首页 哺乳类视觉成像原理

哺乳类视觉成像原理

举报
开通vip

哺乳类视觉成像原理哺乳类视觉成像原理 视杆细胞 百科名片 人类每个眼球的视网膜内约有1.2亿个视杆细胞,其树突呈细杆抓哏内,称为视杆,视杆外节的膜盘除基部少数膜盘仍与胞膜相连,其余大部分均在边缘处与胞膜 脱离,成为独立的膜盘。膜盘的更新是由外节基部不断产生,其顶端不断被色素上皮细胞所吞噬。膜盘上镶嵌有感光物质,称视紫红质(rhodopsin),能 感受弱光。 目录 视觉形成过程 结构 信息处理 感光原理 感光换能机制 实验 视杆细胞 (rod cell) 人类每个眼球的视网膜内约有1.2亿个视杆细胞,其树突呈细杆抓哏内...

哺乳类视觉成像原理
哺乳类视觉成像原理 视杆细胞 百科名片 人类每个眼球的视网膜内约有1.2亿个视杆细胞,其树突呈细杆抓哏内,称为视杆,视杆外节的膜盘除基部少数膜盘仍与胞膜相连,其余大部分均在边缘处与胞膜 脱离,成为独立的膜盘。膜盘的更新是由外节基部不断产生,其顶端不断被色素上皮细胞所吞噬。膜盘上镶嵌有感光物质,称视紫红质(rhodopsin),能 感受弱光。 目录 视觉形成过程 结构 信息处理 感光原理 感光换能机制 实验 视杆细胞 (rod cell) 人类每个眼球的视网膜内约有1.2亿个视杆细胞,其树突呈细杆抓哏内,称为视杆,视杆外节的膜盘除基部少数膜盘仍与胞膜相连,其余大部分均在边缘处与胞膜脱离,成为独立的膜盘。膜盘的更新是由外节基部不断产生,其顶端不断被色素上皮细胞所吞噬。膜盘上镶嵌有感光物质,称视紫红质(rhodopsin), 能感受弱光。视紫红质是由11-顺视黄醛(11-cisretinae)和视蛋白(oposin)组成,前者是维生素A的衍生物,当维生素A缺乏时,视紫红质合成不足,则患夜盲症。视杆细胞体较小,核圆形染色较深,其轴突末梢不分之呈球型,与双极细胞的树突形成突触。 约翰?霍普金斯大学科学家领导的研究小组发现,眼睛感光的任务极有可能仅由三种细胞负责。 在2003年6月15日期《自然》杂志的网络版上,研究小组报道,视锥细胞、 视杆细胞和产生黑视蛋白的特殊视网膜细胞一起合作,包揽了小鼠对光强做出反应的全部工作。有其他研究人员提出产生感光色素cryptochrome的细胞 也有感 光作用,但霍普金斯的科学家表示,就小鼠而言,cryptochrome细胞没有这个作用,在人类中恐怕也是如此。 “我们相当确信,视锥/视杆细胞系统和黑视蛋白系统是哺乳动物眼部唯一两个感光系统。”约翰?霍普金斯大学基础生物医学科学研究所的神经科学教授King-Wai Yau博士说。“永远不要说永远,但至少目前还没有证据表明有第三个系统存在。” 产生视觉形象是眼睛最为人熟知的工作,但感光并对光水平做出反应也是眼睛一项极为重要的工作。有了这个附属能力,眼睛就可以维持机体 “即使其内部生物钟告诉它现在是夜晚,正常小鼠暴露于强光时也会表现得不太活跃,会藏起来甚至 睡觉。”Yau说。“这被看作是动机发生改变,也许小鼠意识到在光照中--即使生物钟告诉它们现在是夜晚,它们被捕食的机会更大。但3基因敲除小鼠好像在 白天与夜晚一样活跃。” 研究人员设计了另外一个实验来排除cryptochrome蛋白有感光作用,据报道该蛋白与果蝇的感光有关。由于每个光敏蛋白都是对光的特征波长最敏感,因而将小鼠暴露于单波长光中可以揭示对眼睛的非视觉功能最重要的蛋白。 在这些在伦敦帝国学院进行的实验中,研究人员发现传统的视杆/视锥细胞退化 ” 盲人小鼠当暴露于黑视蛋白细胞而不是cryptochrome细胞感应的光时,”重设的视杆细胞和视锥细胞丧失功能,但眼睛中产生黑视蛋白的细胞似乎仍能提供足够的信息使身体和大脑与生物钟协调一致。但如果完全失去双眼,生物钟就会遭到破坏。 视觉形成过程 光线?角膜?瞳孔?晶状体(折射光线)?玻璃体(固定眼球)?视网膜(形成物像)?视神经(传导视觉信息)?大脑视觉中枢(形成视觉 ) 视网膜神经细胞 哺乳动物光感受器细胞模式图光感受器按其形状可分为两大类,即视杆细胞和视锥细胞。夜间活动的 动物(如鼠)视网膜的光感受器以视杆细胞为主,而昼间活动的动物(如鸡、松鼠等)则以视锥细胞为主。但大多数脊椎动物(包括人)则两者兼而有之。视杆细胞 在光线较暗时活动,有较高的光敏度,但不能作精细的空间分辨,且不参与色觉。在较明亮的环境中以视锥细胞为主,它能提供色觉以及精细视觉。这是视觉二元理 论的核心。在人的视网膜中,视锥细胞约有600,800万个,视杆细胞总数达1亿以上。它们似以镶嵌的形式分布在视网膜中;其分布是不均匀的,在视网膜黄 斑部位的中央凹区,几乎只有视锥细胞。这一区域有很高的空间分辨能力(视锐度,也叫视力)。它还有良好的色觉,对于视觉最为重要。中央凹以外区域,两种细 胞兼有,离中央凹越远视杆细胞越多,视锥细胞则越少。在视神经离开视网膜的部位(乳头),由于没有任何光感受器,便形成盲点。 视网膜内有感光细胞层,人类和大多数脊椎动物的感光细胞有视杆细胞和视锥细胞两种。感光细胞可通过终足和双极细胞发生突触联系,双极细胞再和神经节细胞联系,由节细胞发生的突起在视网膜表面聚合成束,然后穿过脉络膜和巩膜后构成视神经,视神经出眼 球后穿视神经管入颅腔,经视交叉连于间脑。 目前认为,物像落在视网膜上首先引起光化学反应,已从视网膜上提取出感光物质。这些物质在暗处呈紫红色,受到光照时则迅速退色而转变为白色。如将蛙或兔放在暗室中,使动物跟朝向明亮的窗子一定时间,然后遮光立即摘出眼球,剔出视网膜,用适当化学物质如明矾处理视网膜,则可发现动物视网膜留有窗子的图像,窗子的透光部分呈白色,窗框部分呈暗红色。这些都说明视网膜上感光物质在光线作用下所出现的光化学反应。在感光细胞的大量研究中,对视杆细胞研究得比较清楚。视杆细胞的感光物质称为视紫红质,它由视蛋白和视黄醛结合 而成。视黄醛由维生素A转变而来。 视紫红质在光照时迅速分解为视蛋白和视黄醛,与此同时,可看到视杆细胞出现感受器电位,再引起其他视网膜细胞的活动。 视紫红质在亮处分解,在暗处又可重新合成。人在暗处视物时,实际上既有视紫红质的分解,又有它的合成。光线愈暗,合成过程愈超过分解过程,这是人在暗处能不断看到物质的基础。相反在强光作用下,视紫红质分解增强,合成减少,视网膜中视紫红质大为减少,因而对弱光的敏感度降低。故视杆细胞对弱光敏感,与黄昏暗视觉有关。视紫红质在分解和再合成过程中,有一部分视黄醛将被消耗,主要靠血液中的维生素A补充。如维生素A缺乏,则将影响人在暗处的视力称为夜盲症。 结构 视杆细胞和视锥细胞 视 紫红质分解视杆细胞分化为内段和外段,两者间由纤细的纤毛相连。内段,包含细胞核众多的线粒体及其他细胞器,与光感受器的终末相连续;外段,则与视网膜的 第2级神经细胞形成突触联系。外段包含一群堆积着的小盘,这些小盘由细胞膜内褶而成。视杆细胞多数小盘已与细胞膜相分离。在正常情况下,外段顶端的小盘不 断脱落,而与内段相近的基部的小盘则不断向顶部迁移。但在视网膜色素变性等病理情况下,这种小盘的更新会发生障碍。 在外段小盘上排列着对光敏感的色素分子,这种色素通称视色素,它在光照射下发生的一系列光化学变化是整个视觉过程的起始点。 视杆细胞的视色素叫做视紫红质,它具有一定的光谱吸收特性,在暗中呈粉红色,每个视杆细胞外段 包含109个视紫红质分子,视紫红质是一种色蛋白,由两部分组成。其一是视蛋白,有348个氨基酸,分子量约为38000;另一部分为生色基团——视黄醛,是维生素A的醛类,因为存在若干碳的双键,它具有几 种不同的空间构型。在暗处呈扭曲形的11-型异构体,但受光照后即转变为直线形的全-反型异构体。 后者不再能和视蛋白相结合,经过一系列不稳定的中间产物后,视黄醛与视蛋白相分离。在这一过程中,视色素分子失去其颜色(漂白)。暗处它在酶的作用下,视黄醛又变为11-顺型,并重新与视蛋白相结合(复生),完成视觉循环。在强光照射后,视紫红质大部分被漂白,其重新合成需要约1小时。随着视紫红质的复 生,视网膜的对光敏感度逐渐恢复,这是暗适应的光化学基础。当动物缺乏维生素A时,视觉循环受阻,会导致夜盲。 信息处理 视紫质化学反应图解 视网膜神经细胞 视网膜上亿的神经细胞排列成三层,通过突触组成一个处理信息的复杂网络。第一层是光感受器,第二层是中间神经细胞,包括双极细胞、水平细胞和无长突细胞等,第三层是神经节细胞。它们间的突触形成两个突触层,即光感受器与双极细胞、水平细胞间突触组成的外网状层,以及双极细胞、无长突细胞和神经 节细胞间突触组成的内网状层。光感受器兴奋后,其信号主要经过双极细胞传至神经节细胞,然后,经后者的轴突(视神经纤维)传至神经中枢。但在外网状层和内 网状层信号又由水平细胞和无长突细胞进行调制。这种信号的传递主要是经由化学性突触实现的,但在光感受器之间和水平细胞之间还存在电突触(缝隙连接),联系彼此间的相互作用。 视杆细胞的信号和视锥细胞的信号,在视网膜中的传递通路是相对独立的,直到神经节细胞才汇合起 来。接收视杆细胞信号的双极细胞只有一类(杆双极细胞),但接收视锥细胞信号的双极细胞,按其突触的特征可分为陷入型和扁平型两种,这两种细胞具有不同的 功能特性。在外网状层,水平细胞在广阔的范围内从光感受器接收信号,并在突触处与双极细胞发生相互作用。此外,水平细胞还以向光感受器反馈的形式调制信号。在内网状层双极细胞的信号传向神经节细胞,而无长突细胞则把邻近的双极细胞联系起来。视杆和视锥细胞信号的汇合也可能发生在无长突细胞。 感光原理 视杆细胞和视锥细胞光线进入眼睛后,首先通过角膜,然后分别透过房水、晶状体和玻璃体。最后,光线到达眼睛的感光组织视网膜。视网膜中包含两种细胞,分 别叫做视杆细胞和视锥细胞。视杆细胞负责昏暗光线下的视物,而视锥细胞则负责处理色彩和细节。当光线接触到这两种细胞时,会发生一系列复杂的化学反应。形 成的化学物质(活化视紫质)会在视神经中产生电子脉冲。一般来说,视杆细胞的外段细长,而视锥细胞的外段更像是锥形。 这两种细胞的外段都含有感光性化学物质。在视杆细胞中,这种化学物质叫做视紫质;而视锥细胞中 的则叫做色素。视网膜中有1亿个视杆细胞和700万个视锥细胞。视网膜被黑色素所覆盖,正如同照相机的 视紫质化学反应图解活化视紫质通过下列方式产生电子脉冲: 1. 视杆细胞的细胞膜(外层)带有电荷。当光线激活视紫质时,它就会导致环式GMP(鸟苷单磷酸)减少,而电荷随之增加。这样就会在细胞周围产生电流。随着光线的增多,就会有更多的视紫质被激活,也就会产生更强的电流。 2. 最后,电子脉冲被传到神经节细胞,再传到视神经。 3. 这些视神经在视交叉处汇集。在这里,视网膜内部的神经纤维会通往另一侧大脑,而视网膜外部的神经纤维则通往同侧大脑。 4. 这些纤维最终到达大脑后部(枕骨脑叶)。这个位置叫做基本视觉皮层,大脑在这里将电子脉冲解译为视觉信号。有些视觉纤维通往大脑的其他部分,有助于控制眼睛的活动、瞳孔和虹膜的反应,以及行为方式。 最后,必须重新形成视紫质,才能重复进行产生视觉的过程。全反式视黄醛转化成11-顺式视黄醛,然后与暗视蛋白结合后,便形成视紫质,视紫质遇光后便会重新开始该过程。 感光换能机制 弱光条件下人眼所感到的光谱亮度曲线 从 1998年开始,有人就从视网膜中提取出了一定纯度的感光色素即视紫红质,它在暗处呈红色;实验中还可以 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 ,提取出来的这种感光色素对不同波长光线的吸 收光谱,基本上和晚光觉对光谱不同部分的敏感性曲线相一致。这一事实十分重要,因为既然光线对某种感光色素的光化学作用的强度正好与这些光线所引起的视觉 的强度相一致,那就是提示前者可能是后者的基础。 (一)视紫红质的光化学反应及其代谢 弱光条件下人眼所感到的光谱亮度曲线视紫红质的分子量约为27-28kd,是一种与结合蛋白 质,由一分子称为视蛋白(opsin)的蛋白质和一分子称为视黄醛(retnal)的生色基团所组成。视蛋白的肽链序列已搞清,它的肽链中有7段穿越所在 膜结构、主要由疏水性氨基酸组成的α-螺旋区段,同一般的细胞膜受体具有类似的结构。视黄醛由维生素A变来,后者是一种不饱和醇,在体内一种酶的作用下可 氧化成视黄醛。提纯的视紫红质在溶液中对500nm波长的光线吸收能力最强,这与人眼在弱光条件下对光就业上蓝绿光区域(相当于500nm波长附近)感觉 最明亮(不是感到了蓝绿色)的事实相一致,说明人在暗视觉与视杆细胞中所含视紫红质的光化学反应有直接的关系。 视紫红质在光照时迅速分解为视蛋白和视黄醛,这是一个多阶段的反应。目前认为,分解的出现首先 是由于视黄醛分子在光照时发生了分子构象的改变,即它在视紫红质分子中本来呈11-顺型(一种较为弯曲的构象),但在光照时变为全反型(一种较为直的分子 构象)。视黄醛分子构象的这种改变,将导致视蛋白分子构象也发生改变,经过较复杂的信号传递系统的活动,诱发视杆细胞出现感受器电位。据计算,一个光量子 被视紫红质吸收,就足以使视黄醛分子结构发生改变,导致视紫红质最后分解为视蛋白和视黄醛。视紫红质分解的某些阶段伴有能量的释放,但这看来不是诱发感受 器电位的直接原因。 在亮处分解的视紫红质,在暗处又可重新合成,亦即它是一个可逆反应,其反应的平衡点决定于光照 的强度。视紫红质再合成的第一步,是全反型的视黄醛变为11-顺型的视黄醛,很快再同视蛋白结合。此外,贮存在视网膜的色素细胞层中的维生素A也是全反型 的,它们也可在耗能的情况下变成11-顺型的,进入视杆细胞,然后再氧化成11-顺型的视黄醛,参与视紫红质的合成补充;但这个过程进行的速度较慢,不是 促进视紫红制裁再合成的即时因素。人在暗处视物时,实际是既有视紫红质的分解,又有它的合成,这是人在暗光处能不断视物的基础;光线愈暗,全盛过程愈超过 分解过程,视网膜中处于合成状态的视紫红质数量也愈高,这也使视网膜对弱光愈敏感;相反,人在亮光处时,视紫红质的分解增强,合成过程甚弱,这就使视网膜 中有较多的视紫红质处于分解状 态,使视杆细胞几乎失去了感受光刺激的能力;事实上,人的视觉在亮光处是靠另一种对光刺激较不敏感的感光系统即视锥来完成 的,后一系统在弱光时不足以被刺激,而在强光系统下视杆细胞中的视紫红质较多地处于分解状态时,视锥系统就代之而成为强光刺激的感受系统。在视紫红质和再 合成的过程中,有一部分视黄醛被消耗,这最终要靠由食物进入血液循环(相当部分贮存于肝)中的维生素A来补充。长期摄入维生素A不足,将会影响人在暗光处 的视力,引起夜盲症。 (二)视杆细胞外段的超微结构和感受器电位的产生 视杆细胞外段的超微结构示意图 视杆细胞外段的超微结构示意图感光细胞的外段是进行光-电转换的关键部位。视杆细胞外段具有特 殊的超微结构。在外段部分,膜内的细胞浆甚少,绝大部分为一些整齐的重叠成层的圆盘状结构所占据,这圆盘称为视盘。每一个视盘是一个扁平的囊状物,囊膜的 结构和细胞膜类似,具有一般的脂质双分子层结构,但其中镶嵌着的蛋白质绝大部分是视紫红质,亦即视杆细胞所含的视紫红质实际上几乎全部集中在视盘膜中。视 盘的数目在不同动物的视杆细胞中相差很大,人的每个视杆细胞外段中它们的数目近千;每一个视盘所含的视紫红质分子约有100万个。这样的结构显然有利于使 进入视网膜的光量子有更大的机会在外段中碰到视紫红质分子。 有人用细胞内微电极技术,研究了视杆细胞外段内外的电位差在光照前后的变化,结果发现在视网膜 未经照射时,视杆细胞的静息电位只有 -30?/FONT>-40mV,比一般细胞小得多。经 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 表明,这是由于外段膜在无光照时,就有相当数量的 Na+通道处于开放状态并有持续的Na+内流所造成,而内段膜有Na+泵的连续活动将Na+移出膜外,这样就维持了膜内外的Na+平衡。当视网膜受到光照 时,可看到外段膜两侧电位短暂地向超极化的方向变化,由此可见,外段膜同一般的细胞膜不一致,它是在暗处或无光照时处于去极化状态,而在受到光刺激时,跨 膜电痊反而向超极化方向变化,因此视杆细胞的感受器电位(视锥细胞也一样),表现为一种超极化型的慢电位,这在所有被研究过的发生器或感受器电位中是特殊 的,它们一般都表现为膜的暂时去极化。 哺乳动物光感受器细胞模式 光子的吸收引起外段膜出现超极化电反应的机制已基本搞清,这就是光量子被作为受体的视紫红质吸 收后引起视蛋白分子的变构,又激海参了视盘膜中一种 称为传递蛋白(transducin)Ct的中介物,后者在结构上属于G-蛋白家庭的一员,它激活的结果是进而激活附近的磷酸二酯酶,于是使外段部分胞浆中的cGMP大量分解,而胞浆中cGMP的分解,就使未受光刺激时结合于外段膜的cGMP由也膜解离而被分解,而cGMP在膜上的存在正是这膜中存在的化学门控式Na+通道开放的条件,膜上cGMP减少,Na+通道开放减少,于是光照的结果出现了记录到的超极化型感受器电位。据估计,一个视紫红质被激活时,可使约500个传递蛋白被激活;虽然传递蛋白激活磷酸二酯酶是1对1的,但一个激活了的 视杆细胞外段和整个视杆细胞都没有产生动作电位的能磷酸二酯酶在 一秒钟 力,由光刺激在外段膜上引起的感受器电位只能以电紧张性的扩布到达它的终足部分,影响终点(相当于轴突末稍)外的递质释放。 实验 在2003年6月15日期《自然》杂志的网络版上,研究小组报道,视锥细胞、视杆细胞和产生黑视蛋白的特殊视网膜细胞一起合作,包揽了小鼠对光强做出反 应的全部工作。有其他研究人员提出产生感光色素cryptochrome的细胞也有感光作用,但霍普金斯的科学家表示,就小鼠而言,cryptochrome细胞没有这个作用,在人类中恐怕也是如此。 感光色素 “我们相当确信,视锥/视杆细胞系统和黑视蛋白系统是哺乳动物眼部唯一两个感光系统。”约翰?霍普金斯大学基础生物医学科学研究所的神经科学教授King-Wai Yau博士说。“永远不要说永远,但至少目前还没有证据表明有第三个系统存在。” 产生视觉形象是眼睛最为人熟知的工作,但感光并对光水平做出反应也是眼睛一项极为重要的工作。 有了这个附属能力,眼睛就可以维持机体 “即使其 在这些在伦敦帝国学院进行的实验中,研究人员发现传统的视杆/视锥细胞退化小鼠当暴露于黑视蛋白细胞而不是cryptochrome细胞感应的光时,“重设” 盲人的视杆细胞和视锥细胞丧失功能,但眼睛中产生黑视蛋白的细胞似乎仍能提供足够的信息使身体和大脑与生物钟协调一致。但如果完全失去双眼,生物钟就会遭到破坏。 视锥细胞 百科名片 视锥细胞 视锥细胞在中央凹分布密集,而在视网膜周边区相对较少。中央凹处的视锥细胞与双极细胞、神经节细胞存在“单线联系”,使中央凹对光的感受分辨力高。视 视锥细锥细胞主司昼光觉,有色觉,光敏感性差,但视敏度高。 目录 视细胞胞 结构 视锥细胞能感受颜色 视锥细胞与色盲 三原色学说 对比色学说 视细胞 视锥细胞是视细胞的重要部分.视细胞是视网膜的感光神经元,分为视杆细胞和视锥细胞,均属双极神经元,由树突,胞体和轴突三部分构成.树突由较细的外界 和稍膨大的内接组成.外节为感光部分,电镜下可见许多平行排列的膜盘,他们是外节的一侧细胞膜内陷折叠而成.膜盘是视细胞的感光部分,不断由内节产生. 视细胞根据树突形状的不同分为视杆细胞和视锥细胞. 视锥细胞 Cone Cell.人类每只眼球视网膜大约600万~700万的视锥细胞,多分布在黄斑处,周围逐渐减少.树突为锥体形,因此成为视锥细胞.外节的膜盘大部分与胞 膜相连.外节膜盘上的感光物质称为视色素,能感受强光和颜色.大多数哺乳动物都具有能感受红光,蓝光以及绿光的三种视锥细胞.视锥细胞体积较大,核大着色 浅,轴突末梢膨大如足状,可与一个或多个双极细胞形成突触. 结构 视锥细胞外段也具有与视杆细胞类似的盘状结构,并含有特殊的感光色素,但分子数目较少。已知,大多 数脊椎动物具有三种不同的视锥色素,各存在于不同的视锥细胞中。三种视锥色素都含有同样的11-顺型视黄醛,只是视蛋白的分子结构稍有不同。看来是视蛋白分子结构中的微小差异,决定了同它结合在一起的视黄醛分子对何种波长的光线最为敏感,因而才有视杆细胞中的视紫红质和三种不同的视锥色素的区别。光线作用于视锥细胞外段时,在它们的外段膜两侧也发生现视杆细胞类似的超级化型感受器电位,作为光-电转换的第一步。目前认为视锥细胞外段的换能机制,也与视杆细胞类似。 视锥细胞能感受颜色 视锥细胞功能的重要特点,是它有辨别颜色的能力。颜色视觉是一种复杂的物理-心理现象,颜色的不同,主要是不同波长的光线作用于视网膜后 在人脑引起的主观印象。人眼一般可在光谱上区分出红、橙、黄、绿、青、蓝、紫等七种颜色,每种颜色都与一定波长的光线相对应;但仔细的检查可以发现,单是 人眼在光谱可区分的色泽实际不下150种,说明在可见光谱的范围内波长长度只要有3-5nm的增减,就可被视觉系统分辨为不同的颜色。很明显,设想在视网 膜中存在上百种对不同波长的光线起反应的视锥细胞或感光色素,是不大可能的。但物理学上从牛顿的时代或更早就知道,一种颜色不仅可能由某一固定波长的光线 所引起,而且可以由两种或更多种其他波长光线的混合作用而引起。例如,把光 谱上的七色光在所谓牛顿色盘上旋转,可以在人眼引起白色的感觉;用红、绿、蓝三 种色光(不是这三种颜色的颜料)作适当混合,可以引起光谱上所有任何颜色的感觉。这后一现象特别重要;这种所谓三原色混合原理不仅早已广泛地应用于彩色照 相、彩色电视等方面,而且被用于说明颜色视觉的产生原理本身。 1809)和Helmholtz(1824)就提出了视觉的三原色学说, 早在上世纪初,Young( 设想在视网膜中存在着分别对红、绿、蓝的光线特别敏感的三种视锥 细胞或相应的三种感光色素,并且设想当光谱上波和介于这三者之间的光线作用于视网膜时,这 些光线可对敏感波长与之相近两种视锥细胞或感光色素起不同程度的刺激作用,于是在中枢引起介于此二原色之间的其他颜色的感觉。视觉三原色学说用较简单的生 物感受结构的假设说明了复杂的色觉现象,一般为多数人所接受;但在实验中试图寻找出游同种类的视锥细胞或感光色素长时间未获成功。用光学显微镜和电子显微镜不能发现视锥细胞之间在结构上有什么不同,同时也未能用一般的化学 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 分离邮不同的视锥感光色素。 70年代以来,由于实验技术的进步,关于视网膜中有三种对不同波长光线特别敏感的视锥细胞的假说,已经被许多出色的实验所证实,例如,有人用不超过单个视锥直径的细小单色光束,逐个检查并绘制在人体(最初实验是在金公和蝾螈等动物进行,以后是人) 视锥细胞的光谱吸收曲线,发现所有绘制出来的曲线不外三种类型,分别代表了三类光谱吸收特性不同的视锥细胞,一类的吸收峰值在420nm外,一类在 531nm外,一类在558nm外,差不多正好相当于蓝、绿、红三色光的波长,和上述视觉三原色学说的假设相符。用微电极记录单个视锥细胞感受器电位的方 法,也得到了类似的结果,即不同单分光引起的超极化型感受器电位的大小,在不同视锥细胞是不一样的,峰值出现的情况符合于三原色学说。 视锥细胞与色盲 红色盲也称第一色盲,被认为是由于缺乏对较长波长光线敏感的视锥细胞所致;此外还有绿色盲,也称第二色盲,蓝色盲也称第三原色盲,都可能是由于缺乏相应的特殊视锥细胞所致。红色盲和绿色盲较为多见,在临床上都不加以区别地称为红绿色盲; 蓝色盲则极少见。色盲患者的颜色不仅不能识别绿色,也不能区分红也绿之间、绿与蓝之间的颜色等。有些色觉异常的人,只是对某种颜色的识别能力差一些,亦即 他们不是由于缺乏某种视锥细胞,而只是后者的反应能力较正常人为弱的结果,这种情况有别于真正的色盲,称为色弱。色盲除了极少数可以由于视网膜后天病变引 起外,绝大多数是由遗传因素决定的。 三原色学说 认为视网膜上存在分别对红,绿,蓝的光线特别敏感的3种视锥细胞或相应的3种感光色素。当某一种颜色的光线作用于3种视锥细胞通过混色,人大脑就产生某一颜色的感觉。此学说能够解释混色现象和色盲的原因,但不能说明视后像,色对比,对立色等现象。 三原色学说和它的实验依据,大体上可以说明临床上遇到的所谓色盲和色弱的可能发病机制。 三原色学说虽然比较圆满地说明许多色觉现象和色盲产生的原因,并已在光感受细胞的一级得到了实 验证实,但并不能解释所有的颜色视觉现象,如颜色对比现象就是一个例子。试将蓝色的小纸块放在黄色或其它颜色的背景上,会觉得放在黄色背景上那个蓝纸块特 别蓝,同时觉得背景也比未放蓝纸块时更黄(在 我国北方的黄土高原,当春天的风造成黄尘蔽日的情况时,会觉得平常的日晃灯管的光线变得较蓝了)。这种现象称 为颜色对比,而黄和蓝则称为对比色或互 补色。颜色对比现象只出现对比色之间,而不是任意的两种颜色之间。互为对比色的颜色对尚有:红一绿以及黑和白。根据 颜色对比等不容易用三原色学说圆满视觉现象,几乎是在三原色学说提出的同时就出现了另一种色觉学说,称为对比色学说(Hering,1876)。 对比色学说 该学说提出在视网膜中存在着三种物质,各对一组对比色的刺激起性质相反的反应。如前所述,近年来在视锥细胞一级进行的研究有利于三原色学说而不利于对比 色学说,但后来在视网膜其它层细胞进行的一些实验却又符合对比色学说的推测。如在金鱼水平细胞进行的微电极研究说明,此类细胞和视杆、视锥细胞不同,既能 出现超极化的跨膜电位改变,也能出现去极化型的电位改变,而且在用多种不同色光刺激时发现,有些水平细胞在黄光刺激时出现最大的去极化反应,在蓝光刺激时 出出现最大的超极化型反应;另一些水平细胞则在红和绿色刺激时有类似的不同反应。这些现象是同对比色学说一致的。看来可能的是,各以部分色觉现象为出发点 的两种色觉学说都是部分正确的,在视锥细胞一级,不同色光以引起三种不同视锥细胞产生不同大小的超极化型电变化进行编码;但到了水平细胞一级或其它级细胞 (包括某些中枢神经元),信息又进行重新编码,不同颜色可以用同细胞对互为对比色的颜色出现相反形式的电反应来编码。以上事实说明,颜色视觉的引起是一个 十分复杂的过程,它需要有从视网膜视锥细胞到皮层神经元的多级神经成分的参与才能完成。 黑视蛋白 百科名片 黑视蛋白(melanopsin)是一种在视网膜中的神经节细胞蛋白。科学家研究表明:黑视蛋白并不能帮助人们看清物体的形状,但它们却能够与光,特别是蓝光发生反应,因为黑视蛋白的光敏蛋白是哺乳动物设置“机体生物钟”所必需的。科学家表示,现在这种蛋白代表了治疗纠正混乱的昼夜行为规律的一个潜在目标 靶。 目录 研究 机理 新发现与相关评论 研究 机理 新发现与相关评论 展开 研究 黑视蛋白最初发现于1998年,早先的研究已经表明,存在于视网膜细胞中的一个特殊网络中的黑视蛋白可能是将光暗信息传递给大脑中的机体生物钟的主要递质。含有黑视蛋白的细胞似乎与赋予人们视觉的视杆细胞和视锥细胞是分离的;相反,黑视蛋白细胞对光强变化的感知力不太专化。 黑视蛋白 长期以来,科学家一直试图了解当生理节奏被夜班或时差等打乱后,机体究竟是如何”重新设置“生物钟的。2002年12月,两篇发表在《科学》杂志上的研究证实,黑视蛋白在使机体生物钟与外部世界同步中起着关键作用。科学家Ruby和他的同事研究了缺失编码黑视蛋白的基因的基因敲除小鼠,通过这种小鼠研究人员可以衡量该蛋白在适应昼夜周期变化中的重要程度。他们发现,与正常小鼠相比,缺失黑视蛋白基因的小鼠显示出对光照变化反应的减小——它们的机体生 同样,在第二物钟没有象正常小鼠那样将生物钟“重新设置”到同样的基准。 项研究中,一个国际研究小组也发现缺乏黑视蛋白的小鼠中生物钟重设能力降低。这项 研究小组由加州圣地亚哥Scripps研究院的Satchidananda Panda领导,他们得出结论,黑视蛋白是机体生物钟执行正常功能所必需的,但其它有关光输入到生物钟的机制也起着一定作用。 编辑本段机理 黑视蛋白不仅表达在神经节细胞的胞体,在突起(轴突)上也有表达。视网膜变性RCS大鼠病变发展晚期视网膜神经节细胞总量减少,而含黑视蛋白的神经节细胞所占比例反而略有增高,蛋白分析黑视蛋白表达量无显著改变,提示mRGCs较普通RGCs对视网膜变性微环境具有更强的耐受力。 编辑本段新发现与相关评论 新发现 2010年1月,据美国《科学》杂志在线新闻报道,明亮的光线为什么会加剧偏头痛一直是个未解之谜,这是因为控制视觉功能的大脑区域并未与那些传输痛觉的大脑区域发生交迭。为了搞清到底是哪些视觉细胞在背后捣鬼,在贝斯以色列女执事医疗中心及美国哈佛医学院任职的麻醉学家Rami Burstein和同事,找到了一些患偏头痛的盲人。 黑视蛋白细胞能够解释为什么光线会给偏头痛 在20位志愿加入此项研究的盲人中,6位完全没有视觉的盲人在偏头痛发作时并未因光线的改变而感觉到病情的增减。但是其他14位志愿者却正好相反。这是一条非常有趣的线索,因为后者负责大部分的光感知工作的视网膜中的视杆细胞和视锥细胞存在缺陷。然而,他们可能拥有其他一些功能健全的视网膜细胞,而这些细胞则携带了一种名为黑视蛋白的受体。 评说 研究者Burstein表示,基于这一点,“我们需要跟踪黑视蛋白”,从而搞清表达这些蛋白的细胞是否与传递痛觉的细胞有联系。结果显示,在 实验室 17025实验室iso17025实验室认可实验室检查项目微生物实验室标识重点实验室计划 小鼠的大脑中,感光黑视蛋白细胞的轴突与丘脑中的特殊神经细胞连接在一起,而后者在痛觉的感知中扮演了一个重要角色。 几年前参与黑视蛋白发现研究的布朗大学神经科学家David Berson对此表示赞同。他说,这项研究为搞清光线为什么会使偏头痛加剧“开辟了新的途径”。但是他警告说,参与此项研究的盲人志愿者可能仍然具有一些 完好无损的视杆细胞和视锥细胞,这意味着发现黑视蛋白可能仅仅解开了一部分光—痛之谜。
本文档为【哺乳类视觉成像原理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_496339
暂无简介~
格式:doc
大小:37KB
软件:Word
页数:0
分类:工学
上传时间:2018-02-24
浏览量:9