20) 和I?10 PLP<40% CL 低液限粘土 10mm ?40% MH 高液限粉土 I<0.63(w-20)和I<10 PLP<40% ML 低液限粉土 ?50% CH 高液限粘土 I?0.73(w-20) 和I?10 PLP<50% CL 低液限粘土 17mm ?50% MH 高液限粉土 I<0.73(w-20)和I<10 PLP<50% ML 低液限粉土 含粗粒的细粒土按所含粗粒的类别进行划分,如砾粒占优,称含砾细粒土。应在细粒土代 号后缀以代号G,如CHG、CLG、MHG、MLG等。如砂粒占优,称含砂细粒土。应在细 粒土代号后缀以代号S,如CHS、CLS、MHS、MLS等。有机土可按表2-9划分,在各相应土类代号之后应缀以代号O,如CHO、CLO、MHO、MLO等。 《土的分类标准》还规定了土的简易鉴别方法。用目测法代替试验室筛分法确定土的 粒径大小及各类组含量。用干强度、手捻、搓条、韧性和摇震反应等定性方法代替用仪器 测定细粒土的塑性。这种方法特别适用于野外的工程地质勘察,对土进行野外定名与描述。 这种方法可详见《土的分类标准》(GBJ145-90)。 (二)建设部的土质分类标准 我国建设部主编的《岩土工程勘察规范》(GB50021-94)的分类系统是在《工业与民用 建筑地基基础设计规范》(TJ7-74)和《工业与民用建筑工程地质勘探规范》(TJ21-77)中38 土的分类基础上发展起来的。在《建筑地基基础设计规范》(GBJ7-89)中得到修订。土按颗粒级配或塑性指数可划分为碎石土、砂土、粉土和粘性土。碎石土和砂土的进一步划分 见表2-10与表2-11。 粒径大于0.075mm的颗粒不超过全部质量50%,且塑性指数等于或小于10的土,应定为粉土。塑性指数大于10定为粘性土。粘性土又可进一步划分为粉质粘土和粘土。塑性指 时,液限以76g瓦氏圆锥仪入土深度10mm为准;塑限以搓条法为准。 P数大于10,且小于或等于17时,应定为粉质粘土;塑性指数大于17时,定为粘土。确定 《岩土工程勘察规范》中的土质分类标准偏重于土作为地基和周围介质方面的应用,塑性指数I 对土的分类简便易行。但对主要将土作为建筑材料的水利、道路部门,则不太适用。其级 配特征不能全面描述,难以满足评价土石料的要求。在实际应用中,应根据工程实践,选 择适合不同的工程要求的分类标准。 表2-10 碎石土分类 土的名称 颗 粒 形 状 颗 粒 级 配 漂 石 圆形及亚圆形为主 粒径大于200mm的颗粒超过总质量50% 块 石 棱角形为主 卵 石 圆形及亚圆形为主 粒径大于20mm 的颗粒超过总质量50% 碎 石 棱角形为主 圆 砾 圆形及亚圆形为主 粒径大于2mm的颗超过总质量50% 角 砾 棱角形为主 注:定名时应根据颗粒级配由大到小最先符合者确定 表2-11 砂土分类 土的名称 颗粒级配 砾 砂 粒径大于2mm的颗粒质量占总质量25~50% 粗 砂 粒径大于0.5mm的颗粒质量超过总质量50% 中 砂 粒径大于0.25mm的颗粒质量超过总质量50% 细 砂 粒径大于0.075mm的颗粒质量超过总质量85% 粉 砂 粒径大于0.075mm的颗粒质量超过总质量50% 注:?定名时应根据颗粒级配由大到小以最先符合者确定。 ?当砂土中,小于0.075mm的土的塑性指数大于10时,应冠以“含粘性土”定名,如含粘性土粗砂等。 39
本文档为【土的物理性质与工程分类】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_511210
暂无简介~
格式:doc
大小:89KB
软件:Word
页数:30
分类:生活休闲
上传时间:2017-09-18
浏览量:76