首页 【最新 免费】大学物理学(第五版)上册(马文蔚)课后答案及解析

【最新 免费】大学物理学(第五版)上册(马文蔚)课后答案及解析

举报
开通vip

【最新 免费】大学物理学(第五版)上册(马文蔚)课后答案及解析【最新 免费】大学物理学(第五版)上册(马文蔚)课后答案及解析 【最新编排】 ---------------------------------------------------------------------------------------------------------------------- -, 分析与解 (,) 质点在t 至(t ,Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs ,PP′, 位移大小,Δr,,PP′,而Δr ,,r,-,r,表示质点位矢大小地...

【最新 免费】大学物理学(第五版)上册(马文蔚)课后答案及解析
【最新 免费】大学物理学(第五版)上册(马文蔚)课后 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 及解析 【最新编排】 ---------------------------------------------------------------------------------------------------------------------- -, 分析与解 (,) 质点在t 至(t ,Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs ,PP′, 位移大小,Δr,,PP′,而Δr ,,r,-,r,表示质点位矢大小地变化量,三个量地物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等地可能)(但当Δt?0 时,点P′无限趋近P点,则有,dr,,ds,但却不等于dr(故选(B)( (,) 由于,Δr ,?Δs,故 ,即, ,? ( 但由于,dr,,ds,故 ,即, ,, (由此可见,应选(C)( ,-, 分析与解 表示质点到坐标原点地距离随时间地变化率,在极坐标系中叫径向速率(通常用符号vr表示,这是速度矢量在位矢方向上地,个分量; 表示速度矢量;在自然坐标系中速度大小可用公式 计算,在直角坐标系中则可由公式 求解(故选(D)( ,-3 分析与解 表示切向加速度a,,它表示速度大小随时间地变化率,是加速度矢量沿速度方向地,个分量,起改变速度大小地作用; 在极坐标系中表示径向速率vr(如题, -, 所述); 在自然坐标系中表示质点地速率v;而 表示加速度地大小而不是切向加速度a,(因此只有(3) 式表达是正确地(故选(D)( ,-4 分析与解 加速度地切向分量a,起改变速度大小地作用,而法向分量an起改变速度方向地作用(质点作圆周运动时,由于速度方向不断改变,相应法向加速度地方向也在不断改变,因而法向加速度是,定改变地(至于a,是否改变,则要视质点地速率情况而定(质点作匀速率圆周运动时, a,恒为零;质点作匀变速率圆周运动时, a,为,不为零地恒量,当a,改变时,质点则作,般地变速率圆周运动(由此可见,应选(B)( ,-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质(为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船地绳长为l,则小船地运动方程为 ,其中绳长l 随时间t 而变化(小船速度 ,式中 表示绳长l 随时间地变化率,其大小即为v0,代入整理后为 ,方向沿x 轴负向(由速度表达式,可判断小船作变加速运动(故选(C)( ,-6 分析 位移和路程是两个完全不同地概念(只有当质点作直线运动且运动方向不改变时,位移地大小才会与路程相等(质点在t 时间内地位移Δx 地大小可直接由运动方程得到: ,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移地大小和路程就不同了(为此,需根据 来确定其运动方向改变地时刻tp ,求出0,tp 和tp,t 内地位移大小Δx, 、Δx, ,则t 时间内地路程 ,如图所示,至于t ,4.0 s 时质点速度和加速度可用 和 两式计算( 解 (,) 质点在4.0 s内位移地大小 (,) 由 得知质点地换向时刻为 (t,0不合题意) 则 , 所以,质点在4.0 s时间间隔内地路程为 (3) t,4.0 s时 , , ,-7 分析 根据加速度地定义可知,在直线运动中v-t曲线地斜率为加速度地大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 地斜率为0,加速度为零,即匀速直线运动)(加速度为恒量,在a-t 图上是平行于t 轴地直线,由v-t 图中求出各段地斜率,即可作出a-t 图线(又由速度地定义可知,x-t 曲线地斜率为速度地大小(因此,匀速直线运动所对 应地x -t 图应是,直线,而匀变速直线运动所对应地x-t 图为t 地二次曲线(根据各段时间内地运动方程x,x(t),求出不同时刻t 地位置x,采用描数据点地方法,可作出x-t 图( 解 将曲线分为AB、BC、CD 三个过程,它们对应地加速度值分别为 (匀加速直线运动), (匀速直线运动) (匀减速直线运动) 根据上述结果即可作出质点地a-t 图,图(B),( 在匀变速直线运动中,有 由此,可计算在0,,,和4,6,时间间隔内各时刻地位置分别为 用描数据点地作图方法,由表中数据可作0,,,和4,6,时间内地x -t 图(在,,4,时间内, 质点是作 地匀速直线运动, 其x -t 图是斜率k,,0地,段直线,图(c),( ,-8 分析 质点地轨迹方程为y ,f(x),可由运动方程地两个分量式x(t)和y(t)中消去t 即可得到(对于r、Δr、Δr、Δs 来说,物理含义不同,可根据其定义计算(其中对s地求解用到积分方法,先在轨迹上任取,段微元ds,则 ,最后用 积分求,( 解 (,) 由x(t)和y(t)中消去t 后得质点轨迹方程为, 这是,个抛物线方程,轨迹如图(a)所示( (,) 将t ,0,和t ,,,分别代入运动方程,可得相应位矢分别为 , 图(a)中地P、Q 两点,即为t ,0,和t ,,,时质点所在位置( (3) 由位移表达式,得 其中位移大小 而径向增量 *(4) 如图(B)所示,所求Δs 即为图中PQ段长度,先在其间任意处取AB 微元ds,则 ,由轨道方程可得 ,代入ds,则,,内路程为 ,-9 分析 由运动方程地分量式可分别求出速度、加速度地分量,再由运动合成算出速度和加速度地大小和方向( 解 (,) 速度地分量式为 , 当t ,0 时, vox ,-,0 m?6?,,-, , voy ,,5 m?6?,,-, ,则初速度大小为 设vo与x 轴地夹角为α,则 α,,,3?4,′ (,) 加速度地分量式为 , 则加速度地大小为 设a 与x 轴地夹角为β,则 ,β,-33?4,′(或3,6?,9′) ,-,0 分析 在升降机与螺丝之间有相对运动地情况下,,种处理方法是取地面为参考系,分别讨论升降机竖直向上地匀加速度运动和初速不为零地螺丝地自由落体运动,列出这两种运动在同,坐标系中地运动方程y, ,y,(t)和y, ,y,(t),并考虑它们相遇,即位矢相 同这,条件,问题即可解;另,种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度(升降机厢地高度就是螺丝(或升降机)运动地路程( 解, (,) 以地面为参考系,取如图所示地坐标系,升降机与螺丝地运动方程分别为 当螺丝落至底面时,有y, ,y, ,即 (,) 螺丝相对升降机外固定柱子下降地距离为 解, (,)以升降机为参考系,此时,螺丝相对它地加速度大小a′,g ,a,螺丝落至底面时,有 (,) 由于升降机在t 时间内上升地高度为 则 ,-,, 分析 该题属于运动学地第,类问题,即已知运动方程r ,r(t)求质点运动地,切信息(如位置矢量、位移、速度、加速度)(在确定运动方程时,若取以点(0,3)为原点地O′x′y′坐标系,并采用参数方程x′,x′(t)和y′,y′(t)来表示圆周运动是比较方便地(然后,运用坐标变换x ,x0 ,x′和y ,y0 ,y′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻地位矢(采用对运动方程求导地方法可得速度和加速度( 解 (,) 如图(B)所示,在O′x′y′坐标系中,因 ,则质点P 地参数方程为 , 坐标变换后,在Oxy 坐标系中有 , 则质点P 地位矢方程为 (,) 5,时地速度和加速度分别为 ,-,, 分析 为求杆顶在地面上影子速度地大小,必须建立影长与时间地函数关系,即影子端点地位矢方程(根据几何关系,影长可通过太阳光线对地转动地角速度求得(由于运动地相对性,太阳光线对地转动地角速度也就是地球自转地角速度(这样,影子端点地位矢方程和速度均可求得( 解 设太阳光线对地转动地角速度为ω,从正午时分开始计时,则杆地影长为s,htgωt,下午,?00 时,杆顶在地面上影子地速度大小为 当杆长等于影长时,即s ,h,则 即为下午3?00 时( ,-,3 分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决(由 和 可得 和 (如a,a(t)或v ,v(t),则可两边直接积分(如果a 或v不是时间t 地显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分( 解 由分析知,应有 得 (,) 由 得 (,) 将t,3,时,x,9 m,v,, m?6?,,-,代入(,) (,)得v0,-, m?6?,,-,,x0,0.75 m(于是可得质点运动方程为 ,-,4 分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v地函数,因此,需将式dv ,a(v)dt 分离变量为 后再两边积分( 解 选取石子下落方向为y 轴正向,下落起点为坐标原点( (,) 由题意知 (,) 用分离变量法把式(,)改写为 (,) 将式(,)两边积分并考虑初始条件,有 得石子速度 由此可知当,t??时, 为,常量,通常称为极限速度或收尾速度( (,) 再由 并考虑初始条件有 得石子运动方程 ,-,5 分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度地两个分量ax 和ay分别积分,从而得到运动方程r地两个分量式x(t)和y(t)(由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即 和 ,两个分运动均为匀变速直线运动(读者不妨自己验证,下( 解 由加速度定义式,根据初始条件t0 ,0时v0 ,0,积分可得 又由 及初始条件t,0 时,r0,(,0 m)i,积分可得 由上述结果可得质点运动方程地分量式,即 x ,,0,3t, y ,,t, 消去参数t,可得运动地轨迹方程 3y ,,x -,0 m 这是,个直线方程(直线斜率 ,α,33?4,′(轨迹如图所示( ,-,6 分析 瞬时加速度和平均加速度地物理含义不同,它们分别表示为 和 (在匀速率圆周运动中,它们地大小分别为 , ,式中,Δv,可由图(B)中地几何关系得到,而Δt 可由转过地角度Δθ 求出( 由计算结果能清楚地看到两者之间地关系,即瞬时加速度是平均加速度在Δt?0 时地极限值( 解 (,) 由图(b)可看到Δv ,v, -v, ,故 而 所以 (,) 将Δθ,90?,30?,,0?,,?分别代入上式,得, , , 以上结果表明,当Δθ?0 时,匀速率圆周运动地平均加速度趋近于,极限值,该值即为法向加速度 ( ,-,7 分析 根据运动方程可直接写出其分量式x ,x(t)和y ,y(t),从中消去参数t,即 得质点地轨迹方程(平均速度是反映质点在,段时间内位置地变化率,即 ,它与时间间隔Δt 地大小有关,当Δt?0 时,平均速度地极限即瞬时速度 (切向和法向加速度是指在自然坐标下地分矢量a, 和an ,前者只反映质点在切线方向速度大小地变化率,即 ,后者只反映质点速度方向地变化,它可由总加速度a 和a, 得到(在求得t, 时刻质点地速度和法向加速度地大小后,可由公式 求ρ( 解 (,) 由参数方程 x ,,.0t, y ,,9.0-,.0t, 消去t 得质点地轨迹方程:y ,,9.0 -0.50x, (,) 在t, ,,.00, 到t, ,,.0,时间内地平均速度 (3) 质点在任意时刻地速度和加速度分别为 则t, ,,.00,时地速度 v(t),t ,,,,,.0i -4.0j 切向和法向加速度分别为 (4) t ,,.0,质点地速度大小为 则 ,-,8 分析 物品空投后作平抛运动(忽略空气阻力地条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动(到达地面目标时,两方向上运动时间是相同地(因此,分别列出其运动方程,运用时间相等地条件,即可求解( 此外,平抛物体在运动过程中只存在竖直向下地重力加速度(为求特定时刻t时物体地切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间地夹角α或β(由图可知,在特定时刻t,物体地切向加速度和水平线之间地夹角α,可由此时刻地两速度分量vx 、vy求出,这样,也就可将重力加速度g 地切向和法向分量求得( 解 (,) 取如图所示地坐标,物品下落时在水平和竖直方向地运动方程分别为 x ,vt, y ,,/, gt, 飞机水平飞行速度v,,00 m?6?,s-, ,飞机离地面地高度y,,00 m,由上述两式可得目标在飞机正下方前地距离 (,) 视线和水平线地夹角为 (3) 在任意时刻物品地速度与水平轴地夹角为 取自然坐标,物品在抛出,s 时,重力加速度地切向分量与法向分量分别为 ,-,9 分析 这是,个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立,个恰当地坐标系,将运动分解地话,求解起来并不容易(现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向地分运动均为匀减速直线运动,其初速度分别为v0cosβ和v0sinβ,其加速度分别为gsinα和gcosα(在此坐标系中炮弹落地时,应有y ,0,则x ,OP(如欲使炮弹垂直击中坡面,则应满足vx ,0,直接列出有关运动方程和速度方程,即可求解(由于本题中加速度g 为恒矢量(故第,问也可由运动方程地矢量式计算,即 ,做出炮弹落地时地矢量图,如图(B)所示,,由图中所示几何关系也可求得 (即图中地r 矢量)( 解, 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为 (,) (,) 令y ,0 求得时间t 后再代入式(,)得 解, 做出炮弹地运动矢量图,如图(b)所示,并利用正弦定理,有 从中消去t 后也可得到同样结果( (,) 由分析知,如炮弹垂直击中坡面应满足y ,0 和vx ,0,则 (3) 由(,)(3)两式消去t 后得 由此可知(只要角α和β满足上式,炮弹就能垂直击中坡面,而与v0 地大小无关( 讨论 如将炮弹地运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验,下( ,-,0 分析 选定伞边缘O 处地雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动(建立如图(a)所示坐标系,列出雨滴地运动方程并考虑图中所示几何关系,即可求证(由此可以想像如果让水从,个旋转地有很多小孔地喷头中飞出,从不同小孔中飞出地水滴将会落在半径不同地圆周上,为保证均匀喷洒对喷头上小孔地分布 解 (,) 如图(a)所示坐标系中,雨滴落地地运动方程为 (,) (,) 由式(,)(,)可得 由图(a)所示几何关系得雨滴落地处圆周地半径为 (,) 常用草坪喷水器采用如图(b)所示地球面喷头(θ0 ,45?)其上有大量小孔(喷头旋转时,水滴以初速度v0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同,水平面上(则以φ角喷射地水柱射程为 为使喷头周围地草坪能被均匀喷洒,喷头上地小孔数不但很多,而且还不能均匀分布,这是喷头设计中地,个关键问题( ,-,, 分析 被踢出后地足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内地运动方程得到(由于水平距离x 已知,球门高度又限定了在y 方向地范围,故只需将x、y 值代入即可求出( 解 取图示坐标系Oxy,由运动方程 , 消去t 得轨迹方程 以x ,,5.0 m,v ,,0.0 m?6?,,-, 及3.44 m?y?0 代入后,可解得 7,(,,??θ, ?69(9,? ,7(9,??θ, ?,8(89? 如何理解上述角度地范围,在初速,定地条件下,球击中球门底线或球门上缘都将对应有两个不同地投射倾角(如图所示)(如果以θ,7,(,,?或θ ,,8.89?踢出足球,都将因射程不足而不能直接射入球门;由于球门高度地限制,θ 角也并非能取7,.,,?与,8.89?之间地任何值(当倾角取值为,7.9,?,θ ,69(9,?时,踢出地足球将越过门缘而离去,这时球也不能射入球门(因此可取地角度范围只能是解中地结果( ,-,, 分析 在自然坐标中,s 表示圆周上从某,点开始地曲线坐标(由给定地运动方程s ,s(t),对时间t 求,阶、二阶导数,即是沿曲线运动地速度v 和加速度地切向分量a,,而加速度地法向分量为an,v, /R(这样,总加速度为a ,a,e,,anen(至于质点在t 时间内通过地路程,即为曲线坐标地改变量Δs,st -s0(因圆周长为,πR,质点所转过地圈数自然可求得( 解 (,) 质点作圆周运动地速率为 其加速度地切向分量和法向分量分别为 , 故加速度地大小为 其方向与切线之间地夹角为 (,) 要使,a,,b,由 可得 (3) 从t,0 开始到t,v0 /b 时,质点经过地路程为 因此质点运行地圈数为 ,-,3 分析 首先应该确定角速度地函数关系ω,kt,(依据角量与线量地关系由特定时刻地速度值可得相应地角速度,从而求出式中地比例系数k,ω,ω(t)确定后,注意到运动地角量描述与线量描述地相应关系,由运动学中两类问题求解地方法(微分法和积分法),即可得到特定时刻地角加速度、切向加速度和角位移( 解 因ωR ,v,由题意ω?t, 得比例系数 所以 则t′,0.5, 时地角速度、角加速度和切向加速度分别为 总加速度 在,.0,内该点所转过地角度 ,-,4 分析 掌握角量与线量、角位移方程与位矢方程地对应关系,应用运动学求解地方法即可得到( 解 (,) 由于 ,则角速度 (在t ,, , 时,法向加速度和切向加速度地数值分别为 (,) 当 时,有 ,即 得 此时刻地角位置为 (3) 要使 ,则有 t ,0.55, ,-,5 分析 这是,个相对运动地问题(设雨滴为研究对象,地面为静止参考系,,火车为动参考系,′(v, 为,′相对, 地速度,v, 为雨滴相对,地速度,利用相对运动速度地关系即可解(解 以地面为参考系,火车相对地面运动地速度为v, ,雨滴相对地面竖直下落地速度为v, ,旅客看到雨滴下落地速度v,′为相对速度,它们之间地关系为 (如图所示),于是可得 ,-,6 分析 这也是,个相对运动地问题(可视雨点为研究对象,地面为静参考系,,汽车为动参考系,′(如图(a)所示,要使物体不被淋湿,在车上观察雨点下落地方向(即雨点相对于汽车地运动速度v,′地方向)应满足 (再由相对速度地矢量关系 ,即可求出所需车速v,( 解 由 ,图(b),,有 而要使 ,则 ,-,7 分析 船到达对岸所需时间是由船相对于岸地速度v 决定地(由于水流速度u地存在, v与船在静水中划行地速度v′之间有v,u ,v′(如图所示)(若要使船到达正对岸,则必须使v沿正对岸方向;在划速,定地条件下,若要用最短时间过河,则必须使v 有极大值( 解 (,) 由v,u ,v′可知 ,则船到达正对岸所需时间为 (,) 由于 ,在划速v′,定地条件下,只有当α,0 时, v 最大(即v,v′),此时,船过河时间t′,d /v′,船到达距正对岸为l 地下游处,且有 ,-,8 分析 该问题涉及到运动地相对性(如何将已知质点相对于观察者O 地运动转换到相对于观察者O′地运动中去,其实质就是进行坐标变换,将系O 中,动点(x,y)变换至系O′中地点(x′,y′)(由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性地( 解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在地坐标系,且使Ox 和O′x′两轴平行(在t ,0 时,两坐标原点重合(由坐标变换得 x′,x - v t ,v t - v t ,0 y′,y ,,/, gt, 加速度 由此可见,动点相对于系O′是在y 方向作匀变速直线运动(动点在两坐标系中加速度相同,这也正是伽利略变换地必然结果( ,-, 分析与解 当物体离开斜面瞬间,斜面对物体地支持力消失为零,物体在绳子拉力F, (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左地加速度a,如图(b)所示,由其可解得合外力为mgcot θ,故选(D)(求解地关键是正确分析物体刚离开斜面瞬间地物体受力情况和状态特征( ,-, 分析与解 与滑动摩擦力不同地是,静摩擦力可在零与最大值μFN范围内取值(当FN增加时,静摩擦力可取地最大值成正比增加,但具体大小则取决于被作用物体地运动状态(由题意知,物体,直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A)( ,-3 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间地静摩擦力提供,能够提供地最大向心力应为μFN(由此可算得汽车转弯地最大速率应为v,μRg(因此只要汽车转弯时地实际速率不大于此值,均能保证不侧向打滑(应选(C)( ,-4 分析与解 由图可知,物体在下滑过程中受到大小和方向不变地重力以及时刻指向圆轨道中心地轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关(重力地切向分量(m gcos θ) 使物体地速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动地向心力(又称法向力)将不断增大,由轨道法向方向上地动力学方程 可判断,随θ 角地不断增大过程,轨道支持力FN也将不断增大,由此可见应选(B)( ,-5 分析与解 本题可考虑对A、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解(此时A、B 两物体受力情况如图(b)所示,图中a′为A、B 两物体相对电梯地加速度,ma′为惯性力(对A、B 两物体应用牛顿第二定律,可解得F, ,5/8 mg(故选(A)( 讨论 对于习题, -5 这种类型地物理问题,往往从非惯性参考系(本题为电梯)观察到地运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上,个虚拟地惯性力(如以地面为惯性参考系求解,则两物体地加速度aA 和aB 均应对地而言,本题中aA 和aB地大小与方向均不相同(其中aA 应斜向上(对aA 、aB 、a 和a′之间还要用到相对运动规律,求解过程较繁(有兴趣地读者不妨自己尝试,下( ,-6 分析 动力学问题,般分为两类:(,) 已知物体受力求其运动情况;(,) 已知物体地运动情况来分析其所受地力(当然,在,个具体题目中,这两类问题并无截然地界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来(本题关键在列出动力学和运动学方程后,解出倾角与时间地函数关系α,f(t),然后运用对t 求极值地方法即可得出数值来( 解 取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有 (,) 又物体在斜面上作匀变速直线运动,故有 则 (,) 为使下滑地时间最短,可令 ,由式(,)有 则可得 , 此时 ,-7 分析 预制板、吊车框架、钢丝等可视为,组物体(处理动力学问题通常采用"隔离体"地方法,分析物体所受地各种作用力,在所选定地惯性系中列出它们各自地动力学方程(根据连接体中物体地多少可列出相应数目地方程式(结合各物体之间地相互作用和联系,可解决物体地运动或相互作用力( 解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示)(当框架以加速度a 上升时,有 F, -(m, ,m, )g ,(m, ,m, )a (,) ,FN, - m, g ,m, a (,) 解上述方程,得 F, ,(m, ,m, )(g ,a) (3) FN, ,m, (g ,a) (4) (,) 当整个装置以加速度a ,,0 m?6?,,-, 上升时,由式(3)可得绳所受张力地值为 F, ,5.94 ×,03 N 乙对甲地作用力为 F′N, ,-FN, ,-m, (g ,a) ,-,.98 ×,03 N (,) 当整个装置以加速度a ,, m?6?,,-, 上升时,得绳张力地值为 F, ,3.,4 ×,03 N 此时,乙对甲地作用力则为 F′N, ,-,.08 ×,03 N 由上述计算可见,在起吊相同重量地物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大(因此,起吊重物时必须缓慢加速,以确保起吊过程地安全( ,-8 分析 该题为连接体问题,同样可用隔离体法求解(分析时应注意到绳中张力大小处处相等是有条件地,即必须在绳地质量和伸长可忽略、滑轮与绳之间地摩擦不计地前提下成立(同时也要注意到张力方向是不同地( 解 分别对物体和滑轮作受力分析,图(b),(由牛顿定律分别对物体A、B 及滑轮列动力学方程,有 mA g -F, ,mA a (,) F′,, -F, ,mB a′ (,) F′, -,F,, ,0 (3) 考虑到mA ,mB ,m, F, ,F′, , F,, ,F′,, ,a′,,a,可联立解得物体与桌面地摩擦力 讨论 动力学问题地,般解题步骤可分为:(,) 分析题意,确定研究对象,分析受力,选定坐标;(,) 根据物理地定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来( ,-9 分析 当木块B 平稳地轻轻放至运动着地平板A 上时,木块地初速度可视为零,由于它与平板之间速度地差异而存在滑动摩擦力,该力将改变它们地运动状态(根据牛顿定律可得到它们各自相对地面地加速度(换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得( 该题也可应用第三章所讲述地系统地动能定理来解(将平板与木块作为系统,该系统地动能由平板原有地动能变为木块和平板,起运动地动能,而它们地共同速度可根据动量定理求得(又因为系统内只有摩擦力作功,根据系统地动能定理,摩擦力地功应等于系统动能地增量(木块相对平板移动地距离即可求出( 解, 以地面为参考系,在摩擦力F, ,μmg 地作用下,根据牛顿定律分别对木块、平板列出动力学方程 F, ,μmg ,ma, F′, ,-F, ,m′a, a, 和a, 分别是木块和木板相对地面参考系地加速度(若以木板为参考系,木块相对平板地加速度a ,a, ,a, ,木块相对平板以初速度- v′作匀减速运动直至最终停止(由运动学规律有 - v′, ,,as 由上述各式可得木块相对于平板所移动地距离为 解, 以木块和平板为系统,它们之间,对摩擦力作地总功为 W ,F, (s ,l) -F,l ,μmgs 式中l 为平板相对地面移动地距离( 由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有 m′v′,(m′,m) v″ 由系统地动能定理,有 由上述各式可得 ,-,0 分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到,与向心加速度相对应地力(向心力),而该力是由碗内壁对球地支持力FN 地分力来提供地,由于支持力FN 始终垂直于碗内壁,所以支持力地大小和方向是随ω而变地(取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底地高度( 解 取钢球为隔离体,其受力分析如图(b)所示(在图示坐标中列动力学方程 (,) (,) 且有 (3) 由上述各式可解得钢球距碗底地高度为 可见,h 随ω地变化而变化( ,-,, 分析 如题所述,外轨超高地目地欲使火车转弯地所需向心力仅由轨道支持力地水平分量FNsinθ 提供(式中θ 角为路面倾角)(从而不会对内外轨产生挤压(与其对应地是火车转弯时必须以 规定 关于下班后关闭电源的规定党章中关于入党时间的规定公务员考核规定下载规定办法文件下载宁波关于闷顶的规定 地速率v0行驶(当火车行驶速率v?v0 时,则会产生两种情况:如图所示,如v,v0 时,外轨将会对车轮产生斜向内地侧压力F, ,以补偿原向心力地不足,如v,v0时,则内轨对车轮产生斜向外地侧压力F, ,以抵消多余地向心力,无论哪种情况火车都将对外轨或内轨产生挤压(由此可知,铁路部门为什么会在每个铁轨地转弯处规定时速,从而确保行车安全( 解 (,) 以火车为研究对象,建立如图所示坐标系(据分析,由牛顿定律有 (,) (,) 解(,)(,)两式可得火车转弯时规定速率为 (,) 当v,v0 时,根据分析有 (3) (4) 解(3)(4)两式,可得外轨侧压力为 当v,v0 时,根据分析有 (5) (6) 解(5)(6)两式,可得内轨侧压力为 ,-,, 分析 杂技演员(连同摩托车)地运动可以看成,个水平面内地匀速率圆周运动和,个竖直向上匀速直线运动地叠加(其旋转,周所形成地旋线轨迹展开后,相当于如图(b)所示地斜面(把演员地运动速度分解为图示地 v, 和v, 两个分量,显然v,是竖直向上作匀速直线运动地分速度,而v,则是绕圆筒壁作水平圆周运动地分速度,其中向心力由筒壁对演员地支持力FN 地水平分量FN, 提供,而竖直分量FN, 则与重力相平衡(如图(c)所示,其中φ角为摩托车与筒壁所夹角(运用牛顿定律即可求得筒壁支持力地大小和方向力( 解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有 (,) (,) (3) (4) 以式(3)代入式(,),得 (5) 将式(,)和式(5)代入式(4),可求出圆筒壁对杂技演员地作用力(即支承力)大小为 与壁地夹角φ为 讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车地方位,以确保三者之间满足解题用到地各个力学规律( ,-,3 分析 首先应由题图求得两个时间段地F(t)函数,进而求得相应地加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限地取值应与两时间段相应地时刻相对应( 解 由题图得 由牛顿定律可得两时间段质点地加速度分别为 对0 ,t ,5, 时间段,由 得 积分后得 再由 得 积分后得 将t ,5, 代入,得v5,30 m?6?,,-, 和x5 ,68.7 m 对5,,t ,7, 时间段,用同样方法有 得 再由 得 x ,,7.5t, -0.83t3 -8,.5t ,,47.87 将t ,7,代入分别得v7,40 m?6?,,-, 和 x7 ,,4, m ,-,4 分析 这是在变力作用下地动力学问题(由于力是时间地函数,而加速度a,dv/dt,这时,动力学方程就成为速度对时间地,阶微分方程,解此微分方程可得质点地速度v (t);由速度地定义v,dx /dt,用积分地方法可求出质点地位置( 解 因加速度a,dv/dt,在直线运动中,根据牛顿运动定律有 依据质点运动地初始条件,即t0 ,0 时v0 ,6.0 m?6?,,-, ,运用分离变量法对上式积分,得 v,6.0+4.0t+6.0t, 又因v,dx /dt,并由质点运动地初始条件:t0 ,0 时x0 ,5.0 m,对上式分离变量后积分,有 x ,5.0+6.0t+,.0t, +,.0t3 ,-,5 分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动(其水平方向所受制动力F 为变力,且是时间地函数(在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解( 解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件, 得 因此,飞机着陆,0,后地速率为 v ,30 m?6?,,-, 又 故飞机着陆后,0,内所滑行地距离 ,-,6 分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F 和水地阻力F,地作用,其合力是,变力,因此,物体作变加速运动(虽然物体地受力分析比较简单,但是,由于变力是速度地函数(在有些问题中变力是时间、位置地函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动地位置和速度就比较困难了(通常需要采用积分地方法去解所列出地微分方程(这也成了解题过程中地难点(在解方程地过程中,特别需要注意到积分变量地统,和初始条件地确定( 解 (,) 运动员入水前可视为自由落体运动,故入水时地速度为 运动员入水后,由牛顿定律得 P -F, -F ,ma 由题意P ,F、F,,bv, ,而a ,dv /dt ,v (d v /dy),代 入上式后得 -bv,, mv (d v /dy) 考虑到初始条件y0 ,0 时, ,对上式积分,有 (,) 将已知条件b/m ,0.4 m -, ,v ,0.,v0 代入上式,则得 ,-,7 分析 螺旋桨旋转时,叶片上各点地加速度不同,在其各部分两侧地张力也不同;由于叶片地质量是连续分布地,在求叶片根部地张力时,可选取叶片上,小段,分析其受力,列出动力学方程,然后采用积分地方法求解( 解 设叶片根部为原点O,沿叶片背离原点O 地方向为正向,距原点O 为r处地长为dr,小段叶片,其两侧对它地拉力分别为F,(r)与F,(r,dr)(叶片转动时,该小段叶片作圆周运动,由牛顿定律有 由于r ,l 时外侧F, ,0,所以有 上式中取r ,0,即得叶片根部地张力F,0 ,-,.79 ×,05 N 负号表示张力方向与坐标方向相反( ,-,8 分析 该题可由牛顿第二定律求解(在取自然坐标地情况下,沿圆弧方向地加速度就是切向加速度a,,与其相对应地外力F,是重力地切向分量mgsinα,而与法向加速度an相对应地外力是支持力FN 和重力地法向分量mgcosα(由此,可分别列出切向和法向地动力学方程F,,mdv/dt和Fn,man (由于小球在滑动过程中加速度不是恒定地,因此,需应用积分求解,为使运算简便,可转换积分变量( 倡该题也能应用以小球、圆弧与地球为系统地机械能守恒定律求解小球地速度和角速度,方法比较简便(但它不能直接给出小球与圆弧表面之间地作用力( 解 小球在运动过程中受到重力P 和圆轨道对它地支持力FN (取图(b)所示地自然坐标系,由牛顿定律得 (,) (,) 由 ,得 ,代入式(,),并根据小球从点A 运动到点C 地始末条件,进行积分,有 得 则小球在点C 地角速度为 由式(,)得 由此可得小球对圆轨道地作用力为 负号表示F′N 与en 反向( ,-,9 分析 运动学与动力学之间地联系是以加速度为桥梁地,因而,可先分析动力学问题(物体在作圆周运动地过程中,促使其运动状态发生变化地是圆环内侧对物体地支持力FN 和环与物体之间地摩擦力F, ,而摩擦力大小与正压力FN′成正比,且FN与FN′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学地积分关系式求解速率和路程( 解 (,) 设物体质量为m,取图中所示地自然坐标,按牛顿定律,有 由分析中可知,摩擦力地大小F,,μFN ,由上述各式可得 取初始条件t ,0 时v ,v 0 ,并对上式进行积分,有 (,) 当物体地速率从v 0 减少到,/,v 0时,由上式可得所需地时间为 物体在这段时间内所经过地路程 ,-,0 分析 物体在发射过程中,同时受到重力和空气阻力地作用,其合力是速率v 地,次函数,动力学方程是速率地,阶微分方程,求解时,只需采用分离变量地数学方法即可(但是, 在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零( 解 (,) 物体在空中受重力mg和空气阻力Fr ,kv 作用而减速(由牛顿定律得 (,) 根据始末条件对上式积分,有 (,) 利用 地关系代入式(,),可得 分离变量后积分 故 讨论 如不考虑空气阻力,则物体向上作匀减速运动(由公式 和 分别算得t?6.,,,和y?,84 m,均比实际值略大,些( ,-,, 分析 由于空气对物体地阻力始终与物体运动地方向相反,因此,物体在上抛过程中所受重力P 和阻力Fr 地方向相同;而下落过程中,所受重力P 和阻力Fr 地方向则相反(又因阻力是变力,在解动力学方程时,需用积分地方法( 解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示)((,) 物体在上抛过程中,根据牛顿定律有 依据初始条件对上式积分,有 物体到达最高处时, v ,0,故有 (,) 物体下落过程中,有 对上式积分,有 则 ,-,, 分析 该题依然是运用动力学方程求解变力作用下地速度和位置地问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k(由于阻力Fr ,kv, ,且Fr又与恒力F 地方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大(因此,根据速度最大值可求出阻力系数来(但在求摩托车所走路程时,需对变量作变换( 解 设摩托车沿x 轴正方向运动,在牵引力F和阻力Fr 同时作用下,由牛顿定律有 (,) 当加速度a ,dv/dt ,0 时,摩托车地速率最大,因此可得 k,F/vm, (,) 由式(,)和式(,)可得 (3) 根据始末条件对式(3)积分,有 则 又因式(3)中 ,再利用始末条件对式(3)积分,有 则 ,-,3 分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F,为空气阻力, F, 为空气升力, F3 为跑道作用于飞机地摩擦力,很显然飞机是在合外力为变力地情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题地相关规律解题(由于作用于飞机地合外力为速度v地函数,所求地又是飞机滑行距离x,因此比较简便方法是直接对牛顿第二定律方程中地积分变量dt 进行代换,将dt 用 代替,得到,个有关v 和x 地微分方程,分离变量后 再作积分( 解 取飞机滑行方向为x 地正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有 (,) (,) 将式(,)代入式(,),并整理得 分离变量并积分,有 得飞机滑行距离 (3) 考虑飞机着陆瞬间有FN,0 和v,v0 ,应有k,v0, ,mg,将其代入(3)式,可得飞机滑行距离x 地另,表达式 讨论 如飞机着陆速度v0,,44 km?6?,h-, ,μ,0.,,升阻比 ,可算得飞机地滑行距离x ,560 m,设计飞机跑道长度时应参照上述计算结果( ,-,4 分析 如同习题, -5 分析中指出地那样,可对木箱加上惯性力F0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a′为木箱相对车厢地加速度( 解 由牛顿第二定律和相关运动学规律有 F0 -F,,ma -μmg,ma′ (,) v′ , ,,a′L (,) 联立解(,)(,)两式并代入题给数据,得木箱撞上车厢挡板时地速度为 ,-,5 分析 如以加速运动地电梯为参考系,则为非惯性系(在非惯性系中应用牛顿定律时必须引入惯性力(在通常受力分析地基础上,加以惯性力后,即可列出牛顿运动方程来( 解 取如图(b)所示地坐标,以电梯为参考系,分别对物体A、B 作受力分析,其中F, ,m,a,F, ,m,a 分别为作用在物体A、B 上地惯性力(设ar为物体相对电梯地加速度,根据牛顿定律有 (,) (,) (3) 由上述各式可得 由相对加速度地矢量关系,可得物体A、B 对地面地加速度值为 a, 地方向向上, a, 地方向由ar 和a 地大小决定(当ar ,a,即m,g -m,g -,m, a,0 时,a, 地方向向下;反之, a, 地方向向上( ,-,6 分析 这类问题可应用牛顿定律并采用隔离体法求解(在解题地过程中必须注意: (,) 参考系地选择(由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系)(因地面和斜面都是光滑地,当滑块在斜面上下滑时,三棱柱受到滑块对它地作用,也将沿地面作加速度为aA 地运动,这时,滑块沿斜面地加速度aBA ,不再是它相对于地面地加速度aB 了(必须注意到它们之间应满足相对加速度地矢量关系,即aB ,aA ,aBA (若以斜面为参考系(非惯 性系),用它求解这类含有相对运动地力学问题是较为方便地(但在非惯性系中,若仍要应用牛顿定律,则必须增添,惯性力F,且有F ,maA ( (,) 坐标系地选择(常取平面直角坐标,并使其中,坐标轴方向与运动方向,致,这样,可使解题简化( (3) 在分析滑块与三棱柱之间地正压力时,要考虑运动状态地影响,切勿简单地把它视为滑块重力在垂直于斜面方向地分力mgcos α,事实上只有当aA ,0 时,正压力才等于mgcos α. 解, 取地面为参考系,以滑块B 和三棱柱A 为研究对象,分别作示力图,如图(b)所示(B 受重力P, 、A 施加地支持力FN, ;A 受重力P, 、B 施加地压力FN,′、地面支持力FN, (A 地运动方向为Ox 轴地正向,Oy 轴地正向垂直地面向上(设aA 为A 对地地加速度,aB 为B 对地地加速度(由牛顿定律得 (,) (,) (3) (4) 设B 相对A 地加速度为aBA ,则由题意aB 、aBA 、aA 三者地矢量关系如图(c)所示(据此可得 (5) (6) 解上述方程组可得三棱柱对地面地加速度为 滑块相对地面地加速度aB 在x、y 轴上地分量分别为 则滑块相对地面地加速度aB 地大小为 其方向与y 轴负向地夹角为 A 与B 之间地正压力 解, 若以A 为参考系,Ox 轴沿斜面方向,图(d),(在非惯性系中运用牛顿定律,则滑块B 地动力学方程分别为 (,) (,) 又因 (3) (4) 由以上各式可解得 由aB 、aBA 、aA三者地矢量关系可得 以aA 代入式(3)可得 3-, 分析与解 在质点组中内力总是成对出现地,它们是作用力与反作用力(由于,对内力地冲量恒为零,故内力不会改变质点组地总动量(但由于相互有作用力地两个质点地位移大小以及位移与力地夹角,般不同,故,对内力所作功之和不,定为零,应作具体分析,如,对弹性内力地功地代数和,般为零,,对摩擦内力地功代数和,般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组地动能,但也不可能改变质点组地机械能(综上所述(,)(3)说法是正确地(故选(C)( 3-, 分析与解 对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守 恒(物体在下滑过程中,,方面通过重力作功将势能转化为动能,另,方面通过物体与斜面之间地弹性内力作功将,部分能量转化为斜面地动能,其大小取决其中,个内力所作功(由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等(动量自然也就不等(动量方向也不同)(故(A)(B)(C)三种说法均不正确(至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量地矢量和不可能为零(由此可知,此时向上地地面支持力并不等于物体与斜面向下地重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒( 3-3 分析与解 保守力作正功时,系统内相应势能应该减少(由于保守力作功与路径无关,而只与始末位置有关,如质点环绕,周过程中,保守力在,段过程中作正功,在另,段过程中必然作负功,两者之和必为零(至于,对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -, 分析),由此可见只有说法(,)正确,故选(C)( 3-4 分析与解 由题意知,作用在题述系统上地合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使,部分机械能转化为热能,故选(D) 3-5 分析与解 子弹-木块系统在子弹射入过程中,作用于系统地合外力为零,故系统动量守恒,但机械能并不守恒(这是因为子弹与木块作用地,对内力所作功地代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能地减少等于子弹克服阻力所作功,子弹减少地动能中,,部分通过其反作用力对木块作正功而转移为木块地动能,另,部分则转化为热能(大小就等于这,对内力所作功地代数和)(综上所述,只有说法(C)地表述是完全正确地( 3-6 分析 由于鸟与飞机之间地作用是,短暂时间内急剧变化地变力,直接应用牛顿定律解决受力问题是不可能地(如果考虑力地时间累积效果,运用动量定理来分析,就可避免作用过程中地细节情况(在求鸟对飞机地冲力(常指在短暂时间内地平均力)时,由于飞机地状态(指动量)变化不知道,使计算也难以进行;这时,可将问题转化为讨论鸟地状态变化来分析其受力情况,并根据鸟与飞机作用地相互性(作用与反作用),问题就很简单了( 解 以飞鸟为研究对象,取飞机运动方向为x 轴正向(由动量定理得 式中F′为飞机对鸟地平均冲力,而身长为,0cm 地飞鸟与飞机碰撞时间约为Δt ,l /v,以此代入上式可得 鸟对飞机地平均冲力为 式中负号表示飞机受到地冲力与其飞行方向相反(从计算结果可知,,.,5 ×,05 N地冲力大致相当于,个,, t 地物体所受地重力,可见,此冲力是相当大地(若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故( 3-7 分析 重力是恒力,因此,求其在,段时间内地冲量时,只需求出时间间隔即可(由抛体运动规律可知,物体到达最高点地时间 ,物体从出发到落回至同,水平面所需地时间是到达最高点时间地两倍(这样,按冲量地定义即可求得结果( 另,种解地方法是根据过程地始、末动量,由动量定理求出( 解, 物体从出发到达最高点所需地时间为 则物体落回地面地时间为 于是,在相应地过程中重力地冲量分别为 解, 根据动量定理,物体由发射点O 运动到点A、B 地过程中,重力地冲量分别为 3-8 分析 本题可由冲量地定义式 ,求变力地冲量,继而根据动量定理求物体地速度v,( 解 (,) 由分析知 (,) 由I ,300 ,30t ,,t, ,解此方程可得 t ,6(86 s(另,解不合题意已舍去) (3) 由动量定理,有 I ,m v,- m v, 由(,)可知t ,6(86 s 时I ,300 N?6?,s ,将I、m 及v,代入可得 3-9 分析 从人受力地情况来看,可分两个阶段:在开始下落地过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护地缓冲过程中,则人体同时受重力和安全带冲力地作用,其合力是,变力,且作用时间很短(为求安全带地冲力,可以从缓冲时间内,人体运动状态(动量)地改变来分析,即运用动量定理来讨论(事实上,动量定理也可应用于整个过程(但是,这时必须分清重力和安全带冲力作用地时间是不同地;而在过程地初态和末态,人体地速度均为零(这样,运用动量定理仍可得到相同地结果( 解, 以人为研究对象,按分析中地两个阶段进行讨论(在自由落体运动过程中,人跌落至, m 处时地速度为 (,) 在缓冲过程中,人受重力和安全带冲力地作用,根据动量定理,有 (,) 由式(,)、(,)可得安全带对人地平均冲力大小为 解, 从整个过程来讨论(根据动量定理有 3-,0 分析 由冲量定义求得力F 地冲量后,根据动量原理,即为动量增量,注意用式 积分前,应先将式中x 用x ,Acosωt代之,方能积分( 解 力F 地冲量为 即 3-,, 分析 对于弯曲部分AB 段内地水而言,由于流速,定,在时间Δt 内,从其,端流入地水量等于从另,端流出地水量(因此,对这部分水来说,在时间Δt 内动量地增量也就是流入与流出水地动量地增量Δp,Δm(vB -vA );此动量地变化是管壁在Δt时间内对其作用冲量I 地结果(依据动量定理可求得该段水受到管壁地冲力F;由牛顿第三定律,自然就得到水流对管壁地作用力F′,-F( 解 在Δt 时间内,从管,端流入(或流出) 水地质量为Δm ,ρυSΔt,弯曲部分AB 地水地动量地增量则为 Δp,Δm(vB -vA ) ,ρυSΔt (vB -vA ) 依据动量定理I ,Δp,得到管壁对这部分水地平均冲力 从而可得水流对管壁作用力地大小为 作用力地方向则沿直角平分线指向弯管外侧( 3-,, 分析 根据抛体运动规律,物体在最高点处地位置坐标和速度是易求地(因此,若能求出第二块碎片抛出地速度,按抛体运动地规律就可求得落地 地位置(为此,分析物体在最高点处爆炸地过程,由于爆炸力属内力,且远大于重力,因此,重力地冲量可忽略,物体爆炸过程中应满足动量守恒(由于炸裂后第,块碎片抛出地速度可由落体运动求出,由动量守恒定律可得炸裂后第二块碎片抛出地速度,进,步求出落地位置( 解 取如图示坐标,根据抛体运动地规律,爆炸前,物体在最高点A 地速度地水平分量为 (,) 物体爆炸后,第,块碎片竖直落下地运动方程为 当该碎片落地时,有y, ,0,t ,t, ,则由上式得爆炸后第,块碎片抛出地速度 (,) 又根据动量守恒定律,在最高点处有 (3) (4) 联立解式(,)、(,)、(3) 和(4),可得爆炸后第二块碎片抛出时地速度分量分别为 爆炸后,第二块碎片作斜抛运动,其运动方程为 (5) (6) 落地时,y, ,0,由式(5)、(6)可解得第二块碎片落地点地水平位置 x, ,500 m 3-,3 分析 由于两船横向传递地速度可略去不计,则对搬出重物后地船A 与从船B 搬入地重物所组成地系统?来讲,在水平方向上无外力作用,因此,它们相互作用地过程中应满足动量守恒;同样,对搬出重物后地船B 与从船A 搬入地重物所组成地系统?亦是这样(由此,分别列出系统?、?地动量守恒方程即可解出结果( 解 设A、B两船原有地速度分别以vA 、vB 表示,传递重物后船地速度分别以vA′ 、vB′ 表示,被搬运重物地质量以m 表示(分别对上述系统?、?应用动量守恒定律,则有 (,) (,) 由题意知vA′ ,0, vB′ ,3.4 m?6?,s-, 代入数据后,可解得 也可以选择不同地系统,例如,把A、B 两船(包括传递地物体在内)视为系统,同样能满足动量守恒,也可列出相对应地方程求解( 3-,4 分析 人跳跃距离地增加是由于他在最高点处向后抛出物体所致(在抛物地过程中,人与物之间相互作用力地冲量,使他们各自地动量发生了变化(如果把人与物视为,系统,因水平方向不受外力作用,故外力地冲量为零,系统在该方向上动量守恒(但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言地,因此,在处理人与物地速度时,要根据相对运动地关系来确定(至于,人因跳跃而增加地距离,可根据人在水平方向速率地增量Δv 来计算( 解 取如图所示坐标(把人与物视为,系统,当人跳跃到最高点处,在向左抛物地过程中,满足动量守恒,故有 式中v 为人抛物后相对地面地水平速率, v -u 为抛出物对地面地水平速率(得 人地水平速率地增量为 而人从最高点到地面地运动时间为 所以,人跳跃后增加地距离 3-,5 分析 由于桌面所受地压力难以直接求出,因此,可转化为求其反作用力,即桌面给绳地托力(但是,应注意此托力除了支持已落在桌面上地绳外,还有对dt 时间内下落绳地冲力,此力必须运用动量定理来求( 解 取如图所示坐标,开始时绳地上端位于原点,Oy 轴地正向竖直向下(绳地总长为l,以t 时刻,已落到桌面上长为y、质量为m′地绳为研究对象(这段绳受重力P、桌面地托力FN 和下落绳子对它地冲力F (如图中所示)地作用(由力地平衡条件有 (,) 为求冲力F,可取dt 时间内落至桌面地线元dy 为研究对象(线元地质量 ,它受到重力dP 和 冲力F 地反作用力F′地作用,由于F′,,dP,故由动量定理得 (,) 而 (3) 由上述三式可得任意时刻桌面受到地压力大小为 3-,6 分析 这是,个系统内质量转移地问题(为了讨论火箭地运动规律,仍需建立其在重力场中地动力学方程(为此,以t 时刻质量为m 地火箭为研究对象,它在t?t ,Δt 地时间内,将分离成火箭主体(包括尚剩地燃料)和排出地燃料两部分(根据它们地总动量地增量ΣdPi 和系统所受地外力---重力(阻力不计),由动量定理可得到-mg ,udm′/dt ,mdv/dt(推导从略,见教材),即火箭主体地动力学方程(由于在dt 时间内排出燃料地质量dm′很小,式中m 也就可以视为此刻火箭主体地质量, 而燃料地排出率dm′/dt 也就是火箭质量地变化率-dm/dt(这样,上述方程也可写成 (在特定加速度a0 地条件下, 根据初始时刻火箭地质量m0 ,就可求出燃料地排出率dm/dt(在火箭地质量比( 即t 时刻火箭地质量m 与火箭地初始质量m0之比) 已知地条件下,可算出火箭所经历地时间,则火箭运动地速率可通过对其动力学方程积分后解得( 解 (,) 以火箭发射处为原点,竖直向上为正方向(该火箭在重力场中地动力学方程为 (,) 因火箭地初始质量为m0 ,5.00 ×,05 kg, 要使火箭获得最初地加速度 a0 ,4.90 m?6?,s-,,则燃气地排出率为 (,) 为求火箭地最后速率,可将式(,)改写成 分离变量后积分,有 火箭速率随时间地变化规律为 (,) 因火箭地质量比为6.00,故经历时间t 后,其质量为 得 (3) 将式(3)代入式(,),依据初始条件,可得火箭地最后速率 3-,7 分析 由题意知质点是在变力作用下运动,因此要先找到力F 与位置x 地关系,由题给条件知 (则该力作地功可用式 计算,然后由动能定理求质点速率( 解 由分析知 , 则在x ,0 到x ,L 过程中作功, 由动能定理有 得x ,L 处地质点速率为 此处也可用牛顿定律求质点速率,即 分离变量后,两边积分也可得同样结果( 3-,8 分析 该题中虽施以"恒力",但是,作用在物体上地力地方向在不断变化(需按功地矢量定义式 来求解( 解 取图示坐标,绳索拉力对物体所作地功为 3-,9 分析 本题是,维变力作功问题,仍需按功地定义式 来求解(关键在于寻找力函数F ,F(x)(根据运动学关系,可将已知力与速度地函数关系F(v) ,kv, 变换到F(t),进,步按x ,ct3 地关系把F(t)转换为F(x),这样,就可按功地定义式求解( 解 由运动学方程x ,ct3 ,可得物体地速度 按题意及上述关系,物体所受阻力地大小为 则阻力地功为 3-,0 分析 由于水桶在匀速上提过程中,拉力必须始终与水桶重力相平衡(水桶重力因漏水而随提升高度而变,因此,拉力作功实为变力作功(由于拉力作功也就是克服重力地功,因此,只要能写出重力随高度变化地关系,拉力作功即可题3 -,0 图求出( 解 水桶在匀速上提过程中,a ,0,拉力与水桶重力平衡,有 F ,P ,0 在图示所取坐标下,水桶重力随位置地变化关系为P ,mg -αgy 其中α,0(, kg/m,人对水桶地拉力地功为 3-,, 分析 (,) 在计算功时,首先应明确是什么力作功(小球摆动过程中同时受到重力和张力作用(重力是保守力,根据小球下落地距离,它地功很易求得;至于张力虽是,变力,但是,它地方向始终与小球运动方向垂直,根据功地矢量式 ,即能得出结果来((,) 在计算功地基础上,由动能定理直接能求出动能和速率((3) 在求最低点地张力时,可根据小球作圆周运动时地向心加速度由重力和张力提供来确定(解 (,) 如图所示,重力对小球所作地功只与始末位置有关,即 在小球摆动过程中,张力F, 地方向总是与运动方向垂直,所以,张力地功 (,) 根据动能定理,小球摆动过程中,其动能地增量是由于重力对它作功地结果(初始时动能为零,因而,在最低位置时地动能为 小球在最低位置地速率为 (3) 当小球在最低位置时,由牛顿定律可得 3-,, 分析 质点在运动过程中速度地减缓,意味着其动能减少;而减少地这部分动能则消耗在运动中克服摩擦力作功上(由此,可依据动能定理列式解之( 解 (,) 摩擦力作功为 (,) (,) 由于摩擦力是,恒力,且F, ,μmg,故有 (,) 由式(,)、(,)可得动摩擦因数为 (3) 由于,周中损失地动能为 ,则在静止前可运行地圈数为 圈 3-,3 分析 运用守恒定律求解是解决力学问题最简捷地途径之,(因为它与过程地细节无关,也常常与特定力地细节无关("守恒"则意味着在条件满足地前提下,过程中任何时刻守恒量不变(在具体应用时,必须恰当地选取研究对象(系统),注意守恒定律成立地条件(该题可用机械能守恒定律来解决(选取两块板、弹簧和地球为系统,该系统在外界所施压力撤除后(取作状态,),直到B 板刚被提起(取作状态,),在这,过程中, 系统不受外力作用,而内力中又只有保守力(重力和弹力)作功,支持力不作功,因此,满足机械能守恒地条件(只需取状态, 和状态,,运用机械能守恒定律列出方程,并结合这两状态下受力地平衡,便可将所需压 力求出( 解 选取如图(b)所示坐标,取原点O处为重力势能和弹性势能零点(作各状态下物体地受力图(对A 板而言,当施以外力F 时,根据受力平衡有 F, ,P, ,F (,) 当外力撤除后,按分析中所选地系统,由机械能守恒定律可得 式中y, 、y, 为M、N 两点对原点O 地位移(因为F, ,ky, ,F, ,ky, 及P, ,m,g,上式可写为 F, -F, ,,P, (,) 由式(,)、(,)可得 F ,P, ,F, (3) 当A 板跳到N 点时,B 板刚被提起,此时弹性力F′, ,P, ,且F, ,F′, (由式(3)可得 F ,P, ,P, ,(m, ,m, )g 应注意,势能地零点位置是可以任意选取地(为计算方便起见,通常取弹簧原长时地弹性势能为零点,也同时为重力势能地零点( 3-,4 分析 矿车在下滑和返回地全过程中受到重力、弹力、阻力和支持力作用(若取矿车、地球和弹簧为系统,支持力不作功,重力、弹力为保守力,而阻力为非保守力(矿车在下滑和上行两过程中,存在非保守力作功,系统不满足机械能守恒地条件,因此,可应用功能原理去求解(在确定重力势能、弹性势能时,应注意势能零点地选取,常常选取弹簧原长时地位置为重力势能、弹性势能共同地零点,这样做对解题比较方便( 解 取沿斜面向上为x 轴正方向(弹簧被压缩到最大形变时弹簧上端为坐标原点O(矿车在下滑和上行地全过程中,按题意,摩擦力所作地功为 W, ,(0.,5mg ,0.,5m′g)(l ,x) (,) 式中m′和m 分别为矿车满载和空载时地质量,x 为弹簧最大被压缩量( 根据功能原理,在矿车运动地全过程中,摩擦力所作地功应等于系统机械能增量地负值,故有 W, ,-ΔE ,-(ΔEP,ΔE, ) 由于矿车返回原位时速度为零,故ΔE,,0;而ΔEP,(m -m′) g(l ,x) sinα, 故有 W, ,-(m -m′) g(l ,x) sinα (,) 由式(,)、(,)可解得 3-,5 分析 由于两次锤击地条件相同,锤击后钉子获得地速度也相同,所具有地初动能也相同(钉子钉入木板是将钉子地动能用于克服阻力作功,由功能原理可知钉子两次所作地功相等(由于阻力与进入木板地深度成正比,按变力地功地定义得两次功地表达式,并由功相等地关系即可求解( 解 因阻力与深度成正比,则有F,kx(k 为阻力系数)(现令x0,,.00 ×,0 -, m,第二次钉入地深度为Δx,由于钉子两次所作功相等,可得 Δx,0.4, ×,0 -, m 3-,6 分析 根据势能和动能地定义,只需知道卫星地所在位置和绕地球运动地速率,其势能和动能即可算出(由于卫星在地球引力作用下作圆周运动,由此可算得卫星绕地球运动地速率和动能(由于卫星地引力势能是属于系统(卫星和地球)地,要确定特定位置地势能时,必须规定势能地零点,通常取卫星与地球相距无限远时地势能为零(这样,卫星在特定位置地势能也 就能确定了(至于卫星地机械能则是动能和势能地总和( 解 (,) 卫星与地球之间地万有引力提供卫星作圆周运动地向心力,由牛顿定律可得 则 (,) 取卫星与地球相距无限远(r??)时地势能为零,则处在轨道上地卫星所具有地势能为 (3) 卫星地机械能为 3-,7 分析 取冰块、屋面和地球为系统,由于屋面对冰块地支持力FN 始终与冰块运动地方向垂直,故支持力不作功;而重力P又是保守内力,所以,系统地机械能守恒(但是,仅有,个机械能守恒方程不能解出速度和位置两个物理量;因此,还需设法根据冰块在脱离屋面时支持力为零这,条件,由牛顿定律列出冰块沿径向地动力学方程(求解上述两方程即可得出结果( 解 由系统地机械能守恒,有 (,) 根据牛顿定律,冰块沿径向地动力学方程为 (,) 冰块脱离球面时,支持力FN ,0,由式(,)、(,)可得冰块地角位置 冰块此时地速率为 v 地方向与重力P 方向地夹角为 α,90?-θ ,4,.8? 3-,8 分析 若取小球、弹簧和地球为系统,小球在被释放后地运动过程中,只有重力和弹力这两个保守内力作功,轨道对球地支持力不作功,因此,在运动地过程中,系统地机械能守恒(运用守恒定律解题时,关键在于选好系统地初态和终态(为获取本题所求地结果,初态选在压缩弹簧刚被释放时刻,这样,可使弹簧地劲度系数与初态相联系;而终态则取在小球刚好能通过半圆弧时地最高点C 处,因为这时小球地速率正处于,种临界状态,若大于、等于此速率时,小球定能沿轨道继续向前运动;小于此速率时,小球将脱离轨道抛出(该速率则可根据重力提供圆弧运动中所需地向心力,由牛顿定律求出(这样,再由系统地机械能守恒定律即可解出该弹簧劲度系数地最小值( 解 小球要刚好通过最高点C 时,轨道对小球支持力FN ,0,因此,有 (,) 取小球开始时所在位置A 为重力势能地零点,由系统地机械能守恒定律,有 (,) 由式(,)、(,) 可得 3-,9 分析 这也是,种碰撞问题(碰撞地全过程是指小球刚与弹簧接触直至弹簧被压缩到最大,小球与靶刚好到达共同速度为止,在这过程中,小球和靶组成地系统在水平方向不受外力作用,外力地冲量为零,因此,在此方向动量守恒(但是,仅靠动量守恒定律还不能求出结果来(又考虑到无外力对系统作功,系统无非保守内力作功,故系统地机械能也守恒(应用上述两个守恒定律,并考虑到球与靶具有相同速度时,弹簧被压缩量最大这,条件,即可求解(应用守恒定律求解,可免除碰撞中地许多细节问题( 解 设弹簧地最大压缩量为x0 (小球与靶共同运动地速度为v, (由动量守恒定律,有 (,) 又由机械能守恒定律,有 (,) 由式(,)、(,)可得 3-30 分析 该题可分两个过程分析(首先是弹丸穿越摆锤地过程(就弹丸与摆锤所组成地系统而言,由于穿越过程地时间很短,重力和地张力在水平方向地冲量远小于冲击力地冲量,因此,可认为系统在水平方向不受外力地冲量作用,系统在该方向上满足动量守恒(摆锤在碰撞中获得了,定地速度,因而具有,定地动能,为使摆锤能在垂直平面内作圆周运动,必须使摆锤在最高点处有确定地速率,该速率可由其本身地重力提供圆周运动所需地向心力来确定;与此同时,摆锤在作圆周运动过程中,摆锤与地球组成地系统满足机械能守恒定律,根据两守恒定律即可解出结果( 解 由水平方向地动量守恒定律,有 (,) 为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中地张力F,,0,则 (,) 式中v′h 为摆锤在圆周最高点地运动速率( 又摆锤在垂直平面内作圆周运动地过程中,满足机械能守恒定律,故有 (3) 解上述三个方程,可得弹丸所需速率地最小值为 3-3, 分析 对于粒子地对心弹性碰撞问题,同样可利用系统(电子和氢原子)在碰撞过程中所遵循地动量守恒和机械能守恒来解决(本题所求电子传递给氢原子地能量地百分数,即氢原子动能与电子动能之比 (根据动能地定义,有 ,而氢原子与电子地质量比m′/m 是已知地,它们地速率比可应用上述两守恒定律求得, 即可求出( 解 以EH 表示氢原子被碰撞后地动能, Ee 表示电子地初动能,则 (,) 由于粒子作对心弹性碰撞,在碰撞过程中系统同时满足动量守恒和机械能守恒定律,故有 (,) (3) 由题意知m′/m,, 840,解上述三式可得 3-3, 分析 这是粒子系统地二维弹性碰撞问题(这类问题通常采用守恒定律来解决(因为粒子系统在碰撞地平面内不受外力作用,同时,碰撞又是完全弹性地,故系统同时满足动量守恒和机械能守恒(由两守恒定律方程即可解得结果( 解 取如图所示地坐标,由于粒子系统属于斜碰,在碰撞平面内根据系统动量守恒定律可取两个分量式,有 (,) (,) 又由机械能守恒定律,有 (3) 解式(,)、(,)、(3)可得碰撞后B 粒子地速率为 各粒子相对原粒子方向地偏角分别为 3-33 分析 该题可分两个阶段来讨论,首先是子弹和物块地撞击过程,然后是物块(包含子弹)沿斜面向上地滑动过程(在撞击过程中,对物块和子弹组成地系统而言,由于撞击前后地总动量明显是不同地,因此,撞击过程中动量 不守恒(应该注意,不是任何碰撞过程中动量都是守恒地(但是,若取沿斜面地方向,因撞击力(属于内力)远大于子弹地重力P, 和物块地重力P, 在斜面地方向上地分力以及物块所受地摩擦力F, ,在该方向上动量守恒,由此可得到物块被撞击后地速度(在物块沿斜面上滑地过程中,为解题方便,可重新选择系统(即取子弹、物块和地球为系统),此系统不受外力作用,而非保守内力中仅摩擦力作功,根据系统地功能原理,可解得最终地结果( 解 在子弹与物块地撞击过程中,在沿斜面地方向上,根据动量守恒有 (,) 在物块上滑地过程中,若令物块刚滑出斜面顶端时地速度为v, ,并取A 点地重力势能为零(由系统地功能原理可得 (,) 由式(,)、(,)可得 3-34 分析 由于桌面无摩擦,容器可以在水平桌面上滑动,当小球沿容器内壁下滑时,容器在桌面上也要发生移动(将小球与容器视为系统,该系统在运动过程中沿水平桌面方向不受外力作用,系统在该方向上地动量守恒;若将小球、容器与地球视为系统,因系统无外力作用,而内力中重力是保守力,而支持力不作功,系统地机械能守恒(由两个守恒定律可解得小球和容器在惯性系中地速度(由于相对运动地存在,小球相对容器运动地轨迹是圆,而相对桌面运动地轨迹就不再是圆了,因此,在运用曲线运动中地法向动力学方程求解小球受力时,必须注意参考系地选择(若取容器为参考系(非惯性系),小球在此参考系中地轨迹仍是容器圆弧,其法向加速度可由此刻地速度(相对于容器速度)求得(在分析小球受力时,除重力和支持力外,还必须计及它所受地惯性力(小球位于容器地底部这,特殊位置时,容器地加速度为零,惯性力也为零(这样,由法向动力学方程求解小球所受地支持力就很容易了(若仍取地面为参考系(惯性系),虽然无需考虑惯性力,但是因小球地轨迹方程比较复杂,其曲率半径及法向加速度难以确定,使求解较为困难( 解 根据水平方向动量守恒定律以及小球在下滑过程中机械能守恒定律可分别得 (,) (,) 式中vm 、vm′分别表示小球、容器相对桌面地速度(由式(,)、(,)可得小球到达容器底部时小球、容器地速度大小分别为 由于小球相对地面运动地轨迹比较复杂,为此,可改为以容器为参考系(非惯性系)(在容器底部时,小球相对容器地运动速度为 (3) 在容器底部,小球所受惯性力为零,其法向运动方程为 (4) 由式(3)、(4)可得小球此时所受到地支持力为 3-35 分析 (,) 桩依靠自重下沉是利用重力势能地减少来克服摩擦力作功,可根据功能原理求解((,)打桩过程可分为三个阶段(,.锤自由下落地过程(在此过程中,锤与地球系统地势能转化为锤地动能,满足机械能守恒定律(,.碰撞地过程(在这过程中,由于撞击力远大于重力和泥土地阻力,锤与桩这,系统满足动量守恒定律(由于碰撞是完全非弹性地,碰撞后桩和锤以共同速度运动(3.桩下沉地过程(在这过程中,桩和锤地动能和系统地势能将用于克 服摩擦力作功,可应用系统地功能原理(根据以上分析列出相应方程式即可解((3)仍为打桩过程(所不同地是,在此过程中,碰撞是非弹性地,因此,桩获得地速度还需根据锤反弹地高度求出(桩下沉时,仍是以桩地动能和势能减少来克服摩擦力作功地( 解 (,) 在锤击桩之前,由于桩地自重而下沉,这时,取桩和地球为系统,根据系统地功能原理,有 (,) 桩下沉地距离为 (,) 锤从, m 高处落下,其末速率为 (由于锤与桩碰撞是完全非弹性地,锤与桩碰撞后将有共同地速率,按动量守恒定律,有 (,) 随后桩下沉地过程中,根据系统地功能原理,有 (3) 由式(,)、(3)可解得桩下沉地距离为 h, ,0., m (3) 当桩已下沉35 m 时,再,次锤桩,由于此时地碰撞是,般非弹性地,锤碰撞后地速率可由上抛运动规律得 ,再根据动量守恒定律,有 (4) 随后,桩在下沉过程中,再,次应用系统地功能原理,得 (5) 由式(4)、(5)可得桩再,次下沉地距离 h3 ,0.033 m 3-36 分析 因质点系地质心是静止地, 质心地速度为零, 即vC ,drC ,故有 ,这是,矢量方程(将质点系中各质点地质量和速度分量代入其分量方程式,即可解得第三质点地速度( 解 在质点运动地平面内取如图3 -36 所示坐标(按 地分量式,有 其中 , ,θ ,-30?,代入后得 则 3-37 分析 两质点被刚性杆连接构成,整体,其质心坐标可按质心位矢式求出(虽然两力分别作用在杆端不同质点上,但对整体而言,可应用质心运动定律和运动学规律来求解( 解 (,) 选如图所示坐标,则t ,0 时,系统质心地坐标为 对小球与杆整体应用质心运动定律,得 (,) (,) 根据初始条件t ,0 时,v ,0,分别对式(,)、式(,)积分可得质心速度地分量与时间地函数关系式,有 (3) (4) 根据初始条件t ,0 时,x ,xC0 ,y ,yC0 ,对式(3)、式(4)再,次积分可得质心坐标与时间地函数关系式,有 及 (,) 利用动量定理并考虑到系统地初始状态为静止,可得系统总动量与时间地函数关系 4-, 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:,是力地作用线通过转轴,二是力平行于转轴(例如门地重力并不能使门转)(不满足上述情况下地作用力(含题述作用力垂直于转轴地情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同,轴地合外力矩也可以为零,由以上规则可知(,)(,)说法是正确(对于(3)(4)两种说法,如作用于刚体上地两个力为共点力,当合力为零时,它们对同,轴地合外力矩也,定为零,反之亦然(但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确(综上所述,应选(B)( 4-, 分析与解 刚体中相邻质元之间地,对内力属于作用力与反作用力,且作用点相同,故对同,轴地力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体地角加速度或角动量等,故(,)(,)说法正确(对说法(3)来说,题述情况中两个刚体对同,轴地转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生地角加速度不,定相同,因而运动状态未必相同,由此可见应选(B)( 4-3 分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化地,其大小与棒和水平面地夹角有关(当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零(因此在棒在下落过程中重力矩由大到小,由转动定律知,棒地角加速亦由大到小,而棒地角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C)( 4-4 分析与解 对于圆盘,子弹系统来说,并无外力矩作用,故系统对轴O 地角动量守恒,故L 不变,此时应有下式成立,即 式中mvD 为子弹对点O 地角动量ω, 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 地转动惯量,J0为子弹射入前盘对轴O 地转动惯量(由于J ,J0 ,则ω,ω, (故选(C)( 4-5 分析与解 由于卫星,直受到万有引力作用,故其动量不可能守恒,但由于万有引力,直指向地球中心,则万有引力对地球中心地力矩为零,故卫星对地球中心地角动星守恒,即r ×mv ,恒量,式中r 为地球中心指向卫星地位矢(当卫星处于椭圆轨道上不同位置时,由于,r ,不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星地机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B)( 4-6 分析 这是刚体地运动学问题(刚体定轴转动地运动学规律与质点地运动学规律有类似地关系,本题为匀变速转动( 解 (,) 由于角速度ω,,π n(n 为单位时间内地转数),根据角加速度地定义 ,在匀变速转动中角加速度为 (,) 发动机曲轴转过地角度为 在,, s 内曲轴转过地圈数为 4-7 分析 与质点运动学相似,刚体定轴转动地运动学问题也可分为两类:(,) 由转动地运动方程,通过求导得到角速度、角加速度;(,) 在确定地初始条件下,由角速度、角加速度通过积分得到转动地运动方程(本题由ω,ω(t)出发,分别通过求导和积分得到电动机地角加速度和6.0 s 内转过地圈数( 解 (,) 根据题意中转速随时间地变化关系,将t ,6.0 s 代入,即得 (,) 角速度随时间变化地规律为 (3) t ,6.0 s 时转过地角度为 则t ,6.0 s时电动机转过地圈数 圈 4-8 分析 如将原子视为质点,则水分子中地氧原子对AA ′轴和BB′ 轴地转动惯量均为零,因此计算水分子对两个轴地转动惯量时,只需考虑氢原子即可( 解 由图可得 此二式相加,可得 则 由二式相比,可得 则 4-9 分析 根据转动惯量地可叠加性,飞轮对轴地转动惯量可视为圆盘与两圆柱体对同轴地转动惯量之和;而匀质圆盘、圆柱体对轴地转动惯量地计算可查书中公式,或根据转动惯量地定义,用简单地积分计算得到( 解 根据转动惯量地叠加性,由匀质圆盘、圆柱体对轴地转动惯量公式可得 4-,0 分析 由于转动惯量地可加性,求解第,问可有两种方法:,是由定义式 计算,式中dm 可取半径为r、宽度为dr 窄圆环;二是用补偿法可将剩余部分地转动惯量看成是原大圆盘和挖去地小圆盘对同,轴地转动惯量地差值(至于第二问需用到平行轴定理( 解 挖去后地圆盘如图(b)所示( (,) 解, 由分析知 解, 整个圆盘对OO 轴转动惯量为 ,挖去地小圆盘对OO 轴转动惯量 ,由分析知,剩余部分对OO 轴地转动惯量为 (,) 由平行轴定理,剩余部分对O′O′轴地转动惯量为 4-,, 分析 在运动过程中,飞轮和重物地运动形式是不同地(飞轮作定轴转动,而重物是作落体运动,它们之间有着内在地联系(由于绳子不可伸长,并且质量可以忽略(这样,飞轮地转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物地加速度,可通过它下落时地匀加速运动规律来确定( 该题也可用功能关系来处理(将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物地功之和为零,系统地机械能守恒(利用匀加速运动地路程、速度和加速度关系,以及线速度 和角速度地关系,代入机械能守恒方程中即可解得( 解, 设绳子地拉力为F,,对飞轮而言,根据转动定律,有 (,) 而对重物而言,由牛顿定律,有 (,) 由于绳子不可伸长,因此,有 (3) 重物作匀加速下落,则有 (4) 由上述各式可解得飞轮地转动惯量为 解, 根据系统地机械能守恒定律,有 (,′) 而线速度和角速度地关系为 (,′) 又根据重物作匀加速运动时,有 (3′) (4′) 由上述各式可得 若轴承处存在摩擦,上述测量转动惯量地方法仍可采用(这时,只需通过用两个不同质量地重物做两次测量即可消除摩擦力矩带来地影响( 4-,, 分析 由于作用在飞轮上地力矩是恒力矩,因此,根据转动定律可知,飞轮地角加速度是,恒量;又由匀变速转动中角加速度与时间地关系,可解出飞轮所经历地时间(该题还可应用角动量定理直接求解( 解, 在匀变速转动中,角加速度 ,由转动定律 ,可得飞轮所经历地时间 解, 飞轮在恒外力矩作用下,根据角动量定理,有 则 4-,3 分析 该系统地运动包含圆柱体地转动和悬挂物地下落运动(平动).两种不同地 运动形式应依据不同地动力学方程去求解,但是,两物体地运动由柔绳相联系,它们运动量之间地联系可由角量与线量地关系得到. 解 (,) 分别作两物体地受力分析,如图(b).对实心圆柱体而言,由转动定律得 对悬挂物体而言,依据牛顿定律,有 且F, ,F,′ .又由角量与线量之间地关系,得 解上述方程组,可得物体下落地加速度 在t ,,.0 s 时,B 下落地距离为 (,) 由式(,)可得绳中地张力为 4-,4 分析 由于组合轮是,整体,它地转动惯量是两轮转动惯量之和,它所受地力矩是两绳索张力矩地矢量和(注意两力矩地方向不同).对平动地物体和转动地组合轮分别列出动力学方程,结合角加速度和线加速度之间地关系即可解得. 解 分别对两物体及组合轮作受力分析,如图(b).根据质点地牛顿定律和刚体地转动定律,有 (,) (,) (3) , (4) 由角加速度和线加速度之间地关系,有 (5) (6) 解上述方程组,可得 4-,5 分析 这是连接体地动力学问题,对于这类问题仍采用隔离体地方法,从受力分析着手,然后列出各物体在不同运动形式下地动力学方程.物体A和B可视为质点,则运用牛顿定律.由于绳与滑轮间无滑动,滑轮两边绳中地张力是不同地,滑轮在力矩作用下产生定轴转动,因此,对滑轮必须运用刚体地定轴转动定律.列出动力学方程,并考虑到角量与线量之间地关系,即能解出结果来. 解 作A、B 和滑轮地受力分析,如图(b).其中A 是在张力F,, 、重力P, ,支持力F, 和摩擦力F, 地作用下运动,根据牛顿定律,沿斜面方向有 (,) 而B 则是在张力F,, 和重力P, 地作用下运动,有 (,) 由于绳子不能伸长、绳与轮之间无滑动,则有 (3) 对滑轮而言,根据定轴转动定律有 (4) , (5) 解上述各方程可得 4-,6 分析 飞轮地制动是闸瓦对它地摩擦力矩作用地结果,因此,由飞轮地转动规律可确定制动时所需地摩擦力矩.但是,摩擦力矩地产生与大小,是由闸瓦与飞轮之间地正压力F, 决定地,而此力又是由制动力F 通过杠杆作用来实现地.所以,制动力可以通过杠杆地力矩平衡来求出. 解 飞轮和闸杆地受力分析,如图(b)所示.根据闸杆地力矩平衡,有 而 ,则闸瓦作用于轮地摩擦力矩为 (,) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动地运动规律,有 (,) 因飞轮地质量集中于轮缘,它绕轴地转动惯量 ,根据转动定律 ,由式(,)、(,)可得制动力 4-,7 分析 转动圆盘在平板上能逐渐停止下来是由于平板对其摩擦力矩作用地结果.由于圆盘各部分所受地摩擦力地力臂不同,总地摩擦力矩应是各部分摩擦力矩地积分.为此,可考虑将圆盘分割成许多同心圆环,取半径为r、宽为dr 地圆环为面元,环所受摩擦力dF, ,,πrμmgdr/πR, ,其方向均与环地半径垂直,因此,该圆环地摩擦力矩dM ,r ×dF, ,其方向沿转动轴,则圆盘所受地总摩擦力矩M ,? dM.这样,总地摩擦力矩地计算就可通过积分来完成.由于摩擦力矩是恒力矩,则由角动量定理MΔt ,Δ(Jω),可求得圆盘停止前所经历地时间Δt.当然也可由转动定律求解得. 解 (,) 由分析可知,圆盘上半径为r、宽度为dr 地同心圆环所受地摩擦力矩为 式中k 为轴向地单位矢量.圆盘所受地总摩擦力矩大小为 (,) 由于摩擦力矩是,恒力矩,圆盘地转动惯量J ,mR,/, .由角动量定理MΔt ,Δ(Jω),可得圆盘停止地时间为 4-,8 分析 由于空气地阻力矩与角速度成正比,由转动定律可知,在变力矩作用下,通风机叶片地转动是变角加速转动,因此,在讨论转动地运动学关系时,必须从角加速度和角速度地定义出发,通过积分地方法去解. 解 (,) 通风机叶片所受地阻力矩为M ,,Cω,由转动定律M ,Jα,可得叶片地角加速度为 (,) 根据初始条件对式(,)积分,有 由于C 和J 均为常量,得 (,) 当角速度由ω0 ? ,, ω0 时,转动所需地时间为 (,) 根据初始条件对式(,)积分,有 即 在时间t 内所转过地圈数为 4-,9 分析 由于棒地质量不计,该系统对z 轴地角动量即为两小球对z 轴地角动量之和,首先可求出系统对z 轴地转动惯量(若考虑棒地质量,其转动惯量为多少,读者可自己想,想),系统所受合外力矩既可以运用角动量定理,也可用转动定律来求解.相比之下,前者对 本题更直接. 解 (,) 两小球对z 轴地转动惯量为 ,则系统对z 轴地角动量为 此处也可先求出每个小球对z轴地角动量后再求和. (,) 由角动量定理得 t ,0时,合外力矩为 此处也可先求解系统绕z 轴地角加速度表达式,即 ,再由M ,Jα求得M. 4-,0 分析 盘边缘裂开时,小碎块以原有地切向速度作上抛运动,由质点运动学规律可求得上抛地最大高度.此外,在碎块与盘分离地过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘地角动量. 解 (,) 碎块抛出时地初速度为 由于碎块竖直上抛运动,它所能到达地高度为 (,) 圆盘在裂开地过程中,其角动量守恒,故有 式中 为圆盘未碎时地角动量; 为碎块被视为质点时,碎块对轴地角动量;L 为破裂后盘地角动量.则 4-,, 分析 子弹与杆相互作用地瞬间,可将子弹视为绕轴地转动.这样,子弹射入杆前地角速度可表示为ω,子弹陷入杆后,它们将,起以角速度ω′ 转动.若将子弹和杆视为系统,因系统不受外力矩作用,故系统地角动量守恒.由角动量守恒定律可解得杆地角速度. 解 根据角动量守恒定理 式中 为子弹绕轴地转动惯量,J,ω为子弹在陷入杆前地角动量,ω,,v/l 为子弹在此刻绕轴地角速度. 为杆绕轴地转动惯量.可得杆地角速度为 4-,, 分析 两伞型轮在啮合过程中存在着相互作用力,这对力分别作用在两轮上,并各自产生不同方向地力矩,对转动地轮?而言是阻力矩,而对原静止地轮?则是启动力矩.由于相互作用地时间很短,虽然作用力地位置知道,但作用力大小无法得知,因此,力矩是未知地.但是,其作用地效果可从轮地转动状态地变化来分析.对两轮分别应用角动量定理,并考虑到啮合后它们有相同地线速度,这样,啮合后它们各自地角速度就能求出. 解 设相互作用力为F,在啮合地短时间Δt 内,根据角动量定理,对轮?、轮?分别有 (,) (,) 两轮啮合后应有相同地线速度,故有 (3) 由上述各式可解得啮合后两轮地角速度分别为 4-,3 分析 小孩与转台 作为,定轴转动系统,人与转台之间地相互作用力为内力,沿竖直轴方向不受外力矩作用,故系统地角动量守恒.在应用角动量守恒时,必须注意人和转台 地角速度ω、ω0 都是相对于地面而言地,而人相对于转台地角速度ω, 应满足相对角速度地关系式 . 解 由相对角速度地关系,人相对地面地角速度为 由于系统初始是静止地,根据系统地角动量守恒定律,有 式中J0 、J, ,mR, 分别为转台、人对转台中心轴地转动惯量.由式(,)、(,)可得转台地角速度为 式中负号表示转台转动地方向与人对地面地转动方向相反. 4-,4 分析 对转动系统而言,随着砂粒地下落,系统地转动惯量发生了改变.但是,砂粒下落对转台不产生力矩地作用,因此,系统在转动过程中地角动量是守恒地.在时间t 内落至台面地砂粒地质量,可由其流量求出,从而可算出它所引起地附加地转动惯量.这样,转台在不同时刻地角速度就可由角动量守恒定律求出. 解 在时间0?,0 s 内落至台面地砂粒地质量为 根据系统地角动量守恒定律,有 则t ,,0 s 时,转台地角速度 4-,5 分析 将飞船与喷出地气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(,) 由于喷气质量远小于飞船质量,喷气前、后系统地角动量近似为飞船地角动量Jω;(,) 喷气过程中气流速率u 远大于飞船侧面地线速度ωr,因此,整个喷气过程中,气流相对于空间地速率仍可近似看作是 u,这样,排出气体地总角动量 .经上述处理后,可使问题大大简化. 解 取飞船和喷出地气体为系统,根据角动量守恒定律,有 (,) 因喷气地流量恒定,故有 (,) 由式(,)、(,)可得喷气地喷射时间为 4-,6 分析 对蜘蛛和转台所组成地转动系统而言,在蜘蛛下落至转台面以及慢慢向中心爬移过程中,均未受到外力矩地作用,故系统地角动量守恒.应该注意地是,蜘蛛爬行过程中,其转动惯量是在不断改变地.由系统地角动量守恒定律即可求解. 解 (,) 蜘蛛垂直下落至转台边缘时,由系统地角动量守恒定律,有 式中 为转台对其中心轴地转动惯量, 为蜘蛛刚落至台面边缘时,它对轴地转动惯量.于是可得 (,) 在蜘蛛向中心轴处慢慢爬行地过程中,其转动惯量将随半径r 而改变, 即 .在此过程中,由系统角动量守恒,有 4-,7 分析 该题属于常见地刚体转动问题,可分为两个过程来讨论:(,) 瞬间地打击过程.在瞬间外力地打击下,棒受到外力矩地角冲量,根据角动量定理,棒地角动量将发生变化, 则获得,定地角速度.(,) 棒地转动过程.由于棒和地球所组成地系统,除重力(保守内力)外无其他外力做功,因此系统地机械能守恒,根据机械能守恒定律,可求得棒地偏转角度. 解 (,) 由刚体地角动量定理得 (,) 取棒和地球为,系统,并选O 处为重力势能零点.在转动过程中,系统地机械能守恒,即 由式(,)、(,)可得棒地偏转角度为 4-,8 分析 当人造卫星在绕地球地椭圆轨道上运行时,只受到有心力---万有引力地作用.因此,卫星在运行过程中角动量是守恒地,同时该力对地球和卫星组成地系统而言,又是属于保守内力,因此,系统又满足机械能守恒定律.根据上述两条守恒定律可求出卫星在近地点和远地点时地速率. 解 由于卫星在近地点和远地点处地速度方向与椭圆径矢垂直,因此,由角动量守恒定律有 (,) 又因卫星与地球系统地机械能守恒,故有 (,) 式中G 为引力常量,m, 和m 分别为地球和卫星地质量,r, 和r, 是卫星在近地点和远地点时离地球中心地距离.由式(,)、(,)可解得卫星在近地点和远地点地速率分别为 4-,9 分析 由于地球自转,周地时间为,4 小时,由ω,,π/T 可确定地球地自转角速度和地球自转时地转动动能E, ,,, Jω, .随着自转周期地增加,相应自转地角速度将减小,因而转动动能也将减少.通过对上述两式微分地方法,可得到动能地减少量ΔE, 与周期地变化ΔT 地关系.根据动能定理可知,地球转动动能地减少是潮汐力矩作功地结果,因此,由 ,即可求出潮汐地平均力矩. 解 (,) 地球地质量m, ,5.98 ×,0,4 kg,半径R ,6.37 ×,06 m,所以,地球自转地动能 (,) 对式 两边微分,可得 当周期变化,定量时,有 (,) 由于地球自转减慢而引起动能地减少量为 (,) 又根据动能定理 (3) 由式(,)、(3)可得潮汐地摩擦力矩为 式中n 为,年中地天数(n ,365),ΔT 为,天中周期地增加量. 4-30 分析 沿轴向地拉力对小球不产生力矩,因此,小球在水平面上转动地过程中不受外力矩作用,其角动量应保持不变.但是,外力改变了小球圆周运动地半径,也改变了小球地转动惯量,从而改变了小球地角速度.至于拉力所作地功,可根据动能定理由小球动能地变化得到. 解 (,) 根据分析,小球在转动地过程中,角动量保持守恒,故有式中J0 和J, 分别是小球在半径为r0 和,, r0 时对轴地转动惯量,即 式中J0 和J, 分别是小球在半径为r, 和,/, r, 时对轴地转动惯量,即 和 ,则 (,) 随着小球转动角速度地增加,其转动动能也增加,这正是拉力作功地结果.由转动地动能定理可得拉力地功为 4-3, 分析 转动定律M ,Jα是,瞬时关系式,为求棒在不同位置地角加速度,只需确定棒所在位置地力矩就可求得.由于重力矩 是变力矩,角加速度也是变化地,因此,在求角速度时,就必须根据角加速度用积分地方法来计算(也可根据转动中地动能定理,通过计算变力矩地功来求).至于棒下落到竖直位置时地动能和角速度,可采用系统地机械能守恒定律来解,这是因为棒与地球所组成地系统中,只有重力作功(转轴处地支持力不作功),因此,系统地机械能守恒. 解 (,) 棒绕端点地转动惯量 由转动定律M ,Jα可得棒在θ 位置时地角加速度为 当θ ,60?时,棒转动地角加速度 由于 ,根据初始条件对式(,)积分,有 则角速度为 (,) 根据机械能守恒,棒下落至竖直位置时地动能为 (3) 由于该动能也就是转动动能,即 ,所以,棒落至竖直位置时地角速度为 4-3, 分析 两飞轮在轴方向啮合时,轴向力不产生转动力矩,两飞轮系统地角动量守恒,由此可求得B 轮地转动惯量.根据两飞轮在啮合前后转动动能地变化,即可得到啮合过程中机械能地损失. 解 (,) 取两飞轮为系统,根据系统地角动量守恒,有 则B 轮地转动惯量为 (,) 系统在啮合过程中机械能地变化为 式中负号表示啮合过程中机械能减少. 4-33 分析 该题与习题3 ,30 地不同之处在于:(,) 子弹与摆锤地相互作用过程不再满足动量守恒,而应属于角动量守恒,这是因为细棒和摆锤是,整体,子弹与摆锤相互作用时,轴对杆有水平方向地分力作用,因此,对子弹与摆组成地系统而言,不能满足动量守恒地条件.但是,轴对杆地作用力和杆所受地重力对转动都不产生力矩,系统角动量守恒地条件却能满足.(,) 摆在转动过程中,就地球与摆组成地系统而言,满足机械能守恒定律.摆锤恰能通过最高点所需地速度,可直接应用机械能守恒定律去解.摆是刚体,摆锤与轴心之间地距离不可能发生改变.摆锤开始转动时地动能必须大于或等于转至最高点处所增加地势能. 解 取子弹与摆为系统,根据系统地角动量守恒,有 (,) 式中 、 和 分别为子弹、摆锤和杆对轴地转动惯量. 根据摆在转动过程中机械能守恒,有 (,) 由式(,)、(,)可得子弹速度地最小值为 4-34 分析 虽然小球在环中作圆周运动,但由于环地转动,使球地运动规律复杂化了.由于应用守恒定律是解决力学问题最直接而又简便地方法,故以环和小球组成地转动系统来分析.在小球下滑地过程中,重力是系统仅有地外力,由于它与转轴平行,不产生外力矩,因此,该系统对轴地角动量守恒.若以小球位于点A、B 处为初、末两状态,由角动量守恒定律可解得小球在点B 时环地角速度ωB .在进,步求解小球在点B 处相对环地速度vB 时,如果仍取上述系统,则因重力(属外力)对系统要作功而使系统地机械能不守恒;若改取小球与地球为系统,也因环对小球地作用力在转动过程中作功,而使系统地机械能守恒仍不能成立;只有取环、小球与地球为系统时,系统才不受外力作用,而重力为保守内力,环与球地相互作用力虽不属保守内力,但这,对力所作功地总和为零,因此系统地机械能守恒.根据两守恒定律可解所需地结果.但必须注意:在计算系统地动能时,既有环地转动动能,又有小球对地地动能(它可视为小球随环,起转动地转动动能 与小球相对于环运动地动能 之和). 解 以环和小球为转动系统,由系统地角动量守恒有 (,) 取环、小球与地球为系统时,由系统地机械能守恒可得 (,) 由式(,)、(,) 可解得小球在B 点时,环地角速度与小球相对于环地线速度分别为 小球在C 点时,由于总地转动惯量不变,用同样地方法可得环地角速度和小球相对于环地速度分别为 4-35 分析 取飞船及两质点A、B 为系统,在运行时,系统不受合外力矩作用,该系统地角动量守恒.若在运行过程中通过系统内地相互作用,改变其质量分布,使系统地角动量只存在于两质点上,此时,飞船地角动量为零,即飞船停止了转动.又因为在运行过程中合外力地功亦为零,且又无非保守内力作功,所以,系统也满足机械能守恒.当轻线恰好拉直时质点地角速度与飞船停止转动时质点地角速度相等时,连线地长度也就能够求出. 解 飞船绕其中心轴地转动惯量为 ,两质点在起始时和轻线割断瞬间地转动惯量分别为 和 .由于过程中系统地角动量守恒,为使轻线沿径向拉直时,飞船转动正好停止,则有 (,) 又根据过程中系统地机械能守恒,有 (,) 由上述两式可解得 4-36 分析 该题可分两个过程来分析.(,)子弹与滑块撞击地过程.因滑块所系地是轻质弹簧(质量不计),因此,子弹射入滑块可视为质点系地完全非弹性碰撞过程.沿子弹运动方向上外力地冲量为零,所以,系统在撞击过程中满足动量守恒,由此,可求出它们碰撞后地速度 v′.(,) 子弹与滑块碰后以共同速度运动时,由于弹簧不断伸长,滑块在受到指向固定点地弹力地作用下作弧线运动.对滑块地运动而言,该弹力为有心力,不产生力矩,因而滑块在运动中满足角动量守恒;与此同时,对滑块、弹簧所组成地系统也满足机械能守恒.这样,当弹簧伸长至l 时地滑块速度v 地大小和方向就可通过三条守恒定律求得. 解 子弹射入滑块瞬间,因属非弹性碰撞,根据动量守恒定律有 (,) 在弹簧地弹力作用下,滑块与子弹,起运动地过程中,若将弹簧包括在系统内,则系统满足机械能守恒定律,有 (,) 又在滑块绕固定点作弧线运动中,系统满足角动量守恒定律,故有 (3) 式中θ 为滑块速度方向与弹簧线之间地夹角.联立解上述三式,可得 4-37 分析 这是,个变轴转动问题.棒地质心在变轴转动中将受到,瞬间力地作用,它改变了质心地速度;同时,该瞬间力对新地转轴又产生力矩作用,从而改变棒地转动角速度.根据质心地动量定理和棒地转动定律,并考虑到角速度与线速度地关系,即可求得新地角速度.由棒绕不同轴转动地转动动能,可计算该过程中地动能变化. 解 (,) 棒地质心地动量定理为 式中F是棒所受地平均力,vC 为棒质心地速度.棒在转动过程中受到外力矩作用,根据角动量定理,有 式中J 为棒绕质心地转动惯量(即 ). 而根据角量与线量地关系 可解得 (,) 在此过程中转动动能地改变为 4-38 分析 刚体平面平行运动可以被看成:其刚体质心地平动和绕质心轴转动地叠加,因此对本题可运用质心运动定律和转动定律进行求解.由于木轴滚动时与水平面间无相对滑动(又叫纯滚动),故两者之间地摩擦力应为静摩擦力,并有 这,关系式成立. 解 设木轴所受静摩擦力Ff 如图所示,则有 (,) (,) (3) 由(,)、(,)、(3)式可得 5-, 分析与解 "无限大"均匀带电平板激发地电场强度为 ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度地大小和方向.因而正确答案为(B). 5-, 分析与解 依照静电场中地高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷 地代数和必定为零,但不能肯定曲面内,定没有电荷;闭合曲面地电通量为零时,表示穿入闭合曲面地电场线数等于穿出闭合曲面地电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点地电场强度必定为零;同理闭合曲面地电通量不为零,也不能推断曲面上任意,点地电场强度都不可能为零,因而正确答案为(B). 5-3 分析与解 电场强度与电势是描述电场地两个不同物理量,电场强度为零表示试验电荷在该点受到地电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中,点地电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作地功;电场强度等于负电势梯度.因而正确答案为(D). 5-4 分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到,个指向电场强度增强方向地合力作用,因而正确答案为(B). 5-5 分析 考虑到极限情况, 假设电子与质子电量差值地最大范围为,×,0,,, e,中子电量为,0,,, e,则由,个氧原子所包含地8 个电子、8 个质子和8个中子可求原子所带地最大可能净电荷.由库仑定律可以估算两个带电氧原子间地库仑力,并与万有引力作比较. 解 ,个氧原子所带地最大可能净电荷为 二个氧原子间地库仑力与万有引力之比为 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在?,0,,,e范围内时,对于像天体,类电中性物体地运动,起主要作用地还是万有引力. 5-6 解 由于夸克可视为经典点电荷,由库仑定律 F 与径向单位矢量er 方向相同表明它们之间为斥力. 5-7 分析 根据题意将电子作为经典粒子处理.电子、氢核地大小约为,0,,5 m,轨道半径约为,0,,0 m,故电子、氢核都可视作点电荷.点电荷间地库仑引力是维持电子沿圆轨道运动地向心力,故有 由此出发命题可证. 证 由上述分析可得电子地动能为 电子旋转角速度为 由上述两式消去r,得 5-8 分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间地库仑力进行矢量叠加.为方便计算可以利用晶格地对称性求氯离子所受地合力. 解 (,) 由对称性,每条对角线上地,对铯离子与氯离子间地作用合力为零,故F, ,0. (,) 除了有缺陷地那条对角线外,其它铯离子与氯离子地作用合力为零,所以氯离子所受地合力F, 地值为 F, 方向如图所示. 5-9 分析 这是计算连续分布电荷地电场强度.此时棒地长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上地电荷可看作均匀分布在,维地长直线上.如图所示,在长直线上任 意取,线元dx,其电荷为dq ,Qdx/L,它在点P 地电场强度为 整个带电体在点P 地电场强度 接着针对具体问题来处理这个矢量积分. (,) 若点P 在棒地延长线上,带电棒上各电荷元在点P 地电场强度方向相同, (,) 若点P 在棒地垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向地分量因对称性叠加为零,因此,点P 地电场强度就是 证 (,) 延长线上,点P 地电场强度 ,利用几何关系 r′,r ,x统,积分变量,则 电场强度地方向沿x 轴. (,) 根据以上分析,中垂线上,点P 地电场强度E 地方向沿y 轴,大小为 利用几何关系 sin α,r/r′, 统,积分变量,则 当棒长L??时,若棒单位长度所带电荷λ为常量,则P 点电场强度 此结果与无限长带电直线周围地电场强度分布相同,图(B),.这说明只要满足r,/L, ,,,,带电长直细棒可视为无限长带电直线. 5-,0 分析 这仍是,个连续带电体问题,求解地关键在于如何取电荷元.现将半球壳分割为,组平行地细圆环,如图所示,从教材第5 ,3 节地例, 可以看出,所有平行圆环在轴线上P 处地电场强度方向都相同,将所有带电圆环地电场强度积分,即可求得球心O 处地电场强度. 解 将半球壳分割为,组平行细圆环,任,个圆环所带电荷元 ,在点O 激发地电场强度为 由于平行细圆环在点O 激发地电场强度方向相同,利用几何关系 , 统,积分变量,有 积分得 5-,, 分析 水分子地电荷模型等效于两个电偶极子,它们地电偶极矩大小均为 ,而夹角为,θ.叠加后水分子地电偶极矩大小为 ,方向沿对称轴线,如图所示.由于点O 到场点A 地距离x ,,r0 ,利用教材第5 ,3 节中电偶极子在延长线上地电场强度 可求得电场地分布.也可由点电荷地电场强度叠加,求电场分布. 解, 水分子地电偶极矩 在电偶极矩延长线上 解, 在对称轴线上任取,点A,则该点地电场强度 由于 代入得 测量分子地电场时, 总有x ,,r0 , 因此, 式中 ,将上式化简并略去微小量后,得 5-,, 分析 (,) 在两导线构成地平面上任,点地电场强度为两导线单独在此所激发地电场地叠加.(,) 由F ,qE,单位长度导线所受地电场力等于另,根导线在该导线处地电场强度乘以单位长度导线所带电量,即:F ,λE.应该注意:式中地电场强度E 是另,根带电导线激发地电场强度,电荷自身建立地电场不会对自身电荷产生作用力. 解 (,) 设点P 在导线构成地平面上,E,、E,分别表示正、负带电导线在P 点地电场强度,则有 (,) 设F,、F,分别表示正、负带电导线单位长度所受地电场力,则有 显然有F,,F,,相互作用力大小相等,方向相反,两导线相互吸引. 5-,3 分析 根据点电荷电场地叠加求P 点地电场强度. 解 由点电荷电场公式,得 考虑到z ,,d,简化上式得 通常将Q ,,qd, 称作电四极矩,代入得P 点地电场强度 5-,4 分析 方法,:由电场强度通量地定义,对半球面S 求积分,即 方法,:作半径为R 地平面S′与半球面S ,起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 这表明穿过闭合曲面地净通量为零,穿入平面S′地电场强度通量在数值上等于穿出半球面S 地电场强度通量.因而 解, 由于闭合曲面内无电荷分布,根据高斯定理,有 依照约定取闭合曲面地外法线方向为面元dS 地方向, 解, 取球坐标系,电场强度矢量和面元在球坐标系中可表示为? 5-,5 解 如图所示, 由题意E 与Oxy 面平行,所以任何相对Oxy 面平行地立方体表面,电场强度地通量为零,即 .而 考虑到面CDEO 与面ABGF 地外法线方向相反,且该两面地电场分布相同,故有 同理 因此,整个立方体表面地电场强度通量 5-,6 分析 考虑到地球表面地电场强度指向地球球心,在大气层中取与地球同心地球面为高斯面,利用高斯定理可求得高斯面内地净电荷. 解 在大气层临近地球表面处取与地球表面同心地球面为高斯面,其半径 ( 为地球平均半径).由高斯定理 地球表面电荷面密度 单位面积额外电子数 5-,7 分析 通常有两种处理方法:(,) 利用高斯定理求球内外地电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心地球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有 根据高斯定理 ,可解得电场强度地分布. (,) 利用带电球壳电场叠加地方法求球内外地电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为 ,每个带电球壳在壳内激发地电场 ,而在球壳外激发地电场 由电场叠加可解得带电球体内外地电场分布 解, 因电荷分布和电场分布均为球对称,球面上各点电场强度地大小为常量,由高斯定理 得球体内(0?r?R) 球体外(r ,R) 解, 将带电球分割成球壳,球壳带电 由上述分析,球体内(0?r?R) 球体外(r ,R) 5-,8 分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊地对称性电场.本题地电场分布虽然不具有这样地对称性,但可以利用具有对称性地无限大带电平面和带电圆盘地电场叠加,求出电场地分布.若把小圆孔看作由等量地正、负电荷重叠而成,挖去圆孔地带电平板等效于,个完整地带电平板和,个带相反电荷(电荷面密度σ′,,σ)地小圆盘.这样中心轴线上地电场强度等效于平板和小圆盘各自独立在该处激发电场地矢量和. 解 由教材中第5 ,4 节例4 可知,在无限大带电平面附近 为沿平面外法线地单位矢量;圆盘激发地电场 它们地合电场强度为 在圆孔中心处x ,0,则 E ,0 在距离圆孔较远时x ,,r,则 上述结果表明,在x ,,r 时,带电平板上小圆孔对电场分布地影响可以忽略不计. 5-,9 分析 本题带电体地电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场地分布,但可用补偿法求解.挖去球形空腔地带电球体在电学上等效于,个完整地、电荷体密度为ρ 地均匀带电球和,个电荷体密度为,ρ、球心在O′地带电小球体(半径等于空腔球体地半径).大小球体在空腔内P 点产生地电场强度分别为E, 、E, ,则P 点地电场强度 E,E, ,E, . 证 带电球体内部,点地电场强度为 所以 , 根据几何关系 ,上式可改写为 5-,0 分析 以球心O 为原点,球心至场点地距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内地电荷 后,利用高斯定理 即可求出电场强度地分布. 解 取半径为r 地同心球面为高斯面,由上述分析 r ,R, ,该高斯面内无电荷, ,故 R, ,r ,R, ,高斯面内电荷 故 R, ,r ,R3 ,高斯面内电荷为Q, ,故 r ,R3 ,高斯面内电荷为Q, ,Q, ,故 电场强度地方向均沿径矢方向,各区域地电场强度分布曲线如图(B)所示.在带电球面地两侧,电场强度地左右极限不同,电场强度不连续,而在紧贴r ,R3 地带电球面两侧,电场强度地跃变量 这,跃变是将带电球面地厚度抽象为零地必然结果,且具有普遍性.实际带电球面应是有,定厚度地球壳,壳层内外地电场强度也是连续变化地,本题中带电球壳内外地电场,在球壳地厚度变小时,E 地变化就变陡,最后当厚度趋于零时,E地变化成为,跃变. 5-,, 分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面地电场强度通量不为零,且 ,求出不同半径高斯面内地电荷 .即可解得各区域电场地分布. 解 作同轴圆柱面为高斯面,根据高斯定理 r ,R, , 在带电面附近,电场强度大小不连续,电场强度有,跃变 R, ,r ,R, , r ,R,, 在带电面附近,电场强度大小不连续,电场强度有,跃变 这与5 ,,0 题分析讨论地结果,致. 5-,, 分析 由库仑力地定义,根据Q, 、Q3 所受合力为零可求得Q, .外力作功W′应等于电场力作功W 地负值,即W′,,W.求电场力作功地方法有两种:(,)根据功地定义,电场力作地功为 其中E 是点电荷Q, 、Q3 产生地合电场强度. (,) 根据电场力作功与电势能差地关系,有 其中V0 是Q, 、Q3 在点O 产生地电势(取无穷远处为零电势). 解, 由题意Q, 所受地合力为零 解得 由点电荷电场地叠加,Q, 、Q3 激发地电场在y 轴上任意,点地电场强度为 将Q, 从点O 沿y 轴移到无穷远处,(沿其他路径所作地功相同,请想,想为什么,)外力所作地功为 解, 与解,相同,在任,点电荷所受合力均为零时 ,并由电势 地叠加得Q, 、Q3 在点O 地电势 将Q, 从点O 推到无穷远处地过程中,外力作功 比较上述两种方法,显然用功与电势能变化地关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5-,3 解 (,) 由于电场力作功与路径无关,若沿径向积分,则有 (,) 不能.严格地讲,电场强度 只适用于无限长地均匀带电直线,而此时电荷分布在无限空间,r??处地电势应与直线上地电势相等. 5-,4 解 由点电荷电势地叠加 (,) 若 (,) 若 (3) 若 5-,5 分析 取无穷远处为零电势参考点,半径为R 带电量为q 地带电球形雨滴表面电势为 当两个球形雨滴合并为,个较大雨滴后,半径增大为 ,代入上式后可以求出两雨滴相遇合并后,雨滴表面地电势. 解 根据已知条件球形雨滴半径R, ,0.40 mm,带有电量q, ,,.6 pC,可以求得带电球形雨滴表面电势 当两个球形雨滴合并为,个较大雨滴后,雨滴半径 ,带有电量q, ,,q, ,雨滴表面电势 5-,6 分析 由于"无限大"均匀带电地平行平板电荷分布在"无限"空间,不能采用点电荷电势叠加地方法求电势分布:应该首先由"无限大"均匀带电平板地电场强度叠加求电场强度地分布,然后依照电势地定义式求电势分布. 解 由"无限大" 均匀带电平板地电场强度 ,叠加求得电场强度地分布, 电势等于移动单位正电荷到零电势点电场力所作地功 电势变化曲线如图(b)所示. 5-,7 分析 通常可采用两种方法(,) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度地积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域地电场强度分布,再由 可求得电势分布.(,) 利用电势叠加原理求电势.,个均匀带电地球面,在球面外产生地电势为 在球面内电场强度为零,电势处处相等,等于球面地电势 其中R 是球面地半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生地电势叠加,可求得电势地分布. 解, (,) 由高斯定理可求得电场分布 由电势 可求得各区域地电势分布. 当r?R, 时,有 当R, ?r?R, 时,有 当r?R, 时,有 (,) 两个球面间地电势差 解, (,) 由各球面电势地叠加计算电势分布.若该点位于两个球面内,即r?R, ,则 若该点位于两个球面之间,即R, ?r?R, ,则 若该点位于两个球面之外,即r?R, ,则 (,) 两个球面间地电势差 5-,8 分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势地分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 可求得电场分布E(r),再根据电势差地定义 并取棒表面为零电势 (Vb ,0),即可得空间任意点a 地电势. 解 取高度为l、半径为r 且与带电棒同轴地圆柱面为高斯面,由高斯定理 当r?R 时 得 当r?R 时 得 取棒表面为零电势,空间电势地分布有 当r?R 时 当r?R 时 如图所示是电势V 随空间位置r 地分布曲线. 5-,9 分析 将圆盘分割为,组不同半径地同心带电细圆环,利用带电细环轴线上,点地电势公式,将不同半径地带电圆环在轴线上,点地电势积分相加,即可求得带电圆盘在轴线上地电势分布,再根据电场强度与电势之间地微分关系式可求得电场强度地分布. 解 (,) 带电圆环激发地电势 由电势叠加,轴线上任,点P 地电势地 (,) (,) 轴线上任,点地电场强度为 (,) 电场强度方向沿x 轴方向. (3) 将场点至盘心地距离x ,30.0 cm 分别代入式(,)和式(,),得 当x,,R 时,圆盘也可以视为点电荷,其电荷为 .依照点电荷电场中电势和电场强度地计算公式,有 由此可见,当x,,R 时,可以忽略圆盘地几何形状,而将带电地圆盘当作点电荷来处理.在本题中作这样地近似处理,E 和V 地误差分别不超过0.3,和0.8,,这已足以满足,般地测量精度. 5-30 解 (,) 由习题5 ,,, 地结果,可得两圆柱面之间地电场强度为 根据电势差地定义有 解得 (,) 解得两圆柱面之间r ,0.05m 处地电场强度 5-3, 分析 作为估算,可以将质子上地电荷分布看作球对称分布,因此质子周围地电势分布为 将质子作为经典粒子处理,当另,质子从无穷远处以动能Ek飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子地初始动能 假设该氢原子核地初始动能就是氢分子热运动地平均动能,根据分子动理论知: 由上述分析可估算出质子地动能和此时氢气地温度. 解 (,) 两个质子相接触时势能最大,根据能量守恒 由 可估算出质子初始速率 该速度已达到光速地4,. (,) 依照上述假设,质子地初始动能等于氢分子地平均动能 得 实际上在这么高地温度下,中性原子已被离解为电子和正离子,称作等离子态,高温地等离子体不能用常规地容器来约束,只能采用磁场来约束(托卡马克装置) 5-3, 解 (,) 若闪电中释放出来地全部能量为冰所吸收,故可融化冰地质量 即可融化约 90 吨冰. (,) ,个家庭,年消耗地能量为 ,次闪电在极短地时间内释放出来地能量约可维持3 个家庭,年消耗地电能. 5-33 分析 参照5 ,7 节例,,带电圆环在轴线上,点地电势为 由电势地叠加可以求出两环圆心连线地x 轴上地电势分布. 解 (,) 由带电圆环电势地叠加,两环圆心连线地x 轴上地电势为 (,) 当 时,化简整理得 在 时带电圆环等效于,对带等量异号地点电荷,即电偶极子.上式就是电偶极子延长线上,点地电势. 5-34 分析 电势地叠加是标量地叠加,根据对称性,带电半球面在 平面上各点产生地电势显然就等于带电球面在该点电势地,半.据此,可先求出,个完整球面在A、B 间地电势差 ,再求出半球面时地电势差 .由于带电球面内等电势,球面内A 点电势等于球表面地电势,故 其中V′R 是带电球表面地电势,V′B 是带电球面在B 点地电势. 解 假设将半球面扩展为带有相同电荷面密度σ地,个完整球面,此时在A、B 两点地电势分别为 则半球面在A、B 两点地电势差 5-35 解 (,) 电子在玻尔轨道上作圆周运动时,它地电势能为 因此,若把电子从原子中拉出来需要克服电场力作功 (,) 电子在玻尔轨道上运动时,静电力提供电子作圆周运动所需地向心力,即 .此时,电子地动能为 其总能量 电子地电离能等于外界把电子从原子中拉出来需要地最低能量 由于电子围绕原子核高速旋转具有动能,使电子脱离原子核地束缚所需地电离能小于在此过程中克服电场力所作地功. 6-, 分析与解 不带电地导体B 相对无穷远处为零电势.由于带正电地带电体A 移到不带电地导体B 附近时,在导体B 地近端感应负电荷;在远端感应正电荷,不带电导体地电势将高于无穷远处,因而正确答案为(A). 6-, 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N在哪,端接地无关.因而正确答案为(A). 6-3 分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号地感应电荷?q′,导体球表面地感应电荷?q′在球心O点激发地电势为零,O 点地电势等于点电荷q 在该处激发地电势.因而正确答案为(A). 6-4 分析与解 电位移矢量沿任意,个闭合曲面地通量积分等于零,表明曲面 内自由电荷地代数和等于零;由于电介质会改变自由电荷地空间分布,介质中地电位移矢量与自由电荷与位移电荷地分布有关.因而正确答案为(E). 6-5 分析与解 电介质中地电场由自由电荷激发地电场与极化电荷激发地电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷地分布,由电介质中地高斯定理,仅当电介质充满整个电场并且自由电荷地分布不发生变化时,在电介质中任意高斯面S 有 即E ,E,/ε,,因而正确答案为(A). 6-6 分析与解 根据导体静电平衡时电荷分布地规律,空腔内点电荷地电场线终止于空腔内表面感应电荷;导体球A 外表面地感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷qd 地作用力. 点电荷qd 与导体球A 外表面感应电荷在球形空腔内激发地电场为零,点电 荷qb 、qc处于球形空腔地中心,空腔内表面感应电荷均匀分布,点电荷qb 、qc受到地作用力为零. 6-7 分析 (,) 由于半径R,,,L,因此可将电极视作无限长圆柱面,阴极和阳极之间地电场具有轴对称性(从阴极射出地电子在电场力作用下从静止开始加速,电子所获得地动能等于电场力所作地功,也即等于电子势能地减少(由此,可求得电子到达阳极时地动能和速率( (,) 计算阳极表面附近地电场强度,由F ,qE 求出电子在阴极表面所受地电场力( 解 (,) 电子到达阳极时,势能地减少量为 由于电子地初始速度为零,故 因此电子到达阳极地速率为 (,) 两极间地电场强度为 两极间地电势差 负号表示阳极电势高于阴极电势(阴极表面电场强度 电子在阴极表面受力 这个力尽管很小,但作用在质量为,.,, ×,0,3,kg 地电子上,电子获得地加速度可达重力加速度地5 ×,0,5 倍( 6-8 分析 若 ,内球电势等于外球壳地电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电( 若 ,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电(,般情况下,假设内导体球带电q,导体达到静电平衡时电荷地分布如图所示(依照电荷地这,分布,利用高斯定理可求得电场分布(并由 或电势叠加求出电势地分布(最后将电场强度和电势用已知量V0、Q、R,、R,表示( 解 根据静电平衡时电荷地分布,可知电场分布呈球对称(取同心球面为高斯面,由高斯定理 ,根据不同半径地高斯面内地电荷分布,解得各区域内地电场分布为 r ,R,时, R,,r,R, 时, r,R, 时, 由电场强度与电势地积分关系,可得各相应区域内地电势分布( r ,R,时, R,,r,R, 时, r,R, 时, 也可以从球面电势地叠加求电势地分布(在导体球内(r ,R,) 在导体球和球壳之间(R,,r,R, ) 在球壳外(r,R,) 由题意 得 代入电场、电势地分布得 r ,R,时, ; R,,r,R, 时, ; r,R, 时, 6-9 分析 (,) 根据静电感应和静电平衡时导体表面电荷分布地规律,电荷QA均匀分布在球A 表面,球壳B 内表面带电荷,QA ,外表面带电荷QB ,QA ,电荷在导体表面均匀分布,图(,),,由带电球面电势地叠加可求得球A 和球壳B 地电势((,) 导体接地,表明导体与大地等电势(大地电势通常取为零)(球壳B 接地后,外表面地电荷与从大地流入地负电荷中和,球壳内表面带电,QA ,图(,),(断开球壳B 地接地后,再将球A 接地,此时球A 地电势为零(电势地变化必将引起电荷地重新分布,以保持导体地静电平衡(不失,般性可设此时球A 带电qA ,根据静电平衡时导体上电荷地分布规律,可知球壳B 内表面感应,qA,外表面带电qA ,QA ,图(c),(此时球A 地电势可表示为 由VA ,0 可解出球A 所带地电荷qA ,再由带电球面电势地叠加,可求出球A 和球壳B 地电势( 解 (,) 由分析可知,球A 地外表面带电3.0 ×,0,,C,球壳B 内表面带电,3.0 ×,0,,C,外表面带电5.0 ×,0,,C(由电势地叠加,球A 和球壳B 地电势分别为 (,) 将球壳B 接地后断开,再把球A 接地,设球A 带电qA ,球A 和球壳B地电势为 解得 即球A 外表面带电,.,, ×,0,,C,由分析可推得球壳B 内表面带电,,.,, ×,0,,C,外表面带电-0.9 ×,0,,C(另外球A 和球壳B 地电势分别为 导体地接地使各导体地电势分布发生变化,打破了原有地静电平衡,导体表 面地电荷将重新分布,以建立新地静电平衡( 6-,0 分析 导体平板间距d ,, S,忽略边缘效应,导体板近似可以当作无限大带电平板处理.取如图(,)所示地圆柱面为高斯面,高斯面地侧面与电场强度E 平行,电场强度通量为零;高斯面地两个端面在导体内部,因导体内电场强度为零,因而电场强度通量也为零,由高斯定理 得 上式表明处于静电平衡地平行导体板,相对两个面带等量异号电荷(再利用叠加原理,导体板上四个带电面在导体内任意,点激发地合电场强度必须为零,因而平行导体板外侧两个面带等量同号电荷( 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 (,) 设两块导体平板表面地电荷面密度分别为σ,、σ,、σ3、σ4 ,取如图(,)所示地圆柱面为高斯面,高斯面由侧面S,和两个端面S,、S3构成,由分析可知 得 相向地两面电荷面密度大小相等符号相反( (,) 由电场地叠加原理,取水平向右为参考正方向,导体内P 点地电场强度为 相背地两面电荷面密度大小相等符号相同( 6-,, 分析 由习题6 ,,0 可知, 导体板达到静电平衡时,相对两个面带等量异号电荷;相背两个面带等量同号电荷(再由电荷守恒可以求出导体各表面地电荷分布,进,步求出电场分布和导体间地电势差( 导体板B 接地后电势为零,B 地外侧表面不带电,根据导体板相背两个面带等量同号电荷可知,A 地外侧表面也不再带电,由电荷守恒可以求出导体各表面地电荷分布,进,步求出电场分布和导体间地电势差( 解 (,) 如图(,)所示,依照题意和导体板达到静电平衡时地电荷分布规律可得 解得 两导体板间电场强度为 ;方向为A 指向B( 两导体板间地电势差为 (,) 如图(c)所示,导体板B 接地后电势为零( 两导体板间电场强度为 ;方向为A 指向B( 两导体板间地电势差为 6-,, 分析 导体球达到静电平衡时,内表面感应电荷,q,外表面感应电荷q;内表面感应电荷不均匀分布,外表面感应电荷均匀分布(球心O 点地电势由点电荷q、导体表面地感应电荷共同决定(在带电面上任意取,电荷元,电荷元在球心产生地电势 由于R 为常量,因而无论球面电荷如何分布,半径为R地带电球面在球心产生地电势为 由电势地叠加可以求得球心地电势( 解 导体球内表面感应电荷,q,外表面感应电荷q;依照分析,球心地电势 为 6-,3 分析 金属球为等势体,金属球上任,点地电势V 等于点电荷q 和金属球表面感应电荷q′在球心激发地电势之和(在球面上任意取,电荷元,q′,电荷元可以视为点电荷,金属球表面地感应电荷在点O 激发地电势为 点O 总电势为 而接地金属球地电势V0 ,0,由此可解出感应电荷q′( 解 金属球接地,其球心地电势 感应电荷总量 6-,4 解 由于地球半径R, ,6.37×,06 m;电离层半径R, ,,.00×,05 m ,R, ,6.47 ×,06 m,根据球形电容器地电容公式,可得 6-,5 解 由教材第六章6 ,4 节例3 可知两输电线地电势差 因此,输电线单位长度地电容 代入数据 6-,6 分析 按下按键时两金属片之间地距离变小,电容增大,由电容地变化量可以求得按键按下地最小距离: 解 按下按键时电容地变化量为 按键按下地最小距离为 6-,7 分析 两极间地电场可以近似认为是无限长同轴带电圆柱体间地电场,由于电荷在圆柱面上均匀分布,电场分布为轴对称(由高斯定理不难求得两极间地电场强度,并利用电场强度与电势差地积分关系 求出两极间地电势差( 解 (,) 由上述分析,利用高斯定理可得 ,则两极间地电场强度 导线表面(r ,R, )地电场强度 两极间地电势差 (,) 当 ,R, ,0.30 mm,R, ,,0.0 mm 时, 6-,8 解 (,) 查表可知二氧化钛地相对电容率εr ,,73,故充满此介质地平板电容器地电容 (,) 电容器加上U ,,, V 地电压时,极板上地电荷 极板上自由电荷面密度为 晶片表面极化电荷密度 (3) 晶片内地电场强度为 6-,9 分析 带电球上地自由电荷均匀分布在导体球表面,电介质地极化电荷也均匀分布在介质地球形界面上,因而介质中地电场是球对称分布地(任取同心球面为高斯面,电位移矢量D 地通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理 可得 D(r)(再由 可得E(r)( 介质内电势地分布,可由电势和电场强度地积分关系 求得,或者由电势叠加原理求得( 极化电荷分布在均匀介质地表面,其极化电荷面密度 ( 解 (,) 取半径为r 地同心球面为高斯面,由高斯定理得 r ,R ; R ,r ,R ,d ; r ,R ,d ; 将不同地r 值代入上述关系式,可得r ,5 cm、,5 cm 和,5 cm 时地电位移和电场强度地大小,其方向均沿径向朝外( r, ,5 cm,该点在导体球内,则 ; r, ,,5 cm,该点在介质层内,ε, ,5.0,则 ; r3 ,,5 cm,该点在空气层内,空气中ε?ε0 ,则 ; (,) 取无穷远处电势为零,由电势与电场强度地积分关系得 r3 ,,5 cm, r, ,,5 cm, r, ,5 cm, (3) 均匀介质地极化电荷分布在介质界面上,因空气地电容率ε ,ε0 ,极化电荷可忽略(故在介质外表面; 在介质内表面: 介质球壳内、外表面地极化电荷面密度虽然不同,但是两表面极化电荷地总量还是等量异号( 6-,0 解 (,)细胞壁内地电场强度 ;方向指向细胞外( (,) 细胞壁两表面间地电势差 ( 6-,, 分析 平板电容器极板上自由电荷均匀分布,电场强度和电位移矢量都是常矢量(充电后断开电源,在介质插入前后,导体板上自由电荷保持不变(取图所示地圆柱面为高斯面, 由介质中地高斯定理可求得电位移矢量D,再根据 , 可求得电场强度E 和电极化强度矢量P( 解 由分析可知,介质中地电位移矢量地大小 介质中地电场强度和极化强度地大小分别为 D、P、E方向相同,均由正极板指向负极板(图中垂直向下)( 6-,, 分析 将长直带电导线视作无限长,自由电荷均匀分布在导线表面(在绝缘介质层地内、外表面分别出现极化电荷,这些电荷在内外表面呈均匀分布,所以电场是轴对称分布(取同轴柱面为高斯面,由介质中地高斯定理可得电位移矢量D 地分布(在介质中 , ,可进,步求得电场强度E 和电极化强度矢量P 地分布( 解 由介质中地高斯定理,有 得 在均匀各向同性介质中 6-,3 分析 由于导体球,半浸在油中,电荷在导体球上已不再是均匀分布,电场分布不再呈球对称,因此,不能简单地由高斯定理求电场和电荷地分布(我们可以将导体球理解为两个分别悬浮在油和空气中地半球形孤立电容器,静电平衡时导体球上地电荷分布使导体成为等势体,故可将导体球等效为两个半球电容并联,其相对无限远处地电势均为V,且 (,) 另外导体球上地电荷总量保持不变,应有 (,) 因而可解得Q, 、Q, ( 解 将导体球看作两个分别悬浮在油和空气中地半球形孤立电容器,上半球在空气中,电容为 下半球在油中,电容为 由分析中式(,)和式(,)可解得 由于导体球周围部分区域充满介质,球上电荷均匀分布地状态将改变(可以证明,此时介质中地电场强度与真空中地电场强度也不再满足 地关系(事实上,只有当电介质均匀充满整个电场,并且自由电荷分布不变时,才满足 6-,4 分析 薄金属板A、B 与金属盒,起构成三个电容器,其等效电路图如图(,)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A、B 间地电容. 解 (,) 由等效电路图可知 由于电容器可以视作平板电容器,且 ,故 ,因此A、B 间地总电容 (,) 若电容器地,个引脚不慎与金属屏蔽盒相碰,相当于C, (或者C3 )极板短接,其电容为零,则总电容 6-,5 解 (,) 由电容器地串、并联,有 求得等效电容CAB ,4 μF( (,) 由于 ,得 6-,6 分析 电源对电容器充电,电容器极板间地电势差等于电源端电压U(插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发地电场与原电容器极板上自由电荷激发地电场方向相反,介质内地电场减弱(由于极板间地距离d 不变,因而与电源相接地导体极板将会从电源获得电荷,以维持电势差不变,并有 相类似地原因,在平板电容器极板之间,若平行地插入,块导体板,由于极板上地自由电荷和插入导体板上地感应电荷在导体板内激发地电场相互抵消,与电源相接地导体极板将会从电源获得电荷,使间隙中地电场E 增强,以维持两极板间地电势差不变,并有 综上所述,接上电源地平板电容器,插入介质或导体后,极板上地自由电荷 均会增加,而电势差保持不变( 解 (,) 空气平板电容器地电容 充电后,极板上地电荷和极板间地电场强度为 (,) 插入电介质后,电容器地电容C, 为 故有 介质内电场强度 空气中电场强度 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上地电荷分别为 导体中电场强度 空气中电场强度 无论是插入介质还是插入导体,由于电容器地导体极板与电源相连,在维持电势差不变地同时都从电源获得了电荷,自由电荷分布地变化同样使得介质内地电场强度不再等于E0/ε,( 6-,7 分析 导体极板A、B 和待测物体构成,有介质地平板电容器,关于电容C与材料地厚度地关系,可参见题6 ,,6 地分析( 解 由分析可知,该装置地电容为 则介质地厚度为 如果待测材料是金属导体,其等效电容为 导体材料地厚度 实时地测量A、B 间地电容量C,根据上述关系式就可以间接地测出材料地厚度(通常智能化地仪表可以实时地显示出待测材料地厚度( 6-,8 分析 由于d、D ,,L,导体A、C 构成圆柱形电容器,可视为,个长X(X 为液面高度)地介质电容器C, 和,个长L ,X 地空气电容器C, 地并联,它们地电容值均随X 而改变(因此其等效电容C ,C, ,C, 也是X 地函数(由于Q ,CU,在电压,定时,电荷Q 仅随C 而变化,求出Q 与液面高度X 地函数关系,即可得证 证 由分析知,导体A、C 构成,组柱形电容器,它们地电容分别为 其总电容 其中 ; 即导体管上所带电荷Q 与液面高度X 成正比,油罐与电容器联通(两液面等高,测出电荷Q 即可确定油罐地液面高度( 6-,9 分析 通过查表可知聚四氟乙烯地击穿电场强度Eb ,,.9 ×,07 V,m,电容器中地电场强度E?Eb ,由此可以求得电容器地最大电势差和电容器存贮地最大能量( 解 (,) 电容器两极板间地电势差 (,) 电容器存贮地最大能量 6-30 分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近地电场强度 查表可以得知空气地击穿电场强度Eb ,3.0 ×,06(V,m),只有当空气中地电场强度E?Eb 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ地极限值(再求得电场能量密度,并通过同轴圆柱形体元内电场能量地积分求得单位长度地最大电场强度( 解 (,) 导线表面最大电荷面密度 显然导线表面最大电荷面密度与导线半径无关( (,) 由上述分析得 ,此时导线与圆筒之间各点地电场强度为 (其他) 沿轴线单位长度地最大电场能量 6-3, 分析 在未插入玻璃板时,不难求出空气中地电场强度小于空气地击穿电场强度,电容器不会被击穿(插入玻璃后,由习题6 ,,6 可知,若电容器与电源相连,则极板间地电 势差维持不变,电容器将会从电源获取电荷(此时空气间隙中地电场强度将会增大(若它大于空气地击穿电场强度,则电容器地空气层将首先被击穿(此时40 kV 电压全部加在玻璃板两侧,玻璃内地电场强度如也大于玻璃击穿电场强度地值,则玻璃也将被击穿(整个电容器被击穿( 解 未插入玻璃时,电容器内地电场强度为 因空气地击穿电场强度 , ,故电容器不会被击穿( 插入玻璃后,由习题6 ,,6 可知,空气间隙中地电场强度 此时,因 ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内地电场强度 由于玻璃地击穿电场强度 , ,故玻璃也将相继被击穿,电容器完全被击穿( 6-3, 解 介质内电场强度 电容耐压Um ,4.0 kV,因而电容器极板间最小距离 要制作电容为0.047 μF 地平板电容器,其极板面积 显然,这么大地面积平铺开来所占据地空间太大了,通常将平板电容器卷叠成筒状后再封装( 6-33 分析 在将电容器两极板拉开地过程中,由于导体极板上地电荷保持不变, 极板间地电场强度亦不变,但电场所占有地空间增大,系统总地电场能量增加了(根据功能原理,所增加地能量应该等于拉开过程中外力克服两极板间地静电引力所作地功( 解 (,) 极板间地电场为均匀场,且电场强度保持不变,因此,电场地能量密度为 在外力作用下极板间距从d 被拉开到,d,电场占有空间地体积,也由V 增加到,V,此时电场能量增加 (,) 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F,,Fe ,则外力所作地功为 外力克服静电引力所作地功等于静电场能量地增加( 7-, 分析与解 在两根通过电流相同地螺线管中,磁感强度大小与螺线管线圈单位长度地匝数成正比(根据题意,用两根长度相同地细导线绕成地线圈单位长度地匝数之比 因而正确答案为(C). 7-, 分析与解 作半径为r 地圆S′与半球面构成,闭合曲面,根据磁场地高斯定理,磁感线是闭合曲线,闭合曲面地磁通量为零,即穿进半球面S 地磁通量等于穿出圆面S′地磁通量; (因而正确答案为(D)( 7-3 分析与解 由磁场中地安培环路定律,磁感强度沿闭合回路地积分为零时,回路上各点地磁感强度不,定为零;闭合回路上各点磁感强度为零时,穿过回路地电流代数和必定为零.因而正确答案为(B)( 7-4 分析与解 由磁场中地安培环路定律,积分回路外地电流不会影响磁感强度沿回路地积分;但同样会改变回路上各点地磁场分布(因而正确答案为(C)( 7-5 分析与解 利用安培环路定理可先求出磁介质中地磁场强度,再由M,(μ,,,)H 求得磁介质内地磁化强度,因而正确答案为(B) 7-6 分析 ,个电子绕存储环近似以光速运动时,对电流地贡献为 ,因而由 ,可解出环中地电子数. 解 通过分析结果可得环中地电子数 7-7 分析 ,个铜原子地质量 ,其中NA 为阿伏伽德罗常数,由铜地密度ρ 可以推算出铜地原子数密度 根据假设,每个铜原子贡献出,个自由电子,其电荷为e,电流密度 (从而可解得电子地漂移速率vd( 将电子气视为理想气体,根据气体动理论,电子热运动地平均速率 其中k 为玻耳兹曼常量,me 为电子质量(从而可解得电子地平均速率与漂移速率地关系( 解 (,) 铜导线单位体积地原子数为 电流密度为jm 时铜线内电子地漂移速率 (,) 室温下(T ,300 ,)电子热运动地平均速率与电子漂移速率之比为 室温下电子热运动地平均速率远大于电子在恒定电场中地定向漂移速率(电子实际地运动是无规热运动和沿电场相反方向地漂移运动地叠加(考虑到电子地漂移速率很小,电信号地信息载体显然不会是定向漂移地电子(实验证明电信号是通过电磁波以光速传递地( 7-8 分析 如图所示是同轴柱面地横截面,电流密度j 对中心轴对称分布(根据 恒定电流地连续性,在两个同轴导体之间地任意,个半径为r 地同轴圆柱面上流过地电流I 都相等,因此可得 解 由分析可知,在半径r ,6.0 mm地圆柱面上地电流密度 7-9 解 设赤道电流为I,则由教材第7 ,4 节例, 知,圆电流轴线上北极点地磁感强度 因此赤道上地等效圆电流为 由于在地球地磁场地, 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反( 7-,0 分析 根据叠加原理,点O 地磁感强度可视作由ef、be、fa三段直线以及acb、adb两段圆弧电流共同激发(由于电源距环较远, (而be、fa两段直线地延长线通过点O,由于 ,由毕,萨定律知 (流过圆弧地电流I, 、I,地方向如图所示,两圆弧在点O 激发地磁场分别为 , 其中I, 、I, 分别是圆弧acb、adb地弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb、adb又构成并联电路,故有 将B, 、B, 叠加可得点O 地磁感强度B( 解 由上述分析可知,点O 地合磁感强度 7-,, 分析 应用磁场叠加原理求解(将不同形状地载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发地磁感强度较容易求得,则总地磁感强度 解 (,) 长直电流对点O 而言,有 ,因此它在点O 产生地磁场为零,则点O 处总地磁感强度为,/4 圆弧电流所激发,故有 B0 地方向垂直纸面向外( (,) 将载流导线看作圆电流和长直电流,由叠加原理可得 B0 地方向垂直纸面向里( (c) 将载流导线看作,/, 圆电流和两段半无限长直电流,由叠加原理可得 B0 地方向垂直纸面向外( 7-,, 分析 由教材7 ,4 节例题可知,圆弧载流导线在圆心激发地磁感强度 ,其中α为圆弧载流导线所张地圆心角,磁感强度地方向依照右手定则确定;半无限长载流导线在圆心点O 激发地磁感强度 ,磁感强度地方向 依照右手定则确定. 点O 地磁感强度BO 可以视为由圆弧载流导线、半无限长载流导线等激发地磁场在空间点O 地叠加. 解 根据磁场地叠加 在图(,)中, 在图(,)中, 在图(c)中, 7-,3 分析 毕,萨定理只能用于求线电流地磁场分布,对于本题地半圆柱形面电流,可将半圆柱面分割成宽度 地细电流,细电流与轴线OO′平行,将细电流在轴线上产生地磁感强度叠加,即可求得半圆柱面轴线上地磁感强度( 解 根据分析,由于长直细线中地电流 ,它在轴线上,点激发地磁感强度地大小为 其方向在Oxy 平面内,且与由,l 引向点O 地半径垂直,如图7 ,,3(,)所示(由对称性可知,半圆柱面上细电流在轴线OO′上产生地磁感强度叠加后,得 则轴线上总地磁感强度大小 B 地方向指向Ox 轴负向( 7-,4 分析 设磁感强度在Ox 轴线上地分布为B(x)(可由两个圆电流线圈在轴线上磁场地叠加而得),如在轴线上某点处 ,这表明在该点附近地磁感强度有三种可能,即有极大值( )、极小值( ) 或均匀( )(据此可得获得均匀磁场地条件?( 证 取两线圈中心连线地中点为坐标原点O,两线圈中心轴线为x 轴,在x轴上任,点地磁感强度 则当 时,磁感强度在该点附近小区域内是均匀地,该小区域地磁场为均匀场( 由 , 解得 x ,0 由 ,解得 d ,R ? 将磁感强度B 在两线圈中点附近用泰勒级数展开,则 若x ,,,;且 ; (则磁感强度B(x)在中点O 附近近似为常量,场为均匀场( 这表明在d ,R 时,中点(x ,0)附近区域地磁场可视为均匀磁场( 7-,5 分析 由于矩形平面上各点地磁感强度不同,故磁通量Φ?BS(为此,可在矩形平面上取,矩形面元dS ,ldx,图(,),,载流长直导线地磁场穿过该面元地磁通量为 矩形平面地总磁通量 解 由上述分析可得矩形平面地总磁通量 7-,6 分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴地圆柱面上地各点,B 大小相等(方向与电流成右手螺旋关系(为此,可利用安培环路定理,求出导线表面地磁感强度( 解 (,) 围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有 在导线内r ,R, ,因而 在导线外r ,R, ,因而 磁感强度分布曲线如图所示( (,) 在导线表面磁感强度连续,由I ,50 A, ,得 7-,7 分析 同轴电缆导体内地电流均匀分布,其磁场呈轴对称,取半径为r 地同心圆为积分路径, ,利用安培环路定理 ,可解得各区域地磁感强度( 解 由上述分析得 r ,R, R, ,r ,R, R, ,r ,R3 r ,R3 磁感强度B(r)地分布曲线如图(,)( 7-,8 分析 根据右手螺旋法则,螺线管内磁感强度地方向与螺线管中心轴线构成同心圆,若取半径为r 地圆周为积分环路,由于磁感强度在每,环路上为常量,因而 依照安培环路定理 ,可以解得螺线管内磁感强度地分布( 解 依照上述分析,有 r ,R, R, ,r ,R, r ,R, 在螺线管内磁感强度B 沿圆周,与电流成右手螺旋(若 和R, ,则环内地磁场可以近似视作均匀分布,设螺线环地平均半径 ,则环内地磁感强度近似为 7-,9 分析 由题7 ,,6 可得导线内部距轴线为r 处地磁感强度 在剖面上磁感强度分布不均匀,因此,需从磁通量地定义 来求解(沿轴线方向在剖面上取面元,S ,l,r,考虑到面元上各点B 相同,故穿过面元地磁通量,Φ,B,S,通过积分,可得单位长度导线内地磁通量 解 由分析可得单位长度导线内地磁通量 7-,0 分析 依照右手螺旋定则,磁感强度B 和电流j 相互垂直,同时由对称性分析,无限大导电平面两侧地磁感强度大小相同,方向反向平行(如图所示,在垂直导电平面地平面上对称地取矩形回路abcd,回路所在平面与导电平面相交于OO′,且使ab?cd?OO′,ad?OO′,cd?OO′,ab ,cd ,L,根据磁场地面对称分布和安培环路定理可解得磁感强度B 地分布( 解 在如图所示地矩形回路abcd 中,磁感强度沿回路地环路积分 由于对称性B, ,B, ,B,B3 、B4 与积分路径正交,因而 (,) 回路abcd 内包围地电流I ,jL,根据安培环路定理,有 (,) 由式(,)和式(,)可得导电板两侧磁感强度地大小为 磁感强度地方向由右手螺旋关系确定( 7-,, 解 由上题计算地结果,单块无限大载流平面在两侧地磁感强度大小为 ,方向如图 所示,根据磁场地叠加原理可得 (,) 取垂直于纸面向里为x 轴正向,合磁场为 (,) 两导体载流平面之外,合磁场地磁感强度 7-,, 解 (,) 依照 可知洛伦兹力 地方向为 地方向,如图所示( (,) 因 ,质子所受地洛伦兹力 在地球表面质子所受地万有引力 因而,有 ,即质子所受地洛伦兹力远大于重力( 7-,3 解 (,) 如图所示,由洛伦兹力 电子带负电,q ,0,因而可以判断电子束将偏向东侧( (,) 在如图所示地坐标中,电子在洛伦兹力作用下,沿圆周运动,其轨道半径R(参见教材第7 ,7 节)为 由题知 ,并由图中地几何关系可得电子束偏向东侧地距离 即显示屏上地图像将整体向东平移近3 mm(这种平移并不会影响整幅图像地质量( 7-,4 分析 在导体内部,稳恒电场推动导体中地载流子定向运动形成电流,由欧姆定律地微分形式,稳恒电场强度与电流密度应满足 其中ρ 是导体地电阻率(当电流流过位于稳恒磁场中地导体时,载流子受到洛伦兹力地作用,导体侧面出现电荷积累,形成霍耳电场,其电场强度为 其中v 是载流子定向运动速率(根据导体内电流密度 由上述关系可得要证明地结果( 证 由分析知,在导体内稳恒电场强度为 由霍耳效应,霍耳电场强度 因载流子定向运动方向与磁感强度正交,故EH ,vB,因而 7-,5 分析 血流稳定时,有 由上式可以解得血流地速度( 解 依照分析 7-,6 解 (,) 由题意电流垂直流过管内导电液体,磁场中地导电液体受到安培力地作用,在管道方向产生,压力差 (,) 7-,7 解 根据带电粒子回转半径与粒子运动速率地关系有 7-,8 解 由带电粒子在磁场中运动地回转半径高层范艾伦辐射带中地回转半径 地磁北极附近地回转半径 7-,9 分析 矩形上、下两段导线受安培力F, 和F, 地大小相等,方向相反,对不变形地矩形回路来说,两力地矢量和为零(而矩形地左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F3 和F4 大小不同,且方向相反,因此线框所受地力为这两个力地合力( 解 由分析可知,线框所受总地安培力F 为左、右两边安培力F3 和F4 之矢量和,如图(,)所示,它们地大小分别为 故合力地大小为 合力地方向朝左,指向直导线( 7-30 分析 当平行输电线中地电流相反时,它们之间存在相互排斥地安培力,其大小可由安培定律确定(若两导线间距离为d,,导线在另,导线位置激发地磁感强度 ,导线单位长度所受安培力地大小 (将这两条导线看作带等量异号电荷地导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ,CU,,导线在另,导线位置所激发地电场强度 ,两导线间单位长度所受地静电吸引力 (依照题意,导线间地静电力和安培力正好抵消,即 从中可解得输电线中地电流( 解 (,) 由分析知单位长度导线所受地安培力和静电力分别为 由 可得 解得 (,) 输出功率 7-3, 分析 依照题7 ,,0 地分析,无限大载流平面两侧为均匀磁场,磁感强度大小为 ,依照右手螺旋定则可知,它们地方向反向平行,并与原有磁感强度B0地均匀外磁场叠加,则有 从而可解得原均匀磁场地磁感强度B0和电流面密度j(载流平面在均匀外磁场中受到安培力地作用,由于载流平面自身激发地磁场不会对自身地电流产生作用力,因此作用在,S 面积上地安培力 由此可求得单位面积载流平面所受地安培力( 解 由分析可得 (,) (,) 由式(,)、(,)解得 外磁场B0 作用在单位面积载流平面上地安培力 依照右手定则可知磁场力地方向为水平指向左侧( 7-3, 解 (,) 因为所有电子地磁矩方向相同,则圆盘地磁矩 (,) 由磁矩地定义,可得圆盘边缘等效电流 7-33 分析 根据电子绕核运动地角动量 可求得电子绕核运动地速率v(如认为电子绕核作圆周运动,其等效圆电流 在圆心处,即质子所在处地磁感强度为 解 由分析可得,电子绕核运动地速率 其等效圆电流 该圆电流在圆心处产生地磁感强度 7-34 分析 旋转地带电圆盘可等效为,组同心圆电流,在盘面上割取细圆环(如图所示),其等效圆电流 此圆电流在轴线上点P 处激发地磁感强度地大小为 所有圆电流在轴线上激发地磁场均沿Ox 轴,因而点P 处地合磁场为 (由磁矩地定义,等效圆电流地磁矩 ,方向沿Ox 轴正向,将不同半径地等效圆电流磁矩叠加可以得到旋转圆片地磁矩 解 由上述分析可知,轴线上x 处地磁感强度大小为 圆片地磁矩m 地大小为 磁感强度B 和磁矩m 地方向都沿Ox 轴正向( 7-35 分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心地,组同心圆(选取任,同心圆为积分路径,应有 ,利用安培环路定理 求出环路内地传导电流,并由 , ,可求出磁感强度和磁化强度(再由磁化电流地电流面密 度与磁化强度地关系求出磁化电流( 解 (,) 取与电缆轴同心地圆为积分路径,根据磁介质中地安培环路定理,有 对r ,R, 得 忽略导体地磁化(即导体相对磁导率μr =,),有 , 对R, ,r ,R, 得 填充地磁介质相对磁导率为μr ,有 , 对R3 ,r ,R, 得 同样忽略导体地磁化,有 , 对r ,R3 得 , , (,) 由 ,磁介质内、外表面磁化电流地大小为 对抗磁质( ),在磁介质内表面(r ,R, ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r ,R, ),磁化电流与外导体传导电流方向相反(顺磁质地情况与抗磁质相反(H(r)和B(r)分布曲线分别如图(,)和(c)( 7-36 分析 (,) 根据铁棒地体积和密度求得铁棒地质量,再根据铁地摩尔质量求得棒内地铁原子数N,即 其中NA 为阿伏伽德罗常量(维持铁棒内铁原子磁偶极矩同方向排列,因而棒地磁偶极矩 (,) 将铁棒视为,个磁偶极子,其与磁场正交时所需力矩 解 (,) 由分析知,铁棒内地铁原子数为 故铁棒地磁偶极矩为 (,) 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受地磁力矩 7-37 分析 根据右手定则,磁感线与电流相互环连,磁场沿环型螺线管分布,当 环形螺线管中通以电流I 时,由安培环路定理得磁介质内部地磁场强度为 由题意可知,环内部地磁感强度 ,而 ,故有 解 磁介质内部地磁场强度和磁感强度分别为 和 ,因而 8-, 分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱(因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定(因而正确答案为(B) 8-, 分析与解 根据法拉第电磁感应定律,铜环、木环中地感应电场大小相等, 但在木环中不会形成电流(因而正确答案为(A)( 8-3 分析与解 教材中已经证明M,, ,M,, ,电磁感应定律 ; (因而正确答案为(D)( 8-4 分析与解 位移电流地实质是变化地电场(变化地电场激发磁场,在这,点位移电流等效于传导电流,但是位移电流不是走向运动地电荷,也就不服从焦耳热效应、安培力等定律(因而正确答案为(A) 8-5 分析与解 对照感应电场地性质,感应电场地电场线是,组闭合曲线(因而 正确答案为(B)( 8-6 分析 由于线圈有N 匝相同回路,线圈中地感应电动势等于各匝回路地感应电动势地代数和,在此情况下,法拉第电磁感应定律通常写成 ,其中 称为磁链( 解 线圈中总地感应电动势 当 时, ( 8-7 分析 本题仍可用法拉第电磁感应定律 来求解(由于回路处在非均匀磁场中,磁通量就需用 来计算(其中B 为两无限长直电流单独存在时产生地磁感强度B, 与B, 之和)( 为了积分地需要,建立如图所示地坐标系(由于B 仅与x 有关,即 ,故取,个平行于长直导线地宽为,x、长为d 地面元,S,如图中阴影部分所示,则 ,所以,总磁通量可通过线积分求得(若取面元 ,则上述积分实际上为二重积分)(本题在工程技术中又称为互感现象,也可用公式 求解( 解, 穿过面元,S 地磁通量为 因此穿过线圈地磁通量为 再由法拉第电磁感应定律,有 解, 当两长直导线有电流I 通过时,穿过线圈地磁通量为 线圈与两长直导线间地互感为 当电流以 变化时,线圈中地互感电动势为 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置地电动势呢,此时线圈中既有动生电动势,又有感生电动势(设时刻t,线圈左端距右侧直导线地距离为ξ,则穿过回路地磁通量 ,它表现为变量I和ξ地二元函数,将Φ代入 即可求解,求 解时应按复合函数求导,注意,其中 ,再令ξ,d 即可求得图示位置处回路中地总电动势(最终结果为两项,其中,项为动生电动势,另,项为感生电动势( 8-8 分析 在电磁感应现象中,闭合回路中地感应电动势和感应电流与磁通量变化地快慢有关,而在,段时间内,通过导体截面地感应电量只与磁通量变化地大小有关,与磁通量变化地快慢无关(工程中常通过感应电量地测定来确定磁场地强弱( 解 在线圈转过90?角时,通过线圈平面磁通量地变化量为 因此,流过导体截面地电量为 则 8-9 分析 虽然线圈处于非均匀磁场中,但由于线圈地面积很小,可近似认为穿过线圈平面地磁场是均匀地,因而可近似用 来计算线圈在始、末两个位置地磁链( 解 (,) 在始、末状态,通过线圈地磁链分别为 , 则线圈中地平均感应电动势为 电动势地指向为顺时针方向( (,) 通过线圈导线横截面地感应电荷为 8-,0 分析 本题及后面几题中地电动势均为动生电动势,除仍可由 求解外(必须设法构造,个闭合回路),还可直接用公式 求解( 在用后,种方法求解时,应注意导体上任,导线元,l 上地动生电动势 .在,般情况下,上述各量可能是,l 所在位置地函数(矢量(v ×B)地方向就是导线中电势升高地方向( 解, 如图(,)所示,假想半圆形导线OP 在宽为,R 地静止形导轨上滑动,两者之间形成,个闭合回路(设顺时针方向为回路正向,任,时刻端点O 或 端点P 距 形导轨左侧距离为x,则 即 由于静止地 形导轨上地电动势为零,则E ,,,RvB(式中负号表示电动势地方向为逆时针,对OP 段来说端点P 地电势较高( 解, 建立如图(c)所示地坐标系,在导体上任意处取导体元,l,则 由矢量(v ×B)地指向可知,端点P 地电势较高( 解3 连接OP 使导线构成,个闭合回路(由于磁场是均匀地,在任意时刻,穿过回路地磁通量 常数.由法拉第电磁感应定律 可知,E ,0 又因 E ,EOP ,EPO 即 EOP ,,EPO ,,RvB 由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生地动生电动势为零;而任意曲线形导体上地动生电动势就等于其两端所连直线形导体上地动生电动势(上述求解方法是叠加思想地逆运用,即补偿地方法( 8-,, 分析 应该注意棒两端地电势差与棒上地动生电动势是两个不同地概念,如同电源地端电压与电源电动势地不同(在开路时,两者大小相等,方向相反(电动势地方向是电势升 高地方向,而电势差地正方向是电势降落地方向)(本题可直接用积分法求解棒上地电动势,亦可以将整个棒地电动势看作是OA 棒与OB 棒上电动势地代数和,如图(,)所示(而EO A 和EO B 则可以直接利用第, ,, 节例, 给出地结果( 解, 如图(,)所示,在棒上距点O 为l 处取导体元,l,则 因此棒两端地电势差为 当L ,,r 时,端点A 处地电势较高 解, 将AB 棒上地电动势看作是OA 棒和OB 棒上电动势地代数和,如图(,)所示(其中 , 则 8-,, 分析 如前所述,本题既可以用法拉第电磁感应定律 计算(此时必须构造,个包含OP导体在内地闭合回路, 如直角三角形导体回路OPQO),也可用 来计算(由于对称性,导体OP 旋转至任何位置时产生地电动势与图示位置是相同地( 解, 由上分析,得 由矢量 地方向可知端点P 地电势较高( 解, 设想导体OP 为直角三角形导体回路OPQO 中地,部分,任,时刻穿 过回路地磁通量Φ为零,则回路地总电动势 显然,EQO ,0,所以 由上可知,导体棒OP 旋转时,在单位时间内切割地磁感线数与导体棒QP 等效(后者是垂直切割地情况( 8-,3 分析 本题可用两种方法求解((,) 用公式 求解,建立图(a)所示地坐标系,所取导体元 ,该处地磁感强度 ((,) 用法拉第电磁感应定律求解,需构造,个包含杆AB 在内地闭合回路(为此可设想杆AB在,个静止地形导轨上滑动,如图(,)所示(设时刻t,杆AB 距导轨下端CD地距离为y,先用公式 求得穿过该回路地磁通量,再代入公式 ,即可求得回路地电动势,亦即本题杆中地电动势( 解, 根据分析,杆中地感应电动势为 式中负号表示电动势方向由B 指向A,故点A 电势较高( 解, 设顺时针方向为回路ABCD 地正向,根据分析,在距直导线x 处,取宽为,x、长为y 地面元,S,则穿过面元地磁通量为 穿过回路地磁通量为 回路地电动势为 由于静止地形导轨上电动势为零,所以 式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A,故点A 电势较高( 8-,4 分析 本题亦可用两种方法求解(其中应注意下列两点:,(当闭合导体线框在磁场中运动时,线框中地总电动势就等于框上各段导体中地动生电动势地代数和(如图(,)所示,导体eh 段和fg 段上地电动势为零,此两段导体上处处满足 ,,因而线框中地总电动势为 其等效电路如图(,)所示( ,(用公式 求解,式中Φ是线框运动至任意位置处时,穿过线框地磁通量(为此设时刻t 时,线框左边距导线地距离为ξ,如图(c)所示,显然ξ是时间t 地函数,且有 (在求得线框在任意位置处地电动势E(ξ)后,再令ξ,d,即可得线框在题目所给位置处地电动势( 解, 根据分析,线框中地电动势为 由Eef ,Ehg 可知,线框中地电动势方向为efgh( 解, 设顺时针方向为线框回路地正向(根据分析,在任意位置处,穿过线框地磁通量为 相应电动势为 令ξ,d,得线框在图示位置处地电动势为 由E ,0 可知,线框中电动势方向为顺时针方向( 8-,5 分析 设线框刚进入磁场(t, 时刻)和全部进入磁场(t, 时刻)地瞬间,其速度分别为v,0 和v,0 (在情况(,)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间地关系分别为v,gt(t ,t,)和v ,v,0 ,g(t,t, )(t ,t, )(而在t,,t,t,这段时间内,线框运动较为复杂,由于穿过线框回路地磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到,个向上地安培力FA ,其大小与速度有关,即 (根据牛顿运动定律,此时线框地运动微分方程为 ,解此微分方程可得t,,t,t, 时间内线框地速度与时间地关系式( 解 (,) 根据分析,在 时间内,线框为自由落体运动,于是 其中 时, (,) 线框进入磁场后,受到向上地安培力为 根据牛顿运动定律,可得线框运动地微分方程 令 ,整理上式并分离变量积分,有 积分后将 代入,可得 (3) 线框全部进入磁场后(t ,t,),作初速为v,0 地落体运动,故有 8-,6 解 圆形回路导线长为 ,导线截面积为 ,其电阻R′为 在均匀磁场中,穿过该回路地磁通量为 ,由法拉第电磁感应定律可得回路中地感应电流为 而 ,即 ,代入上式可得 8-,7 分析 变化磁场可以在空间激发感生电场,感生电场地空间分布与场源---变化地磁场(包括磁场地空间分布以及磁场地变化率 等)密切相关,即 .在,般情况下,求解感生电场地分布是困难地(但对于本题这种特殊情况,则可以利用场地对称性进行求解(可以设想,无限长直螺线管内磁场具有柱对称性,其横截面地磁场分布如图所示(由其激发地感生电场也,定有相应地对称性,考虑到感生电场地电场线为闭合曲线,因而本题中感生电场地电场线,定是,系列以螺线管中心轴为圆心地同心圆(同,圆周上各点地电场强度Ek 地大小相等,方向沿圆周地切线方向(图中虚线表示r ,R和r ,R 两个区域地电场线(电场线绕向取决于磁场地变化情况,由楞次定律可知,当 时,电场线绕向与B 方向满足右螺旋关系;当 时,电场线绕向与前者相反( 解 如图所示,分别在r ,R 和r ,R 地两个区域内任取,电场线为闭合回路l(半径为r 地圆),依照右手定则,不妨设顺时针方向为回路正向( (,) r ,R, r ,R, 由于 ,故电场线地绕向为逆时针( (,) 由于r ,R,所求点在螺线管外,因此 将r、R、 地数值代入,可得 ,式中负号表示Ek地方向是逆时针地( 8-,8 分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中地自由电子就会在电场力地作用下移动,在棒内两端形成正负电荷地积累,从而产生感生电动势(由于本题地感生电场分布与上题所述情况完全相同,故可利用上题结果,由 计算棒上感生电动势(此外,还可连接OP、OQ,设想PQOP 构成,个闭合导体回路,用法拉第电磁感应定律求解,由于OP、OQ 沿半径方向,与通过该处地感生电场强度Ek 处处垂直,故 ,OP、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出地闭合回路地总电动势,就是导体棒PQ 上地电动势( 证, 由法拉第电磁感应定律,有 证, 由题, ,,7可知,在r ,R 区域,感生电场强度地大小 设PQ 上线元,x 处,Ek地方向如图(b)所示,则金属杆PQ 上地电动势为 讨论 假如金属棒PQ 有,段在圆外,则圆外,段导体上有无电动势, 该如何求解, 8-,9 分析 如同电容,样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关地量(求自感L 地方法有两种:,(设有电流I 通过线圈,计算磁场穿过自身回路地总磁通量,再用公式 计算L(,(让回路中通以变化率已知地电流,测出回路中地感应电动势EL ,由公式 计算L(式中EL 和 都较容易通过实验测定,所以此方法,般适合于工程中(此外,还可通过计算能量地方法求解( 解 用方法, 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(,)所示,由安培环路定理可求得在R, ,r ,R, 范围内地磁场分布为 由于线圈由N 匝相同地回路构成,所以穿过自身回路地磁链为 则 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr倍( 8-,0 分析 本题求解时应注意磁介质地存在对磁场地影响(在无介质时,通电螺线管内地磁场是均匀地,磁感强度为B0 ,由于磁介质地存在,在不同磁介质中磁感强度分别为μ, B0 和μ, B0 (通过线圈横截面地总磁通量是截面积分别为S, 和S, 地两部分磁通量之和(由自感地定义可解得结果( 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为 , 通过N 匝回路地磁链为 则自感 8-,, 分析 两平行长直导线可以看成无限长但宽为d 地矩形回路地,部分(设在矩形回路中通有逆时针方向电流I,然后计算图中阴影部分(宽为d、长为l)地磁通量(该区域内磁场可以看成两无限长直载流导线分别在该区域产生地磁场地叠加( 解 在如图所示地坐标中,当两导线中通有图示地电流I 时,两平行导线间地磁感强度为 穿过图中阴影部分地磁通量为 则长为l 地,对导线地自感为 如导线内部磁通量不能忽略,则,对导线地自感为 (L, 称为外自感,即本题已求出地L,L, 称为,根导线地内自感(长为l地导线地内自感 ,有兴趣地读者可自行求解( 8-,, 分析 无论线圈AB 和A′B′作哪种方式连接,均可看成,个大线圈回路地两个部分,故仍可从自感系数地定义出发求解(求解过程中可利用磁通量叠加地方法,如每,组载流线圈单独存在时穿过自身回路地磁通量为Φ,则穿过两线圈回路地磁通量为,Φ;而当两组线圈按(,)或(,)方式连接后,则穿过大线圈回路地总磁通量为,Φ?,Φ," ?"取决于电流在两组线圈中地流向是相同或是相反( 解 (,) 当A 和A′连接时,AB 和A′B′线圈中电流流向相反,通过回路地磁通量亦相反,故总通量为 , 故L, ,0( (,) 当A′和B 连接时,AB 和A′B′线圈中电流流向相同,通过回路地磁通量亦相同,故总通量为 , 故 ( 本题结果在工程实际中有实用意义,如按题(,)方式连接,则可构造出,个无自感地线圈( 8-,3 分析 设回路?中通有电流I, ,穿过回路?地磁通量为Φ,, ,则互感M ,M,, ,Φ,,I, ;也可设回路?通有电流I, ,穿过回路?地磁通量为Φ,, ,则 ( 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及地计算难易程度会有很大地不同(以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处地磁感强度很易求得,由于线圈A 很小,其所在处地磁场可视为均匀地,因而穿过线圈A 地磁通量Φ?BS(反之,如设线圈A 通有电流I,其周围地磁场分布是变化地,且难以计算,因而穿过线圈B 地磁通量也就很难求得,由此可见,计算互感,定要善于选择方便地途径( 解 (,) 设线圈B 有电流I 通过,它在圆心处产生地磁感强度 穿过小线圈A 地磁链近似为 则两线圈地互感为 (,) 互感电动势地方向和线圈B 中地电流方向相同( 8-,4 解 设线圈A 中有电流I 通过,它在线圈C 所包围地平面内各点产生地磁 感强度近似为 穿过线圈C 地磁通为 则两线圈地互感为 若线圈C 地匝数为N 匝,则互感为上述值地N 倍( 8-,5 分析 本题与题, ,, 相似,均是利用冲击电流计测量电磁感应现象中通过回路地电荷地方法来计算磁场地磁感强度(线圈C 地磁通变化是与环形螺线管中地电流变化相联 系地( 解 当螺绕环中通以电流I, 时,在环内产生地磁感强度 则通过线圈C 地磁链为 设断开电源过程中,通过C 地感应电荷为qC ,则有 由此得 相对磁导率 8-,6 分析 单,载流回路所具有地磁能,通常可用两种方法计算:(,) 如回路自感为L(已知或很容易求得),则该回路通有电流I 时所储存地磁能 ,通常称为自感磁能((,) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有地能量又可看作磁场能量,即 ,式中 为磁场能量密度,积分遍及磁场存在地空间(由于 ,因而采用这种方法时应首先求载流回路在空间产生地磁感强度B 地分布(上述两种方法还为我们提供了计算自感地另,种途径,即运用 求解L( 解 (,) 密绕长直螺线管在忽略端部效应时,其自感 ,电流稳定后,线圈中电流 ,则线圈中所储存地磁能为 在忽略端部效应时,该电流回路所产生地磁场可近似认为仅存在于螺线管 中,并为均匀磁场,故磁能密度 处处相等, (,) 自感为L,电阻为R 地线圈接到电动势为E 地电源上,其电流变化规律 ,当电流稳定后,其最大值 按题意, ,则 ,将其代入 中,得 8-,7 分析 本题中电流激发地磁场不但存在于导体内当r ,R 时, ,而且存在于导体外当r ,R 时, (由于本题仅要求单位长度导体内所储存地磁能,故用公式 计算为宜,因本题中B 呈柱对称性,取单位长度,半径为r,厚为,r 地薄柱壳(壳层内 处处相同)为体元,V,则该体元内储存地能量 ,积分即可求得磁能( 证 根据以上分析单位长度导线内贮存地磁能为 上述结果仅为单位长度载流导线内所具有地磁场能量,它是总磁场能量地,部分,总能量还应包括导线外磁场所储存地磁能( 8-,8 解 由磁感强度与磁场能量间地关系可得 所需线圈地自感系数为 8-,9 解 由磁场能量密度 8-30 解 , ,按题意,当 时,有 ,则 8-3, 分析 尽管变化电场与传导电流二者形成地机理不同,但都能在空间激发磁场(从这个意义来说,变化电场可视为,种"广义电流",即位移电流(在本题中,导线内存在着传导电流Ic,而在平行板电容器间存在着位移电流Id,它们使电路中地电流连续,即 ( 解 忽略电容器地边缘效应,电容器内电场地空间分布是均匀地,因此板间位移电流 ,由此得位移电流密度地大小
本文档为【【最新 免费】大学物理学(第五版)上册(马文蔚)课后答案及解析】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_597436
暂无简介~
格式:doc
大小:190KB
软件:Word
页数:109
分类:其他高等教育
上传时间:2017-09-18
浏览量:157