首页 聚乙烯工艺描述英文

聚乙烯工艺描述英文

举报
开通vip

聚乙烯工艺描述英文UNIPOL  PE Process Description UNIPOL  PE工艺描述 Table of Contents PROCESS DESCRIPTION 1.1    Contract Plant Composition     1.1.1    PE Process Unit     1.1.2    Supporting Facilities     1.1.3    Auxiliary Facilities 1.2    Process Introduction     1.2.1    Des...

聚乙烯工艺描述英文
UNIPOL  PE Process Description UNIPOL  PE工艺描述 Table of Contents PROCESS DESCRIPTION 1.1    Contract Plant Composition     1.1.1    PE Process Unit     1.1.2    Supporting Facilities     1.1.3    Auxiliary Facilities 1.2    Process Introduction     1.2.1    Description of PE Process Unit     1.2.2    Description of Supporting Facilities     1.2.3    Description of Auxiliary Facilities 目 录 工艺描述 1.1  装置组成       1.1.1 PE 工艺单元       1.1.2 配套设施       1.1.3 辅助设施 1.2  工艺介绍       1.2.1 PE 工艺单元描述       1.2.2 配套设施描述       1.2.3 辅助设施描述 1.1    Contract Plant Composition The Contract Plant produces 300,000 TPY of pelleted Linear Low, Medium, and High Density Polyethylene from ethylene, which may involve the addition of a comonomer (butene-1 or hexene-1) for some Products.  The Contract Plant Battery Limits is represented in the diagram provided in Attachment 11 of this Appendix.  The Contract Plant consists of the following systems. 1.1 合同 劳动合同范本免费下载装修合同范本免费下载租赁合同免费下载房屋买卖合同下载劳务合同范本下载 装置组成 本合同装置是用乙烯为单体,可能会引入丁烯-1  或己烯-1  为共聚单体来生产高、 低、中密度聚乙烯树脂的装置,产能为30 万吨/年。合同装置界区范围见本附件的附录1- 1。本合同装置由下列系统组成: 1.1.1    PE Process Unit The PE Process Unit utilizes Univation Technologies’ UNIPOL™ PE Process, a low pressure gas phase polymerization process, and includes the following process systems:     Raw Material Supply and Purification     Ethylene Purification     Reaction (includes catalyst handling and feeding)     Resin Degassing     Vent Recovery     Seed Bed System     Resin Additive Handling     Pelleting 1.1.1 PE 工艺单元     PE 工艺单元采用 Univation 技术公司的 UNIPOL 聚乙烯技术,这是一种低压气相聚合工艺,包括下列工艺系统:             --原料供给和精制           --乙烯精制             --反应 (包括催化剂处理和进料)             --树脂脱气             --排放气回收             --种子床系统             --树脂添加剂处理             --造粒 1.1.2    Supporting Facilities The Supporting Facilities for the PE Process Unit include the following process systems:     Resin Handling System 1.1.2 配套设施     PE 工艺单元的配套设施包括下列系统:             --树脂处理系统 1.1.3    Auxiliary Facilities The Auxiliary Facilities for the PE Process Unit include the following process systems:     Steam and Condensate Recovery System     Flare Systems     Waste Water Collection and Pretreatment System     Utility Distribution System 1.1.3 辅助设施     PE 工艺单元的工艺辅助设施包括下列系统:             --蒸汽和冷凝水回收系统             --火炬系统           --废水收集和预处理系统             --公用工程配送系统 1.2    Process Introduction The design of the PE Process Unit will incorporate the latest UNIPOL PE Process Know-how.1.2  工艺介绍     山西焦化聚乙烯装置的 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 将采用最新的UNIPOL PE 工艺技术。 1.2.1    Description of the PE Process Unit The PE Process Unit comprises a number of process systems, which are described in detail in the following sections:     Raw Material Supply and Purification (Part 1)     Ethylene Purification (Part 2)     Reaction (Part 4)     Resin Degassing (Part 5A)     Vent Recovery (Part 5B)     Seed Bed System (Part 5E)     Resin Additive Handling (Part 6)     Pelleting (Part 7) Process Flow Diagrams (PFDs) that represent these process systems are provided in Attachment 12 of this appendix. All of the equipment described in the following process description is included in the preliminary equipment list provided in Appendix 5. 1.2.1 PE 工艺单元描述     PE 工艺单元由一系列工艺系统组成,下面对这些系统进行详细描述:           原料的供应和精制 (第1 部分)           乙烯的精制 (第2 部分)           反应 (第4 部分)           树脂脱气 (第5A 部分)           排放气回收 (第5B 部分)           种子床系统 (第5E 部分)           树脂添加剂处理 (第6 部分)           造粒 (第7 部分)     工艺流程图 (PFD)附于本附件的附录1-2。     下面工艺描述中涉及的所有设备见附件5 中的初步工艺设备清单。 Raw Material Supply and Purification (Part 1) Nitrogen and hydrogen are delivered to the Contract Plant Battery Limits by pipeline. Comonomers, butene1 and hexene1, and Induced Condensing Agent (ICA), isopentane, are supplied to the Contract Plant by pipeline.  It has been assumed that sufficient storage capacity is available from the Outside Battery Limits (OSBL) for butene1, hexene1, and ICA. Cocatalyst alkyl is received in shipping containers for use directly in the PE Process Unit. Comonomer Purification A common purification system is provided for the two comonomers - butene1 and hexene1.  Liquid comonomer from the Battery Limits is fed directly into the Comonomer Degassing Column (C1008).  The column, which is mounted on the Comonomer Surge Tank (C1007), is equipped with water cooled Comonomer Condenser (E1009) and steam heated Comonomer Reboiler (E1010).  A small stream of overhead gas, containing stripped light gas contaminants vents to the flare.  The bottom product from the Comonomer Surge Tank passes through Comonomer Cooler (E1011).  The cooler’s primary purpose is to provide adequate NPSH for the Comonomer Charge Pump (G1002 or G1003, an installed spare).  The Comonomer Charge Pump boosts the comonomer pressure to approximately 2,861 kPag (415 psig) for flow into the Reactor.  From the Comonomer Charge Pump, comonomer flows through the Comonomer Dryer (C1004 or C1005) to remove water and other polar impurities from the comonomer stream by physical adsorption.  The molecular sieve beds require periodic regeneration with hot nitrogen.  The spare Comonomer Dryer is used while the other is being regenerated, thus allowing uninterrupted comonomer flow. Nitrogen Purification Nitrogen from the Battery Limits passes through the Nitrogen Preheater (E1108) before entering the Nitrogen Deoxo Vessel (C1109 or C1111).  The Nitrogen Deoxo Vessel contains a fixed bed of free copper catalyst which removes oxygen from the nitrogen stream by oxidation of copper to copper oxides.  The catalyst bed requires periodic regeneration with a stream of hydrogen diluted in hot nitrogen.  Nitrogen leaving the Nitrogen Deoxo Vessel is fed to the Nitrogen Dryer (C1112).  The Nitrogen Dryer contains molecular sieves which remove water and other polar impurities from the nitrogen stream by physical adsorption.  The molecular sieve bed requires periodic regeneration with hot nitrogen.  The spare Nitrogen Dryer is used while the other is being regenerated, thus allowing uninterrupted nitrogen flow. High pressure purified nitrogen is utilized in the Reaction System, while low pressure purified nitrogen is supplied to various places throughout the PE Process Unit.  Purified nitrogen to be compressed for use in the Reaction System is taken from the outlet of the Nitrogen Dryer.  The pressure is boosted by Nitrogen Compressor Package (K1102) to a pressure of about 3,309 kPag (480 psig).  The high pressure purified nitrogen then passes through Purified Nitrogen Filter (Y1114) and flows on to the Reaction System. Hydrogen Purification Hydrogen supply from the Battery Limits is preheated in the Methanator Heater (E1204) before entering the Methanator (C1205).  The Methanator contains a fixed bed of catalyst which converts carbon monoxide and carbon dioxide in the presence of hydrogen to form methane and water.  Hydrogen leaving the Methanator is cooled in the Methanator Aftercooler (E1206) to approximately 40 deg C and is fed to the Hydrogen Dryer (C1207).  The Hydrogen Dryer contains molecular sieves which remove water from the hydrogen stream by physical adsorption.  The molecular sieve bed requires periodic regeneration with hot nitrogen.  The Hydrogen Dryer is bypassed while being regenerated, thus allowing uninterrupted hydrogen flow. Hydrogen from the Hydrogen Dryer is fed to the Reaction System or to the deoxo vessels within the Purification System. ICA Purification The UNIPOL PE Process uses isopentane as an Induced Condensing Agent (ICA) within the Reaction System to enhance heat removal.  Isopentane from the Battery Limits is fed directly to the ICA Degassing Column (C1421).  The column, which is mounted on the ICA Surge Tank (C1406), is equipped with water cooled ICA Condenser (E1422) and steam heated ICA Reboiler (E1415).  A small stream of overhead gas, containing stripped light gas contaminants is vented to flare.  The bottom product from the ICA Surge Tank passes through the ICA Cooler (E1423).  The primary purpose of the cooler is to provide adequate NPSH for the ICA Charge Pump (G1412 or G1413, an installed spare).  The ICA Charge Pump boosts ICA pressure to approximately 3,137 kPag (455 psig) for flow into the Reactor.  From the ICA Charge Pump, the ICA flows through the ICA Dryer (C1419 or C1420) to remove water and other polar impurities from the ICA stream by physical adsorption.  The molecular sieve beds require periodic regeneration with hot nitrogen.  The spare ICA Dryer is used while the other is being regenerated, thus allowing ICA flow to continue through the ICA Purification System. Alkyl Additive T2, an alkyl, is used in Ziegler-Natta catalyzed polymerization and is considered to be a hazardous material in some locations because of its reactive nature.  Purified nitrogen is used to pressure the alkyl from the shipping container to the T2 Feed Pot (C1505) and then to the T2 Charge Pump (G1503 or G1504, an installed spare).  These pumps pressure the alkyl to approximately 3,137 kPag (455 psig) for feed to the Reaction System. All vents from the Additive T2 System are routed to the Seal Pot (C1502) and combined with mineral oil to produce a less reactive solution.  Periodically, the Seal Pot contents are drained to a disposal tank for disposal by an offsite disposal contractor. Mineral oil is pumped from supply drums by Mineral Oil Drum Pump (G1514) to the Seal Pot for dilution of alkyl.  Alternately, the Mineral Oil Drum Pump may be used to transfer mineral oil from the supply drums to the Mineral Oil Blow Tank (C1512).  Mineral oil from the Mineral Oil Blow Tank is used for flushing the Additive T2 System for maintenance. 原料的供应及精制 (第1 部分)     氮气和氢气由管道输送至装置界区内。     共聚单体 (丁烯-1、己烯-1 )及诱导冷凝剂 (ICA) (异戊烷)由界区内的配套设施提供。假定装置界区外有足够的丁烯、己烯及诱导冷凝剂 (ICA)储存。    助催化剂烷基铝用钢瓶直接运至PE 工艺单元。 共聚单体的精制     两种共聚单体——丁烯-1  和己烯-1  共用一个精制系统。来自界区的液相共聚单体直接送入共聚单体脱气塔 (C-1008 )。脱气塔位于共聚单体缓冲罐 (C-1007 )之上,塔顶有一个水冷的共聚单体冷凝器 (E-1009)使共聚单体冷凝,塔底有一个蒸汽加热的共聚单体再沸器 (E-1010 )使共聚单体汽化。塔顶脱除的少量的轻组分塔顶气被排放到火炬。共聚单体缓冲罐的底部产品由共聚单体冷却器 (E-1011)冷却。冷却器的主要目的是为共聚单体进料泵 (G-1002  或 G-1003,其中一个是在线备用泵)提供足够的有效气蚀余量。共聚单体进料泵使共聚单体增压至大约2861kPag(415psig)后进入反应器。来自共聚单体进料泵的共聚单体进入共聚单体干燥器 (C-1004  或 C-1005 ),通过物理吸收作用除去共聚单体物流中的水分和其它极性杂质。分子筛床层需要用热氮气定期再生。当一个共聚单体干燥器进行再生时,就启用备用的共聚单体干燥器,这样可使共聚单体不间 断地流入反应系统。 氮气的精制     从界区来的氮气在进入氮气脱氧罐 (C-1109  或 C-1111 )之前在氮气预热器 (E-1108)中进行预热。氮气脱氧罐含有一个游离铜催化剂的固定床,通过将游离铜氧化成氧化铜而除去氮气中的氧气。催化剂床需要用含有少量氢气的热氮气进行定期再生。离开氮气脱氧罐的氮气进入氮气干燥器 (C-1112 )。氮气干燥器内设有分子筛,通过物理吸收作用除去氮气中的水分和其它极性杂质。分子筛需要用热氮气定期再生。一台氮气干燥器再生时,另外一台备用干燥器启动运行,以保证氮气持续地流入反应系统。     高压精制的氮气用于反应系统,而低压精制的氮气供给整个 PE 工艺单元各个不同地方使用。氮气干燥器的出口的精制氮气经过压缩后即可供反应系统使用。精制氮气由氮气压缩机 (K-1102 )增压至大约 3309  kPag(480psig) 的压力后经由精制氮气过滤器 (Y- 1114)进入反应系统。 氢气的精制     由界区来的氢气进入甲醇转化器加热器(E-1204)预热后,进入甲烷转化器(C-1205)。甲烷转化器内有固定的催化剂床,在氢气的作用下,将一氧化碳和二氧化碳转化成甲烷和水。从甲烷转化器出来的氢气在甲烷后冷器(E-1206)中冷却到大约 40  摄氏度后,进入到氢气干燥器(C-1207)。氢气干燥器中的分子筛可以通过物理吸附的作用,将氢气中的水脱除。分子筛需要使用热氮进行周期性的再生。再生时,氢气干燥器的旁路会打开,以保证氢气连续地流入反应系统。     从氢气干燥器出来的氢气送入反应系统或进入精制系统内的脱氧罐。 ICA 的精制     UNIPOL  PE 工艺采用异戊烷作为诱导冷凝剂以增强反应系统内的除热速率。来自界区的异戊烷直接进入 ICA 脱气塔 (C-1421 )。此塔安装在 ICA 缓冲罐 (C-1406 )之上,塔顶配有水冷的 ICA 冷凝器 (E-1422)使异戊烷冷凝,塔底有一个蒸汽加热的 ICA 再沸器 (E-1415)使异戊烷汽化。含有脱除的轻组分的一小股塔顶气被排放到火炬。从 ICA缓冲罐底部出来后,进入 ICA  冷却器 (E-1423)。冷却器的主要目的是为 ICA 进料泵 (G-1412  或 G-1413,其中一个是在线备用泵)提供足够的有效气蚀余量。ICA 进料泵使 ICA 增压至大约3137kPag  (455psig)  后进入反应器。被送入反应器之前,ICA 要经过ICA 干燥器 (C1419 或 C-1420 )。ICA 干燥器利用分子筛通过物理吸附的方式除去其中的水分和其它极性杂质。分子筛床层需要用热氮气定期再生。当一个 ICA 干燥器进行再生时,就启用备用的ICA 干燥器,这样使ICA 连续地流入反应系统。 Ethylene Purification (Part 2) Ethylene from the Battery Limits passes through the shell of the Ethylene Interchanger (E2105) where it is interchanged with ethylene from the Ethylene CO Removal Vessel (C2107).  The warm ethylene then passes through the Ethylene Preheater (E2106) where it is heated to 100 deg C before entering the Ethylene Deoxo Vessel (C2109) and then the Ethylene CO Removal Vessel.  The Ethylene Preheater is used to achieve the final temperature before entering the Ethylene Deoxo Vessel and for initial heating on plant start-up. The Ethylene Deoxo Vessel contains a fixed bed of free copper catalyst which removes oxygen from the ethylene stream by oxidation of the copper to copper oxides.  This bed requires periodic regeneration with a stream of hydrogen diluted in nitrogen. The Ethylene CO Removal Vessel contains a fixed bed of a copper based adsorbent.  This bed requires periodic regeneration with a stream of oxygen diluted in nitrogen. Ethylene, after leaving the Ethylene CO Removal Vessel, is cooled to approximately 40 deg C in the Ethylene Interchanger before passing through the Ethylene Dryer (C2112 or C2113).  The Ethylene Dryers contain molecular sieves and activated alumina, which remove carbon dioxide, water, and other polar impurities from the ethylene stream by physical adsorption.  The Ethylene Dryer requires periodic regeneration with hot nitrogen.  The spare Ethylene Dryer is used while the other is being regenerated, thus allowing uninterrupted ethylene flow to the Reaction System. Regeneration of Part 1 and Part 2 Purification Beds The various purification beds within Part 1 and Part 2 are regenerated periodically.  The regeneration cycles are controlled with timers and logic interlocks.  Valving is performed manually in the field. Nitrogen from the supply header enters the Regeneration Nitrogen Heater (E2114) on flow control.  The nitrogen is heated by this electric resistance heater to the required temperature for regeneration of the regenerable purification beds in Part 1 and Part 2.  The hot nitrogen flows to the selected bed through distribution piping. The cooling and preload steps of the regeneration cycle for all dryers use low pressure unpurified nitrogen.  The vent stream from the purification bed being regenerated is either flared or vented to atmosphere. 乙烯的精制 (第2 部分)     来自界区的乙烯经过乙烯级间换热器 (E-2105 )的外壳,与来自乙烯 CO  脱除罐 (C-2107 )中的乙烯进行级间换热。升温后的乙烯在进入乙烯预热器 (E-2106)加热到100℃后,进入到乙烯脱氧罐 (C-2109 ),随后进入乙烯CO 脱除罐。乙烯通过乙烯预热器将乙烯加温到最终温度后,进入到乙烯脱氧器,开车的时候也会使用乙烯预热器来进行 预热。     乙烯脱氧罐内有一个游离铜催化剂的固定床,通过将游离铜氧化成氧化铜而除去乙烯中的氧气。这种床需要用氢气稀释的氮气进行定期再生。     乙烯 CO  脱除罐内有一个氧化铜固定床。这种床层要用氧气稀释的氮气进行定期再 生。     从乙烯脱氧罐和乙烯 CO 脱除罐出来的乙烯,经乙烯级间换热器冷却到 40 ℃后,进入乙烯干燥器 (C-2112  或 C-2113 ),乙烯干燥器中含有分子筛和活性氧化铝,这两种 物质通过物理吸附作用除去乙烯物流中的 CO2、水分和其它极性杂质。乙烯干燥器需要用热氮气定期再生。     当一台乙烯干燥器再生时,另一台备用设备启用,这样可使乙烯持续地流入到反应系统。 第一部分和第二部分精制床的再生     第一部分和第二部分精制床需要定期再生。再生的周期由计时器和逻辑内部连锁控制。阀是现场手动操控的。     来自氮气总管的氮气在流量控制下进入再生氮气加热器 (E-2114)。氮气被电阻加热器加热到第 1 部分和第 2  部分中的可再生精制床再生所需的温度。热氮气通过输送管 道进入需再生床层。 所有的干燥器再生时的冷却和预负荷使用低压未精制氮气。精制床再生时产生的排放气或者送入火炬或者排入大气。 Reaction (Part 4) Resin is produced by polymerization of reactants in a fluidized bed reactor at a nominal pressure of 2,413 kPag (350 psig) and nominal temperatures of 80 to 100 deg C.  An externally cooled cycle of reactant gas fluidizes the Reactor bed and removes the exothermic heat of reaction.  Catalyst and purified reactants (ethylene, butene1 or hexene1, and hydrogen) are fed continuously to the Reactor.  Resin flows intermittently from the Reactor through a pair of Product Discharge Systems which operate in a sequentially alternating mode. During the product discharge cycle, some of the entrained reaction gas is transferred to the other discharge system.  This temporarily stored reaction gas is indirectly returned to the Reactor during the next discharge cycle, thereby minimizing the reactor gas released from the Reaction System.  The resin is transported to the Product Purge Bin (C5009 in Part 5A) with the conveying gas being sent on to the Vent Recovery System (Part 5B). Certain modifiers are added to the Reactor for various reasons.  An alkyl (Additive T2) is fed to the Reaction System continuously during Ziegler-Natta catalyzed polymerization.  Another modifier is injected into the Reactor during upset conditions to quickly "kill" the polymerization reaction.  This modifier, a reversible catalyst poison, can be injected through manual or automatic actuation of the Kill System control logic. Resin properties are controlled primarily by the type of catalyst used and by the cycle gas composition.  The type of catalyst determines the molecular weight distribution.  The quantity of comonomer in the cycle gas determines the resin density and the quantity of hydrogen determines the melt index.  The Process Computing System can maintain closed-loop control of these properties by making instantaneous predictions of the resin properties in the Reactor, and adjusting variables as necessary. 反应 (部分4 )     反应物质通常在压力为 2413kPag(350psig)、温度约 80 到 100℃的流化床反应器内发生聚合生产出树脂。通过外部的反应气冷却循环使反应器床流化,同时除去反应热。催化剂和精制的反应物 (乙烯、丁烯-1  或己烯-1  和氢气)连续被送入反应器。树脂从反应器间歇地流入到2 条交替作业的产品卸料系统。     在产品卸料过程中,一些夹带的反应气被送到另一个卸料系统。这些在卸料系统临时储存的反应气在下一个卸料周期间接地返回反应器,这样可以减少反应系统中反应气的损失。树脂被送往产品脱气仓 (第 5A  部分中的 C-5009 ),同时输送气进入排放气回收系 统 (第5B 部分)。    出于各种原因会向反应器加入某些改性剂。当生产齐格勒—那塔树脂时,向反应器内连续地注入烷基铝。在反应出现故障情况时,向反应器内注入另一种改性剂以快速地 “终止”聚合反应。这种改性剂是一种可逆的催化剂毒物,它能通过手动或终止系统逻辑控制的自动启动而注入到反应器。     树脂产品的性质主要由所采用的催化剂的类型和循环气的组成所控制。催化剂的类型决定了分子量的分布。循环气中共聚单体的量决定了树脂的密度,循环气中氢气的量决定了树脂的熔融指数。工艺计算机系统通过对反应器中的树脂性质进行瞬时的预测,同时按需要调整变量,来达到对这些性质的闭路控制。 Reaction System The Reaction System consists of a Reactor (C4001), a Cycle Gas Cooler (E4002A or E4002B, an installed unconnected spare), and a Cycle Gas Compressor (K4003).  The gaseous reactants (a mixture of ethylene, butene1 or hexene1, and hydrogen) and inerts are continuously cycled by the Cycle Gas Compressor through a fluidized bed of resin in which catalyst is injected.  The heat of polymerization is transferred to the cycle gas and removed in the external Cycle Gas Cooler.  If needed, a small amount of cycle gas is vented to the flare via the Product Purge Bin to maintain the proper reactant concentrations in the Reaction System. The Reactor is a skirtsupported cylindrical vessel with a top expanded section for disengagement of particles from the cycle gas stream.  A perforated distributor plate supports the bed of granular resin and distributes gas flow into the bottom of the bed.  Manways are provided at multiple levels to permit access to the Reactor for maintenance. The Cycle Gas Compressor is a singlestage, open wheel, constantspeed, centrifugal compressor.  The cycle gas circulation flow rate is controlled by inlet guide vanes at the suction of the compressor.  The Cycle Gas Compressor is designed to operate utilizing a dry gas seal system. The Cycle Gas Cooler is a single-pass shell and tube heat exchanger.  Cycle gas flows through the tubes and tempered water flows counter-current through the shell.  The Tempered Water System is a temperature controlled recirculation system.  A centrifugal pump, Cycle Water Pump (G4004 or G4005, an installed spare), circulates the tempered water throughout the cooling system.  Varying the amount of tempered water bypassed around the Tempered Water Cooler (E4007) controls the temperature of the tempered water entering the Cycle Gas Cooler.  Adjusting the temperature set point of the Tempered Water System controls the Reactor temperature.  Since the Tempered Water System will see a range of temperatures, an Expansion Tank (D4010) is provided to allow for thermal expansion of the tempered water.  The Tempered Water System is also used to heat the Reaction System when initially starting up.  The tempered water is temporarily used as a heating medium when steam is introduced to the Tempered Water System via a sparger. Reactor pressure is controlled by varying the ethylene feed rate.  The ratios of comonomer and hydrogen to ethylene are measured by an on-line cycle gas analyzer, and the flows are automatically controlled as necessary to maintain the required cycle gas composition. Before startup, granular polyethylene resin must be charged into the Reactor to provide a reaction bed.  The resin will be charged to the Reactor through a nozzle near the top of the straight side of the Reactor.  The conveying line to the Reactor provides for transfer of resin from the Seed Bed Resin Storage Bin (Part 5E). The polymerization reaction can be stopped or slowed down by the introduction of a modifier (Modifier C) into the Reaction System.  The Kill System consists of cylinder bottles containing the modifier and a system of distribution piping and air operated valves designed to inject the modifier into the cycle gas piping when the Kill System logic is actuated in one of the following scenarios:     A kill is initiated manually or automatically by high Reactor bed temperature.  The modifier is circulated and mixed through the Reaction System by the cycle gas flow, thereby deactivating the catalyst in the bed.     A kill is automatically initiated by a loss of cycle gas flow for reasons other than a Cycle Gas Compressor shutdown for mechanical protection.  The modifier is injected into the cycle gas piping while the cycle gas is vented through the Cycle Gas Turbine (KT4003) to the flare.  The Cycle Gas Turbine drives the Cycle Gas Compressor at a reduced speed, circulating and mixing the modifier through the Reaction System, thereby deactivating the catalyst in the bed. 反应系统     反应系统由反应器 (C-4001 )、循环气冷却器 (E-4002A 或 E-4002B,一个备用,非连接)和循环气压缩机 (K-4003 )组成。气态反应物 (乙烯、丁烯-1  或己烯-1 ,和氢 气的混和物)和惰性组分在循环气压缩机的压送下连续地循环通过注入有催化剂的树脂流化床。聚合反应的反应热由循环气带出并被外部的循环气冷却器除去。如果需要的话,少量的循环气可通过产品脱气仓排放到火炬,以此来保持反应系统内适当的反应物浓度。反应器是一个圆柱状带裙座设备,顶部带有一个膨胀的部分以分离循环气中的固体颗粒。一个多孔的分布板支撑树脂粉料床,气体经分布板分布后流入床层底部。有不同标高的人孔,以备检修人员能进入反应器。     循环气压缩机是一个单级、开式叶轮、恒速、离心式压缩机。压缩机入口的导向叶片控制循环气的循环速率。循环气压缩机的设计是在干气体密封系统的条件下运行。     循环气冷却器是一个单程的管壳式换热器。循环气走管程,同时调温水逆流走壳程。调温水系统是一个控制温度的再循环系统。通过离心式调温水泵 (G-4004,G-4005,一个备用)使得调温水在冷却系统中循环。改变调温水冷却器 (E-4007)旁路调温水的速率控制进入循环气冷却器的调温水的温度。调节调温水系统的温度设定点来控制反应器温度。因为调温水系统温度不是一个固定值,而是一个温度范围,设置一个膨胀罐 (D-4010 )使调温水适应不同的热胀。调温水系统也用于在装置初始开车时加热反应系统。当蒸汽通过喷雾器送入到调温水系统时,调温水可作为临时热媒。     反应器压力通过改变乙烯进料速率来控制。共聚单体和氢气与乙烯的比例通过循环气在线分析仪来测量,流量根据需要的循环气体组成自动控制。     装置开车前,必须向反应器装入聚乙烯树脂粉料来作为种子床。树脂通过反应器垂直段上部的管嘴加入反应器。树脂通过专用的风送线从种子床树脂储仓 (第 5E 部分)输送到反应器。     可通过注入改性剂 C  来终止聚合反应或使聚合反应减慢。终止系统包括终止剂钢瓶、输送管道以及用来将终止剂注入循环气管道的气动阀。当以下几种工况发生时,终止系统逻辑将会启动:         终止系统可手动启动也可在反应器床温过高时自动启动。改性剂通过循环气物流在反应系统内循环和混合,这样就可将反应器床层的催化剂脱活。         终止系统除了在循环气压缩机机械故障停车时自动启动外还可在循环气流量降低时自动启动。当循环气通过循环气透平 (KT-4003 )排至火炬时,改性 剂被注入循环气管道。循环气透平以逐渐越小的速率驱动循环气压缩机,改性剂在反应系统内循环和混合,这样就可将反应器床层的催化剂脱活。 Catalyst Handling and Feeding – Slurry Catalyst Ziegler-Natta catalyzed resins are produced using a slurry catalyst.  Slurry Catalyst is prepared by mixing catalyst precursor with reducing agents.  Catalyst precursor slurry is received in reusable shipping cylinders. Prior to unloading, the precursor shipping cylinders are rolled to ensure the solids are completely suspended in the mineral oil.  A Cylinder Roller (S4060) is provided for this purpose. The rolled cylinders are immediately transported from the storage area to the slurry precursor supply area.  The precursor slurry is pressured out of the shipping cylinder with nitrogen to the Slurry Feed Tank (C4050).  The precursor slurry is continuously stirred by Slurry Feed Tank Agitator (Y4052) in the Slurry Feed Tank to ensure that solids are well dispersed and maintained in suspension. The reduction of the precursor slurry requires the addition of Additive T3 and Additive DC.  These additives are received in shipping containers diluted in mineral oil. Additives T3 and DC are pressured out of shipping containers with nitrogen to their respective Feed Pots (C4067 and C4065).  The feed pots provide a small surge volume which allows continuous operation during changeover of shipping containers. The precursor slurry from the Slurry Feed Tank is pumped by the variable speed controlled Slurry Feed Pump (G4051 or G4055 an installed spare) either in recirculation mode back to the Slurry Feed Tank or injection mode into the Reactor.  The precursor slurry flow is measured by a mass flow meter. The DC Feed Pump (G4053), T3 Feed Pump (G4054), and common installed spare T3/DC Feed Pump (G4058), are provided for the continuous pumping of Additive DC and Additive T3 from the respective Feed Pot to the precursor line downstream of the Slurry Feed Pump.  The additive flows are measured by mass flow meter and are flow controlled based on the precursor slurry mass flow. Additive DC and Additive T3 are injected into the precursor stream at separate injection points.  Additive T3 injects into the precursor stream immediately downstream of the Slurry Feed Pump.  The T3/precursor mixture flows to the T3 Residence Time Pot and Agitator (C4056) where it is given time to react.  Additive DC injects into the T3/precursor stream exiting the T3 Residence Time Pot.  Reaction continues in the DC Residence Time Pot and Agitator (C4057).  The reduced catalyst is sent to the Reactor.  A carrier agent, high pressure purified nitrogen, is provided to assist injection of the slurry into the Reactor. 催化剂处理和加料添加---- 淤浆催化剂     生产齐格勒-那塔聚乙烯树脂时,用的是淤浆催化剂。淤浆催化剂由原质催化剂和还原剂混和制得。原质催化剂淤浆存储在可重复使用的钢瓶中。 在卸料前,要滚动原质催化剂输送钢瓶以确保固体完全悬浮在矿物油中。设置钢瓶滚瓶机 (S-4060 )来实现此目的。     滚动后的钢瓶快速从储存区传送至催化剂供应区。用氮气将原质浆液从钢瓶中压至淤浆进料罐 (C-4050 )。淤浆进料罐搅拌器 (Y-4052 )连续搅拌以保证固体很好地分散,并保持在悬浮状态。     原质浆液需要加入添加剂 T3 和添加剂 DC 还原。这些添加剂稀释于矿物油中存储在钢瓶中。     氮气将添加剂 T3  和添加剂 DC  从钢瓶中压出送入各自的进料罐 (C-4067  和 C-4065 )。进料罐设计有一个小的缓冲空间,以实现在更换钢瓶时系统仍能连续操作。     淤浆进料罐中的原质浆液由可变速控制的淤浆进料泵 (G-4051  或 G-4055,一个在线备用)或者以再循环模式重新返回淤浆进料罐或者以注入模式送入反应器。原质浆液流率由质量流量计测量。     DC 进料泵 (G-4053 )、T3 进料泵 (G-4054)和它们共用的备用泵T3、DC 进料泵(G-4058 )用于将添加剂T3 和添加剂DC 连续不断的从它们各自的进料罐送入淤浆进料泵下游的原质浆液线。烷基铝的流量由质量流量计测量,其流量根据原质浆液的质量流率来控制。     添加剂 T3 和添加剂 DC 从不同的注入点注入原质浆液线。添加剂 T3 在紧靠淤浆进料泵下游处注入原质浆液线。T3  和原浆的混和物流入 T3  停留罐和搅拌器 (C-4056 ),并在那里进行反应。添加剂 DC 注入从 T3 停留罐出来的T3 和原浆的混和物流。反应在DC 停留罐和搅拌器 (C-4057 )中继续进行。还原后的催化剂送入反应器。作为输送气的高压精制氮气可协助将浆液注入到反应器。 Catalyst Handling and Feeding – Mineral Oil Flush System A mineral oil flush system is provided to facilitate periodic flushing of all lines and equipment within the Slurry Catalyst System.  Mineral oil used for flushing is pumped from drums with the Mineral Oil Drum Pump (G4068), into the Mineral Oil Blow Tank (C4069), where nitrogen is used to pressure the mineral oil throughout the system.  Precursor lines and equipment will be flushed directly to a portable Slurry Disposal Tank.  Additive T3 and Additive DC lines and equipment will be flushed to the Seal Pot (C4045), and then drained into the portable Seal Pot Disposal Tank.  A Disposal Tank Scale (S4064) is provided to monitor the level of the Seal Pot Disposal Tank and Slurry Disposal Tank contents.  Periodically, the contents of the Seal Pot Disposal Tank and the Slurry Disposal Tank are sent to an offsite disposal contractor for disposal. 催化剂处理和加料系统----矿物油冲洗系统     矿物油冲洗系统用于定期冲洗淤浆催化剂系统内的所有管线及生产设备。用于冲洗的矿物油由矿物油卸料泵 (G-4068 )从矿物油桶送入矿物油排放罐 (C-4069 ),使用氮气输送矿物油到整个系统。原质浆液的管线和设备经过冲洗后,废矿物油会直接排到一个便携式的淤浆处置罐内。添加剂 T3 ,添加剂 DC,的管线及设备经过冲洗后,废矿物油进入密封罐 (C-4045 ),之后被排入便携式的密封罐处置罐。处置钢瓶秤 (S-4064 )用于监测密封罐处置钢瓶及淤浆处置罐的液位和物质。密封罐处置罐中的物质和淤浆处置罐中的物质会定期地送到厂外废物处理承包商那进行处理。 Catalyst Handling and Feeding – Dry Catalyst Fully formulated dry catalyst is fed to the Reactor by two (2) Modular Catalyst Feeders (V4036 and V4037) which are of proprietary Univation design.  The Modular Catalyst Feeders are sufficient to meet design capacity.  High pressure purified nitrogen conveys catalyst from the Modular Catalyst Feeder into the Reactor.  A Catalyst Hold Tank (C4040 and C4041) is located directly above the Modular Catalyst Feeder reservoir.  Catalyst is charged to the Catalyst Hold Tank by dense phase conveying with high purity nitrogen from the catalyst shipping container via a catalyst hose station.  Catalyst flows by gravity from the Catalyst Hold Tank into the Modular Catalyst Feeder reservoir when needed.  Unused catalyst can be conveyed from the feeders to the Catalyst Vent Filter (Y4901) or directly to shipping containers for future use or disposal.Personnel exposure to catalyst during maintenance on the Modular Catalyst Feeders will be minimized by use of a vacuum system.  The vacuum system consists of the Catalyst Vent Filter and an ejector.  An air-nitrogen mixture is used to deactivate some catalyst types in the Modular Catalyst Feeder prior to transferring to the Catalyst Vent Filter.  Catalyst from the filter is then dumped by gravity to a container for disposal.催化剂的处理和加料---- 干催化剂     可直接使用的干催化剂由 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 的两个催化剂加料器 (V-4036  和 V-4037 )送入反应 器,这是 Univation  的专利设备。标准的催化剂加料器足以满足设计产能的要求。高压精制氮气将催化剂从催化剂加料器压送入反应器。催化剂停留罐 (C-4040  和 C-4041 )就位于催化剂加料器之上。催化剂由高纯度氮气经催化剂软管站从催化剂钢瓶中以密相输送的形式送入催化剂停留罐。当需要时,催化剂就靠重力从停留罐进入催化剂加料器。没用完的催化剂从催化剂加料器送至催化剂排放过滤器 (Y-4901 )或直接进入钢瓶以备将来使用或处理。     在催化剂加料器检修期间,采用真空系统已尽量减少维修人员与催化剂的接触。真空系统由催化剂排放过滤器和喷射器组成。使用空气—氮气的混和物来使某些种催化剂在进入催化剂排放过滤器之前就在催化剂加料器中脱活。从过滤器出来的催化剂由重力作用卸入处置罐。 Reactor Static Control (RSC) A Reactor Static Control (RSC) injection system is provided to introduce small quantities of an RSC agent into the Reactor using a nitrogen feed.  Injection in the Reactor is accomplished by saturating a small nitrogen stream with an RSC agent and injecting it into the reaction cycle downstream of the Cycle Gas Cooler.  The amount of RSC agent added to the Reaction System is controlled by varying the flow of the nitrogen. Conditions that can lead to agglomeration of the resin in the Reactor are known and can be recognized in advance by means of the instruments provided for monitoring Reactor variables.  In such cases, appropriate action by the operator can prevent the formation of any significant agglomerates.  During the training of operators by Univation, emphasis is placed on recognizing the significance of the information given by the instruments and on understanding the appropriate actions. 反应器抗静电 (RSC)     反应器抗静电 (RSC)注入系统是用氮气向反应器中引入少量的抗静电剂 RSC。向反应器注入抗静电剂 RSC 是通过用饱和的小股氮气来实现的,并从循环气冷却器的下游注入反应循环。通过改变氮气流量来控制加入反应系统的抗静电剂 (RSC)的量。     导致反应器内树脂结块的原因众所周知,可在反应器结块之前通过仪表监测反应器变量提前知道。在监测到反应器变量有问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 的情况下,操作人员适当的操作能避免重大结块现象的发生。Univation 在操作人员 培训 焊锡培训资料ppt免费下载焊接培训教程 ppt 下载特设培训下载班长管理培训下载培训时间表下载 期间,培训重点就是教操作人员读懂仪表所给出重要的信息并了解可以采取哪些适当的操作。 Product Discharge System (PDS) The Reactor has one (1) pair of systems for removing product from the Reactor.  Each pair consists of two (2), two-stage Product Discharge Systems (PDSs).  Normally, the PDS operates in a "crosstied, alternating sequence" mode.  However, the PDS may be operated by itself while maintenance is being performed on the other.  In the "crosstied, alternating sequence" mode, gas is transferred between PDS vessels to reduce the amount of monomer leaving the Reaction System. Each PDS consists of a Product Chamber (C4101 and C4106) and a Product Blow Tank (C4103 and C4108). Granular resin and reaction gas are discharged intermittently to the Product Chamber from the Reactor.  The resin and gas separate in the Product Chamber.  The gas is vented to the top of the Reactor as it is displaced by additional resin. The resin flows by gravity from the Product Chamber to the Product Blow Tank, from which it is high pressure conveyed (dense phase) to the Product Purge Bin (C5009), using the pressurized gas entrained with the resin in the Product Blow Tank and recycle gas from the Vent Recovery System High Pressure Accumulator (C5210) or nitrogen, if required. The PDS cycle is initiated automatically when the Reactor bed reaches a preset level. 产品卸料系统 (PDS)     反应器有一对用于将产品排出反应器的系统。每对包含有两条两级产品卸料系统(PDSs )。正常情况下,两条卸料系统以 “交叉的、交替作业的模式”进行操作。但是,当一条卸料系统进行检修时,另一条卸料系统也可以单独操作。在 “交叉的、交替作业的模式”中,气体在PDS 罐之间转移以减少离开反应器的单体的量。     每条卸料系统由一个产品室 (C-4101 和C-4106 )和一个产品排放罐 (C-4103 和C- 4108 )组成。 粉料树脂和反应气间歇地从反应器排入产品室。树脂和反应气在产品室中分离。当气体被排下来的树脂替换时,气体被排入反应器顶部。 树脂依靠重力从产品室落到产品排放罐中,再从产品排放罐高压输送 (密相输送)到产品脱气仓 (C-5009 )中。如果需要,输送气体采用来自产品排放罐中夹带有树脂的压力气体和排放气回收系统高压收集器 (C-5210 )的循环气或是氮气。     当反应床床体高度达到预设定值时,卸料系统循环自动启动。 Resin Degassing (Part 5A) Resin conveyed from the Product Discharge System is received in the Product Purge Bin (C5009).  The Product Purge Bin is a mass flow bin that provides a minimum residence time of approximately two plus (2+) hours for purging dissolved hydrocarbons from the resin.  The Product Purge Bin operates at a pressure only slightly above atmospheric, less than 35 kPag (5 psig).  The resin temperature remains close to that in the Reactor.  Resin flows by gravity from the Product Purge Bin to the Pelleting System (Part 7) which is located in the same structure and below the Product Purge Bin. The Product Purge Bin consists of two sections  the upper section for purging of hydrocarbons and the lower section for hydrolyzing any residual alkyls present in Ziegler-Natta catalyzed resins. Purging of dissolved hydrocarbons from the resin is achieved by injecting nitrogen in the upper section of the bin.  Resin flows down through the Product Purge Bin, with minimum backmixing, and nitrogen flows up through the resin.  The residence time required for adequate purging is maintained by controlling the resin level within a predetermined range in the upper section of the bin.  The level is controlled by the speed of the Product Purge Bin Rotary Feeder (S5011).  The nitrogen, conveying gas, and hydrocarbons evolved from the resin, exit the top of the Product Purge Bin through the Product Purge Bin Filter (Y5010).  The filter outlet stream is routed to the Vent Recovery System (Part 5B).  The resin exiting the bottom of the Product Purge Bin contains only a trace amount (less than 40 ppmw) of dissolved hydrocarbons such that all safety and environmental considerations have been satisfied. A portion of the capacity of the upper section of the Product Purge Bin is provided as surge capacity, approximately three (3) hours, to permit accumulation of resin during routine short maintenance outages of the Pelleting System.  This surge capacity permits continued operation of the Reactor at normal rates during such outages. Nitrogen is humidified with steam and enters the lower section of the Product Purge Bin to hydrolyze any residual alkyls that may be present in Ziegler-Natta catalyzed resins.  The moist nitrogen rises up through the lower section, hydrolyzing any residual alkyl present.  The nitrogen from this lower section is removed as a side stream from the Product Purge Bin and vented to the flare after passing through the Low Product Purge Bin Filter (Y5019). Resin leaving the Product Purge Bin passes through the Product Purge Bin Rotary Feeder which has the ability to shear any agglomerated resin that may have been formed during abnormal Reactor operation. Resin from the Product Purge Bin Rotary Feeder flows by gravity through the Particle Screener (Y5012), where any oversized material is separated from the resin.  The resin continues by gravity flow to the Resin Additive Handling System (Part 6), while the oversized agglomerates are discharged to a scrap hopper located at grade. The process design provides the capability to recirculate resin in the Product Purge Bin during instances when the Pelleting System is off-line for an extended period of time.  Resin from the Particle Screener flows by gravity through the Granular Resin Surge / Vent Hopper (D6210).  From this hopper the resin can flow to the PPB Recirculation System (S5040).  The PPB Recirculation System is a packaged dense phase transfer system used to convey the resin to the top of the Product Purge Bin. 树脂脱气 (第5A 部分)     树脂从产品卸料系统排入产品脱气仓 (C-5009 )中。产品脱气仓是一个质量流仓,能提供大约 2  个多小时的停留时间,以脱除溶解于树脂中的烃类。产品脱气仓的操作压力仅比大气压稍微高一些,小于 35  kPag  (5psig )。树脂温度始终接近于反应器温度。树脂依靠重力从产品脱气仓流入位于同一钢结构内产品脱气仓下方的造粒系统 (第 7  部 分)。     产品脱气仓由两部分组成——上部分用于脱除烃类,下部分用于水解残留在齐格勒-那塔为催化剂的树脂中的烷基铝。     通过向产品脱气仓的上部分注入氮气来脱除溶解于树脂中的烃类。树脂从产品脱气仓中向下流,返混量很小,氮气由下至上通过树脂。通过将脱气仓上部分树脂料位控制在预定范围内来控制充分脱气所需的停留时间。料位由产品脱气仓旋转加料器 (S-5011 )的转速控制。氮气、输送气和从树脂中脱除的烃类经产品脱气仓过滤器 (Y-5010 )从产品脱气仓顶部排出。过滤器出口物流进入排放气回收系统 (第 5B 部分)。离开产品脱气仓底部出来的树脂仅含有痕量的烃类 (小于40ppmw ),已达到安全与环保的要求。     产品脱气仓上部的部分空间用于缓冲,以允许在造粒系统短时间机械维护时,允许约3 小时的树脂的积聚。这部分缓冲空间可使反应器在上述情况下以正常速率连续操作。     氮气与蒸汽混合加湿后,进入脱气仓底部以水解齐格勒-纳塔催化树脂中残留的烷基铝。湿氮气从脱气仓底部向上穿过,水解残留的烷基铝。从下部进来的氮气作为侧流从产品脱气仓经产品脱气仓下部过滤器 (Y-5019 )排至火炬。     离开产品脱气仓的树脂进入产品脱气仓旋转加料器,在其中可以将在反应器非正常操作下形成的树脂结块切碎。     树脂由产品脱气仓旋转加料器依靠重力经过一个粒子筛 (Y-5012 )除掉树脂粉末中所有的大颗粒物质,之后树脂依靠重力流入到树脂添加剂处理系统 (第 6  部分),同时筛出的大块结块排放到在同一水平面上的废品料斗。     在造粒系统延长停车时间的情况下,工艺的设计可使树脂在产品脱气仓中循环。树脂靠重力作用经粒子筛后通过树脂缓冲/排放料斗 (D-6210)进入到 PPB  再循环系统 (S- 5040 )。PPB 再循环系统是密相输送系统,能将树脂输送到产品脱气仓顶部。 Vent Recovery (Part 5B) The Vent Recovery System is utilized to improve the overall monomer efficiency by recovering comonomer (butene1 or hexene1) together with ICA from the Product Purge Bin (C5009) vent stream.  In addition, it is utilized to reduce nitrogen consumption by recycling nitrogen (and light hydrocarbons) also contained in the Product Purge Bin vent to the Product Discharge System, where it is utilized as a conveying assist gas. The vent gas leaving the Product Purge Bin Filter (Part 5A) is filtered by the Inlet Guard Filter (Y5223 or Y5224, an installed spare) and cooled by the Low Pressure Cooler (E5217) to at least 40 deg C.  Any condensate formed is collected in the Low Pressure Accumulator (C5202).  Liquid is fed to the Interstage Accumulator (C5226) by the Low Pressure Condensate Return Pump (G5212).  The gas is then compressed by the first stage of the Vent Recovery Compressor (K5206) to a pressure around 330 kPag (48 psig). The gas is then cooled to at least 40 deg C by the Interstage Cooler (E5227).  Any condensate formed is collected in the Interstage Accumulator.  Liquid is returned to the Reactor feed system by the Interstage Condensate Return Pump (G5225 or G5228, an installed spare).  The gas vented by the Interstage Accumulator is compressed by the second stage of the Vent Recovery Compressor to approximately 1,620 kPag (235 psig). The gas is cooled by the High Pressure Cooler (E5208) and High Pressure Condenser (E5209) and any condensate formed is collected in the High Pressure Accumulator (C5210).  The High Pressure Condensate Return Pump (G5215 or G5216, an installed spare) returns the condensate to the Reactor feed system.  The gas vented from the High Pressure Accumulator is used to assist in the dense phase conveying of product from the Product Blow Tanks in the Product Discharge System (Part 4) to the Product Purge Bin (Part 5A), with the excess being flared. The Low Pressure, Interstage, and High Pressure Coolers use cooling water to cool the process to 40 deg C or less.  The High Pressure Condenser uses a -20 deg C ethylene glycol and water mixture as a secondary refrigerant to cool the process to approximately -10 deg C.  The secondary refrigerant is cooled by the package Vent Recovery Refrigeration System (V5214). 排放气回收 (第5B 部分)     排放气回收系统是用来回收产品脱气仓 (C-5009 )排放气中的共聚单体 (丁烯-1  和己烯-1 )和 ICA,这样可提高单体的总利用率。此外,通过将产品脱气仓中的氮气 (和轻烃)送入到产品卸料系统作为助输送气使用,使其得以循环利用,同时降低了氮气的消耗量。     离开产品脱气仓过滤器 (第 5A  部分)的排放气经入口保护过滤器 (Y-5223  或 Y- 5224,一台为在线备用)过滤后,在低压冷却器 (E-5217)中被冷却到至少 40 ℃。形成的冷凝物收集在低压集液器 (C-5202 )中。液体通过低压凝液返回泵 (G-5212 )送入到级间集液器 (C-5226 )。随后,气体经排放气回收压缩机 (K-5206 )一级压缩后升压至大约330 kPag  (48psig )。     随后,气体被级间冷却器 (E-5227)冷却到至少 40 ℃。形成的冷凝物收集在级间集液器 (C-5226 )中。液体通过级间凝液返回泵 (G-5225  或 G-5228,一台为在线备用)返回到反应器进料系统。由级间集液器排出的气体经排放气回收压缩机二级压缩后升压至大约1620 kPag  (235psig )。     气体由高压冷却器 (E-5208)和高压冷凝器 (E-5209)进行冷凝,所形成的高压冷凝液收集在高压集液器 (C-5210 )中。冷凝液经高压凝液返回泵 (G-5215  或 G-5216,一台为在线备用)返回到反应器进料系统。从高压集液器中排出的气体可作为密相输送中的辅助输送气,将产品从产品卸料系统的产品排放罐输送到产品脱气仓,多余的气体排入火炬烧掉。     中间和高压冷却器使用冷却水将工艺物流温度冷却到 40 ℃以下。高压冷凝器用-20℃ 的乙二醇和水的混合物作二级制冷剂,将工艺物流温度冷却到大约-10 ℃。二级制冷剂由成套的排放气回收制冷系统 (V-5214 )进行冷却。 Seed Bed System (Part 5E) The seed bed storage facilities include granular resin conveying, storage, and charging to the Reactor in the PE Process Unit. Granular resin for seed bed storage is taken from the Granular Resin Surge / Vent Hopper (Part 6) downstream of the Particle Screener (Part 5A).  Granular resin is diverted from the outlet flow of the Granular Resin Surge / Vent Hopper through a series of diverter valves to the Seed Bed Conveying System Rotary Feeder (S5631) which controls the flow of resin to a once-through nitrogen dilute phase conveying system.  The resin is conveyed to any of the Seed Bed Resin Storage Bins. A total of three (3) Seed Bed Resin Storage Bins (D5641, D5642, and D5643) are provided.  Each bin will have the capacity to hold one Reactor seed bed. Seed bed resin is stored in the Seed Bed Resin Storage Bin until it is needed.  The Seed Bed Resin Storage Bin is uninsulated to promote heat dissipation to the surroundings.  A nitrogen purge is maintained on the bin to keep resin dry and oxygen free. Seed bed resin gravity flows from the Seed Bed Resin Storage Bin to the Seed Bed Rotary Feeder (S5661, S5662, or S5663) which controls the feed flow of seed resin to the conveying system pick-up.  The Seed Bed Rotary Feeder is vented through the Seed Bed Resin Storage Bin Filter (Y5651, Y5652, or Y5653) to promote free flow of resin through the feeder.  From the pick-up, seed bed resin is nitrogen conveyed from the Seed Bed Resin Storage Bin to the Reactor through a piping connection which is isolated by valving and slip-blind from the Reactor when not in use for resin charging.  Seed bed resin in the Seed Bed Storage Bin can be recirculated by using the Seed Bed Resin Reactor Charge Diverter Valve (Y5691) in the nitrogen conveying system used to convey seed bed resin to the Reactor.  The Seed Bed Resin Recirculation Diverter Vale (Y5682 or Y5683) is used to direct the resin being recirculated to the Seed Bed Resin Storage Bin. The Seed Bed Resin Storage Bin is not washed on a routine basis.  In order to minimize product cross-contamination, bin filter bags are changed out between sensitive product runs and the bin is manually vacuum-cleaned with a wand from access manways located near the bin bottom.  The bin is also designed and fabricated to minimize ridges, ledges, or any other potential catch points for resin to accumulate.  Extra nozzles are provided on the bin for water washing. A temporary system consisting of a hopper and rotary feeder is used for transferring the initial seed bed from bags or Supersacks to the Seed Bed Resin Storage Bins.  The bags are manually dumped into a hopper, through a rotary feeder, and conveyed with nitrogen to the Seed Bed Resin Storage Bins. 种子床系统 (第5E 部分)     种子床树脂储存设施包括粉料树脂输送、存储和向在PE 工艺单元的反应器内加料。     用于种子床存储的粉料树脂来自于粒子筛 (第5A 部分)下游的粉料树脂缓冲/排放料斗 (第 6  部分)。粉料树脂通过一系列的换向阀从粉料树脂缓冲/排放料斗出口流入到种子床输送系统的旋转加料器 (S-5631 ),以控制到单程的氮气稀相输送系统的树脂流量。树脂在输送到任何一台种子床树脂料仓。     共有3 台种子床树脂料仓 (D-5641、D-5642、D-5643)。每台料仓可储存一台反应器所需的种子床的量。种子床树脂在被使用之前一直储存在种子床树脂储存料仓内。种子床树脂储存料仓不 需要用保温以促进向周围环境散发热量。用氮气吹扫系统来维持料仓内树脂的干燥和防止被氧化。     种子床树脂料仓储存内的种子床树脂靠重力流进入种子床树脂旋转加料器 (S- 5661、S-5662、S-5663 ),并由旋转加料器控制进入到风送系统的种子床树脂的流量。种子床树脂旋转加料器通过种子床树脂料仓过滤器 (Y-5651 、Y-5652 、Y-5653 )进行放空以保证树脂能顺畅的通过旋转加料器。从加料点开始,使用氮气风送系统将种子床树脂从种子床树脂料仓送到反应器内,在种子床树脂加料线不工作时,此条加料线与反应器之间的管道通过阀门和滑板进行隔断。种子床树脂料仓内的种子床树脂可以通过氮气风送系统,经种子床树脂反应器加料换向阀 (Y-5691 ),将树脂输送回反应器,来实现再循环。种子床树脂再循环换向阀 (Y-5682 或Y-5683 )会将再循环的树脂物流送到种子床树脂料仓内。     种子床树脂料仓通常不需要进行定期冲洗。为尽量地减少产品交叉污染,在生产比较敏感的产品时要换掉料仓上的过滤袋,同时工人从料仓底部的人口进入到料仓内进行吸尘清洁。料仓的设计和制造尽量避免有梁、柱以及其它的能导致树脂聚集的结构。料仓上设置有连接冲洗水的接口。     由一台料斗和旋转加料器组成的临时系统,将袋装的初次充填的种子床树脂从袋子或大袋包装中输送到种子床树脂料仓内。采用人工的方式将袋装树脂加入到料斗内,通过旋转加料器由氮气输送到种子床树脂料仓内。 Resin Additive Handling (Part 6) Resin from the Particle Screener below the Product Purge Bin drops by gravity to the Granular Resin Surge / Vent Hopper (D6210).  From the Granular Resin Surge / Vent Hopper, resin flows by gravity through the Granular Resin Diverter Valve (Y6201) to the Granular Feeder (S6211), which measures the flow of resin and provides a ratio control signal for addition of product formulation additives.  From the Granular Feeder, resin flows to the Resin/Additive Conveyor (S6220) where additives are introduced.  From the Resin/Additive Conveyor, the granular resin flows by gravity to the Mixer Feed Hopper and Vent Filter (Y6260) and on to the Pelleting System.  The Granular Resin Diverter Valve is also used to divert granular resin to the Product Purge Bin Recirculation System (Part 5A). Solid additives are fed to the Pelleting System directly via the neat additive system.  Typically five (5) dump station/surge hoppers and five (5) loss-in-weight feeders are provided.  The surge hoppers are filled with the different additives necessary for the finished product.  Each storage hopper is connected to a loss-in-weight additive feeder.  Both are mounted on load cells for greater accuracy. Solid additives are received in bags or drums and are transferred to the additive level in the structure using the Additive Lift (S6225).  Using bulk handling equipment (S6226, S6227, and S6228), the solid additives are then deposited into the Bag Dump Station / Dump Hopper (Y6231 through Y6235).  The solid additives that are stored in the Bag Dump Station/Dump Hoppers flow by gravity to the Additive Surge Bin (D6236 through D6240), then to Solid Additive Feeders (S6241 through S6245) where they are metered by ratio control based on the Granular Feeder mass flow rate.  From the feeders, the additives flow by gravity to the Resin/Additive Conveyor where they are combined with the main granular resin stream before entering the Mixer Feed Hopper and Vent Filter. The process design will be capable of utilizing talc as an additive.  Talc is received in bulk bags and emptied using a Bulk Bag Discharger (S6253) into the Talc Surge Bin (D6250).  From the Talc Surge Bin, the talc flows by gravity to the Talc Feeder (S6246) where it is metered by ratio control based on the Granular Feeder mass flow rate.  To assist the flow of talc from the Talc Surge Bin, the Talc Surge Bin Discharger (S6252) operates while the Talc Feeder is refilled.  From the feeder, the talc flows by gravity to the Resin/Additive Conveyor where it is combined with the main granular resin stream before entering the Mixer Feed Hopper and Vent Filter.  The Talc Feeder is dedicated only to talc; i.e., no other additive is fed using this feeder.  Talc is fed to the conveyor last, prior to the conveyor outlet.  The Talc Surge Bin Filter (Y6251) is provided for dust control. Granular resin for seed bed storage is taken from the Granular Resin Surge / Vent Hopper and directed through a diverter valve to the Granular Resin Diverter Valve (Y6216) which directs the resin to the Seed Bed Conveying System Rotary Feeder (Part 5E). 树脂添加剂处理 (第6 部分)     树脂通过产品脱气仓下面的粒子筛后靠重力作用下落,进入粉料树脂缓冲/排放料斗(D-6210)。从粉料树脂缓冲/排放料斗依靠重力作用,  通过粉料树脂换向阀 (Y-6201 )进入到粉料树脂旋转加料器 (S-6211 ),粉料树脂加料器可以测量树脂的流量并为产品配方添加剂的添加提供一个比率控制信号。经过粉料加料器后,树脂依靠重力作用进入到树脂/添加剂传送带 (S-6220 ),添加剂在此处加入。从树脂/添加剂传送带,粉料树脂依靠重力流入混炼机进料料斗和排放气过滤器 (Y-6260 )之后进入造粒系统。另外,粉料树脂换向阀可用于将粉料树脂送至PPB 再循环系统 (第5A 部分)。     固体添加剂经干净的添加剂系统直接加入到造粒系统。一般包括五个倒袋站/缓冲料斗和五个失重加料器。最终产品所用的不同添加剂装在不同的缓冲料斗中。每个储存料斗都与失重添加剂加料器相连。为了更精确的测量,两个都安装上了电子测量元件。     固体添加剂是袋装的或是桶装的,由添加剂起重机 (S-6225 )送至钢结构内的添加剂高度。使用散装货物处理设备 (S-6226,  S-6227 和S-6228 ),将固态催化剂加入到倒袋站/卸料料斗 (Y-6231  至 Y-6235 )内。倒袋站/卸料料斗内的固体添加剂靠重力作用流入添加剂缓冲仓 (D-6236  至 D-6240 ),然后进入固体添加剂加料器 (S-6241  至 S-6245 ),固体添加剂在加料器中的计量是通过粉料加料器的质量流量计所测量的质量流率的比进行控制的。添加剂靠重力作用从加料器流入树脂/添加剂传送带,在此与粉料树脂的主流进行混合,然后进入混炼机进料料斗和排放气过滤器。     工艺还提供了以滑石粉作为添加剂的设计。 滑石粉以大包装袋的形式运入,通过大包装袋卸料器 (S-6253 )倒空后进入到滑石粉缓冲仓 (D-6250)。滑石粉从滑石粉缓冲仓靠重力流入到滑石粉加料器 (S-6246 ),流量是通过与粉料加料器的质量流率比来控制的。为促进滑石粉在滑石粉缓冲仓中的流动,当滑石粉加料器加满时,滑石粉缓冲仓卸料器 (S-6252 )开始运行。滑石粉从加料器靠重力流入到树脂/添加剂传送带,与主粉料树脂物流进行混合,然后进入到混炼机加料料斗和排放气过滤器。滑石粉加料器只服务于滑石粉,也就是说其他的添加剂不能使用此加料器加料。滑石粉最后添加到传送带,在传送带的出口前加入。滑石粉缓冲仓过滤器 (Y-6251 )用于粉尘控制。     种子床储存系统中的粉料来自于粉料树脂缓冲/排放料斗, 通过一台换向阀打入到粉料树脂换向阀 (Y-6201 ),然后输送到种子床风送系统旋转加料器 (第5E 部分)。 Pelleting (Part 7) In the UNIPOL PE low-energy Pelleting System, the granular resin and additives are melted and mixed together in a continuous Mixer (Y7001).  Two speeds allow the Pelleting System to have the necessary turndown.  The continuous Mixer feeds the molten resin directly into the suction of a Melt Pump (Y7004) which generates the pressure necessary to force the resin through the Melt Screen Unit (Y7005) and the Die Plate (Y7006) of an Underwater Pelletizer (Y7007).  This pressure varies by product, but is typically up to 17,170 kPag (2,490 psig).  Since the Melt Pump is a volumetric pump, a variable-speed motor (YM7004) is used to adjust to any variations of throughput rate.  The speed of the Melt Pump is controlled by the pressure at the suction of the Melt Pump.  The speed of the Underwater Pelletizer is controlled based on the speed of the Melt Pump. The pellet/water slurry from the Underwater Pelletizer is fed to the Agglomerate Remover (Y7009) for separation of any agglomerates or clumps of pellets, and then to the centrifugal Pellet Dryer (Y7010).  Pellets from the Pellet Dryer flow by gravity to Pellet Screener (Y7130).  The pellets are then transferred to pellet blending and storage within the Supporting Facilities. The water supplied to the Underwater Pelletizer is separated from the pellets in the Agglomerate Remover and Pellet Dryer, and is recycled through the Pelleting Cycle Water System, which includes the Pelleting Water Tank (D7008), the Pelleting Water Pump (G7012 or G7022, an installed spare), and the Pelleting Water Cooler (E7020).  This system is a closed cycle water system which provides for temperature control of the water and for the removal of resin fines. 造粒 (第7 部分)     在低能耗的 UNIPOL 造粒系统中,粉料树脂和添加剂在一个连续运行的混炼机 (Y-7001 )中被融化并且混合在一起。应用双速电机驱动混炼机可使造粒系统有较好的操作弹性。混炼机将熔融的树脂直接送入熔融泵 (Y-7004 )的入口,熔融的树脂靠熔融泵产生的压力通过熔融筛 (Y-7005 )和水下造粒机 (Y-7007 )的模板 (Y-7006 )。泵的压力随产品的不同而变化,但一般都能达到 17,170kPag  (2,490psig )。因为熔融泵是一个容积式泵,用变频电机 (YM-7004 )来满足不同输出速率的需要。熔融泵的速度由熔融泵入口的压力来控制。造粒机的速度由与熔融泵的速度的比值来控制。     来自水下造粒机的粒料/水的浆液进入除块器 (Y-7009 ),将颗粒中的团或块分离出去,然后进入离心式粒料干燥器 (Y-7010 )。干燥后的粒料依靠重力流入到粒料筛 (Y-7130 )筛选,粒料再送至配套设施内的树脂掺混和储存系统。     供给水下造粒机的水在除块器和粒料干燥器中与粒料分离后,通过粒料循环水系统打循环,这个系统包括一个粒料水罐 (D-7008)、一个粒料水泵 (G-7012  或 G-7022,一台为在线备用)和一个粒料水冷器 (E-7020)。这是一个封闭式循环水系统,用它来控制水的温度,同时除去树脂中的细粉。 1.2.2    Description of Supporting Facilities The Supporting Facilities include the following process systems:     Resin Handling System (Part 8) Representative Process Flow Diagrams (PFDs) are provided in Attachment 12 of this Appendix. A representative equipment list is provided in Appendix 5.  All of the equipment described in the following process description is included in the equipment list. 1.2.2 配套设施的描述     配套设施包括下列工艺系统:           树脂处理系统 (第8 部分)  工艺流程图 (PFDs)见本附件的附录1-2。     设备一览表见附件5,下列工艺描述中所述的所有设备都包括在设备一览表中。 Resin Handling System (Part 8) The Resin Handling System begins at the outlet of the Pellet Screener (Part 7) of the PE Process Unit and ends with the Packaging System.  The Resin Handling System consists of three (3) pellet conveying lines and a series of pellet bins.  The pellet conveying lines are designed for the following capacities. Line Capacity From To Remarks A 55 t/hr Pelleting System Blending Bins B1/B2 70 t/hr Blending Bins Blending Bins circulation for blending C1/C2 70 t/hr Blending Bins Storage Bins The following is a general description of the Resin Handling System. 树脂处理系统 (第8 部分)     树脂处理系统起点为 PE  工艺单元第 7  部分的粒料筛 (Y-7130 )的出口,终点是包装系统。树脂处理系统包括 3  条粒料输送线和一系列粒料料仓。粒料输送线按以下能力 设计:           输送线      能力          来自            去往            备注           A 线      55 t/h    造粒系统          掺混料仓         B1/B2 线  70 t/h      掺混料仓          掺混料仓          掺混循环         C1/C2 线  70 t/h      掺混料仓          储存料仓     以下为树脂处理系统总的描述。 Line A This line is provided for pellet conveying from the PE Process Unit to the bin area and is operated continuously. Pellets are continuously fed from the Pelleting System (Part 7) to this conveying line by Rotary Feeder (S8130) from Pellet Surge Hopper (D8110) and conveyed to either the Off-Grade Bin (D8210) or one of the Pellet Blending Bins (D8211 through D8217). The OffGrade Bin is provided for storing off-specification pellets which may be produced during product transitions.  The pellet Blending Bins are provided for temporarily storing AimGrade pellets. The conveying air is supplied by one of the Pellet Conveying Blowers (K8100 or K8101).  Normally Pellet Conveying Blower K8100 is used for this operation and Pellet Conveying Blower K8101 is on stand-by.  An aftercooler (E8103 and E-8105) and In-line Filter (Y-8104 and Y-8106) are provided for each blower before the pick-up point. A 线     该线用于将粒料从聚乙烯工艺单元输送到料仓区,连续操作。     来自造粒系统 (第 7  部分)的聚乙烯粒料通过粒料缓冲料斗 (D-8110)下方的旋转加料器 (S-8130 )连续进入风送系统并输送到等外品料仓 (D-8210)或是粒料掺混料仓(从D-8211 到D-8217)内。     等外品料仓用于储存产品切换时生产的等外品。粒料掺混料仓用来临时储存目标级的粒料。     由粒料输送风机组 (K-8100 或 K-8101 )提供风送气体。通常情况下粒料输送风机 (K-8100)为工作风机,粒料输送风机 (K-8101 )为备用风机,并为每个风机在接入点前设置了后冷却器 (E-8103 和E-8105)以及线上过滤器 (Y-8104 和Y-8106 )。 Line B This line is provided for pellet blending and transfer to other blending bins and is intermittently operated. The pellets stored in the Pellet Blending Bins or the OffGrade Bin are fed to this conveying line by Rotary Feeder (S8230 through S8237) and conveyed to the same bin as an external recirculation system for blending or to another bin. This line also has the capability to “trim” off-specification pellets in with AimGrade pellets during the conveying operation.  The offgrade pellets are trimmed into the AimGrade pellets at low rate.  Dedicated Rotary Feeder (S8238) is provided on a branch gravity line from the OffGrade Bin and is used for this trimming operation.  The trim (mixing) rate can be adjusted based on the product quality after mixing. The conveying air is supplied by the Blending Blower (K8200).  A common spare Blending Blower (K8201) is provided for Line B and Line C.  An aftercooler (E8203 and E8205) and In-line Filter (Y8204 and Y8206) are provided for each blower before the first pick-up point. B 线     该线用于粒料掺混并运送到其他的掺混料仓,间歇操作。 储存在掺混料仓内的粒料或等外品通过旋转加料器 (从 S-8230  到 S-8237 )进入到风送系统并由外部再循环系统输送到同一掺混料仓或其它掺混料仓内进行掺混。     该线可使将等外品和目标级的粒料在输送过程中进行掺混。等外品以较低的速率与目标级的粒料进行掺混。这一掺混过程使用专门的旋转加料器 (S-8238 ),与等外品料仓以一条靠重力的分支线路相连。掺混率可根据混合后的产品质量来调整。     由掺混风机 (K-8200)提供风送气体。掺混风机 (K-8201)做为 B 线和C 线的公用备机。每一台风机的第一接入点前设置后冷却器 (E-8203  和 E-8205)以及线上过滤器(Y-8204 和Y-8206 ) Line C Two (2) lines are provided for pellet conveying from the Pellet Blending Bins to the Packaging Systems.  These lines are intermittently operated when the Packaging System is operating. The pellets stored in the Pellet Blending Bins or OffGrade Bin are fed to this conveying line by Rotary Feeder (S8230 through S8237) and conveyed to any one of the Elutriator Hoppers (D8415 through D8418). The conveying air is supplied by the Bagging Blower (K8300) for Line C1 and by the Bagging Blower (K8301) for Line C2.  A common spare Blending Blower (K8201) is provided as standby.  An aftercooler (E8303, E8305, E8205) and In-line Filter (Y8304, Y8306, Y8206) are provided for each blower before the first pickup point. Above each Bagging Bin is an Elutriator Hopper (D8415 through D8418) to feed the pellets to the Elutriator.  The Elutriator (Y8450 through Y8453) is provided with a Blower (K8400 through K8403) to separate fines and streamers from the pellets.  The fines and streamers removed from the pellets are collected by a Dust Collector (Y8455 through Y8458) and discharged to a container through Rotary Feeder (S8435 through S8438).  The Elutriation System is included in the scope of the Contract Plant. Line C1 and Line C2 will not be used to convey pellets simultaneously to the same Bagging Bin. C 线     两条风送线将粒料从粒料掺混料仓输送到包装料仓。当包装系统运行时,这两条线间 歇作业。     储存在粒料掺混料仓或等外品料仓内的粒料通过旋转加料器 (从 S-8230  到 S- 8037 )输送到风送线,再送到各个淘析器料斗 (从D-8415 到D-8418)。     包装风机 (K-8300)为C1 线提供风送气体,包装风机 (K-8301)为C2 线提供风送气体。掺混风机 (K-8201)是C1 线和 C2 线的公用备机。每台风机的第一接入点前分别设置后冷却器 (E-8303,E-8305  和 E-8205 )以及线上过滤器 (Y-8304 ,Y-8306,  Y- 8206 )。     每台包装料仓上方都设有一台淘析器料斗 (从 D-8415  到 D-8418),粒料通过淘析器料斗进入淘析器,淘析器系统(从 Y-8450  到 Y-8453)配置有风机 (从 K-8400  到 K-8403 )将细粉末从合格粒料中分离出来。从粒料中分离出来的细粉末由灰尘收集器 (从Y-8455  到 Y-8458 )收集并通过旋转加料器 (从 S-8435  到 S-8438 )排入到一个容器内。淘洗系统包含在合同装置的范围内。     风送线C1 和C2 不会同时将粒料输送到同一台包装料仓内。 Purge Air System Two positive displacement Bin Purge Blowers (K8292 or K-8293) are furnished to provide air to OffGrade Bin and all pellet Blending Bins to assure that any residual hydrocarbons do not accumulate. 吹扫气系统     配备两套容积式仓吹扫风机 (K-8292 或K-8293),由其向对等外品料仓和粒料掺混料仓进行吹扫以防止残留的烃类介质积聚。 Wash Water System A Wash Water Tank (D8296) and a Wash Water Pump (G8295) make up the Wash Water System to supply wash water to OffGrade Bin and all pellet Blending Bins.  The Wash Water System is designed to clean the Product Blending Bins and (where applicable) the individual blend tubes within the Product Blending Bins. Air for drying the bins can be provided by the Purge Air System 冲洗水系统     由一个冲洗水罐 (D-8296)和一台冲洗水泵 (G-8295 )组成冲洗水系统为等外品料仓和所有的粒料掺混料仓提供冲洗水系统。冲洗水系统提供了为产品掺混料仓及掺混料仓内每个掺混束 (可行的地方)进行清洗的设计。料仓干燥用的热空气由吹扫气系统提供。 1.2.3    Description of Auxiliary Facilities The Auxiliary Facilities include the following process systems:     Flare Systems (Part 9.0) – Typical     Waste Water Pretreatment Systems (Part 9.1) – Typical     Steam Condensate System (Part 9.2) – Typical     Utility Distribution Systems (Part 9.3) – Typical Representative Process Flow Diagrams (PFDs) are provided in Attachment 12 of this Appendix. A representative equipment list is provided in Appendix 5.  All of the equipment described in the following process description is included in the equipment list. 1.2.3 辅助设施的描述     辅助设施包括下列系统:         ▼火炬系统 (第9.0 部分)- 典型设计         ▼污水预处理系统 (第9.1 部分)- 典型设计         ▼蒸汽冷凝物系统 (第9.2 部分)- 典型设计         ▼公用工程配送系统 (第9.3 部分)- 典型设计     具有代表性的工艺流程图(PFDs) 见本附件的附录1-2。     具有代表性的设备一览表见附件 5 。下列过程中所描述的所有设备都包含在此设备一览表中。 Flare Systems (Part 9.0) – Typical Two separate flare systems, one for high pressure vents and one for low pressure vents should be provided. High pressure process vents and pressure relief device discharges are collected in a High Pressure Flare header and routed to the High Pressure Flare Knock-Out Drum (C9001) within the Contract Plant.  The vent from the High Pressure Flare Knock-Out Drum is routed to an OSBL flare provided by the Client.  Any liquid collected in the High Pressure Flare Knock-Out Drum is drained to a portable drum for disposal.  A Knock-Out Pot Reboiler (E9002) is provided in the High Pressure Flare Knock-Out Drum to vaporize liquids that accumulate. Low pressure process vents and pressure relief device discharges are collected in a Low Pressure Flare header and routed to the Low Pressure Flare Package (V9003) within the Contract Plant.  The Low Pressure Flare Package includes a knock-out drum for collection of liquids. 火炬系统 (第9.0 部分)- 典型设计     应设两套不同的火炬系统,一个用于高压气体的排放,一个用于低压气体的排放。     高压工艺排放和泄压装置的排放气收集在高压火炬总管,送至界区内的火炬分离罐(C-9001 )。排放气由高压火炬分离罐进入到山西焦化提供的界区外的火炬。收集在高压火炬分离罐内收集的所有液体排入便携式处置罐以备处理。高压火炬分离罐配有分离罐再沸器 (E-9002),以蒸发收集的液体。     低压工艺排放气和泄压装置的排放气收集在低压火炬总管,送至装置内的低压火炬包(V-9003 )。低压火炬包包含一个用于收集液体的火炬分离罐。 Waste Water Pretreatment System (Part 9.1) – Typical The UNIPOL PE Process is a gas phase polymerization process and does not produce waste water.  However, oily material from around rotating equipment, such as leaks or spills, when flushed with water could be a source of contaminated oily water.  Spilled resin should also be collected and removed from surface water before being discharges to the clean sewer system. A closed contaminated sewer system will be provided, through which contaminated water will be collected to a sump.  A resin recovery system and an oil separation system will be provided. 污水预处理系统 (第9.1 部分)- 典型设计     UNIPOL  PE 工艺是气相的聚合反应工艺流程,本身不会产生污水。但是,一些动设备的周围会有一些由于泄漏或喷溅而产生的油类物质,当用水冲洗时,就会形成含油污水。喷溅的树脂需要进行收集,并与地表水分离,再排到干净的排水系统中。     设有一个闭路的污水排水系统,将被污染的水收集到一个坑里。另外还配有树脂收集系统和油脂分离系统。 Oily Waste Water Oily waste water and contaminated runoff water in the Contract Plant are fed to an API Separator (V9101) via a contaminated oily sewer system.  The separated oil from the API Separator is transferred by the Waste Oil Pump (G9102) to drums for disposal in an OSBL waste treatment system after temporary storage at the Waste Oil Pit (V9103). Surface run-off exceeding the API Separator capacity will overflow to the Surge Basin (V9106) and be treated by returning it back to the API Separator later by the Surge Basin Pump (G9107).  The Surge Basin capacity is typically designed for 15 minutes maximum rain fall. 含油污水 装置界区内的含油污水和被污染的地表径流通过含油污水排水系统送到 API  分离器 (V-9101 )。API  分离器分离出来的油在废油池 (V-9103 )短暂储存后,通过废油泵 (G-9102 )打到界区外污水处理系统中的处理罐内。     超过 API  分离器容量的地表径流溢流至缓冲池 (V-9106 ),经过处理后通过缓冲池泵 (G-9107 )稍后再打回到API 分离器。一般来说,缓冲池的容量将按最大15 分钟的降雨量来设计。 Resin Recovery System The Resin Recovery System is to collect the resin contaminated surface run-off from the following process areas.     Reaction Area     Pelleting Area     Pellet Blending Area     Bagging Area A Skimmer Pit (V9105) is provided to trap spilled resin.  The trapped resin will be recovered by using a net.  The water after removing the resin is introduced to the clean storm sewer. 树脂回收系统     树脂回收系统用来收集污染了下列工艺区域地表径流的树脂。           反应区         造粒区           粒料掺混区           包装区     设有树脂分离坑用来收集喷溅的树脂。收集的树脂通过一个网来进行回收。分离出树脂后的水可排放到干净的雨水排水系统。 Storm Sewer Rain water or any other water which is treated through the resin recovery system or the API Separator will be directed to the storm sewer.  Rain water from unpaved areas flows to perimeter trenches around the Contract Plant to points of drainage. 雨水排水系统     经树脂回收系统或是 API  分离器处理后的雨水或其他的水将直接排放到雨水排水系统。未铺砌区域的雨水会流入到围绕装置界区四周的沟里,再到各个排水口。 Steam Condensate System (Part 9.2) – Typical Three (3) levels of steam, Medium Pressure (MP1) steam, Secondary Medium Pressure (MP2) steam, and Low Pressure (LP1) steam, are used within the Contract Plant.  MP1 and MP2 steam are desuperheated with Boiler Feed Water and utilized in the Pelleting System.  MP2 steam is utilized in the Reaction System during start-up.  LP1 steam is utilized for heaters and reboilers and also steam tracing for equipment, piping, and instruments. The MP1, MP2, and LP1 steam condensate are all collected into the Steam Condensate Drum (C9201).  Steam Condensate Vent Condenser (E9202) is provided to condense and recover flashed steam from the Steam Condensate Drum.  A portion of the collected condensate is pumped to the HP and LP desuperheaters by Desuperheater Water Pump (G9205 or G9206, an installed spare) and the remainder is pumped to the OSBL by Steam Condensate Pump (G9203 or G9204, an installed spare). 蒸汽冷凝物系统 (第9.2 部分)- 典型设计     PE  工艺单元需要中压 (MP1 )、二级中压蒸汽 (MP2 )以及低压蒸汽 (LP1 )。 MP1 和 MP2 通过锅炉给水脱过热,主要在造粒系统中使用。MP2 在开车时用于加热反应系统。LP1 主要用于加热换热器、再沸器,以及需要蒸汽伴热的设备、管道和仪表。     MP1、MP2 和 LP1 蒸汽凝液都收集在蒸汽冷凝罐 (C-9201 )中。蒸汽冷凝液排放冷凝器 (E-9002)用来冷凝和回收从蒸汽冷凝液罐出来的闪蒸汽。一部分收集的冷凝液通过脱过热水泵 (G-9205 或 G-9206,  一台在线备用),送到高压和低压脱过热器,其余的冷凝液由蒸汽凝液泵 (G-9203 或G-9204,一台在线备用)送至界区外。 Utility Distribution System (Part 9.3) – Typical The Utility Distribution System consists of the following systems. Nitrogen Distribution System Nitrogen required for the Contract Plant is supplied from OSBL through pipeline and distributed to the users in the Contract Plant.  A portion of the nitrogen used within the PE Process Unit is purified in the Nitrogen Purification System. Plant Air Distribution System Plant Air is supplied from OSBL and distributed to the users in the Contract Plant. Instrument Air Distribution System Instrument Air is supplied from OSBL and distributed to the users in the Contract Plant. Cooling Water Distribution System Cooling water is supplied from OSBL and distributed to the users in the Contract Plant.  The cooling water is returned to OSBL. Fuel Gas Distribution System Fuel gas is supplied from OSBL and distributed to the users in the Contract Plant.  The fuel gas will be used in the LP flare system as required. Fresh Water Distribution System Fresh water supplied from OSBL is distributed to the users, such as utility station, within the Contract Plant. Living Water Distribution System Drinking water supplied from OSBL is distributed to the users, such as eye wash and safety shower, the Bin Washing System, within the Contract Plant. Demineralized Water Distribution System Demineralized water supplied from OSBL is distributed to the users, such as make-up for the pelleting water system, in the Contract Plant. Electrical Substation and Power Distribution System Large motors ( 200 kW) are supplied by 10 kV feeders from an OSBL substation. The electrical power to the substation of the Contract Plant is fed with 35 kV feeders for distribution systems. 10 kV and 380 V power is distributed to electrical consumers in the Contract Plant. 公用工程配送系统 (第9.3 部分)- 典型设计 公用工程配送系统包括以下部分: 氮气配送系统 合同装置所需的氮气通过管线由界区外供应,并配送到合同装置的各个用户。PE  工艺单元内使用的一部分氮气须在氮气精制系统中精制。 工厂风配送系统 合同装置所需的工厂风由界区外供应,并配送到合同装置的各个用户。 仪表风配送系统 合同装置所需的仪表风由界区外供应,并配送到合同装置的各个用户。 冷却水配送系统 合同装置所需的冷却水由界区外供应,并配送到合同装置的各个用户。冷却水将返回到界区外。 燃料气配送系统 合同装置所需的燃料气由界区外供应,并配送到合同装置的各个用户。燃料气也会根据要求在低压火炬中使用。 新鲜水配送系统 新鲜水由界区外供应,并配送到合同装置的各个用户,如公用工程站。 饮用水配送系统 饮用水由界区外供应,并配送到合同装置的各个用户,如洗眼器和安全淋浴设施,料仓清洗系统。 脱盐水配送系统 脱盐水由界区外供应,并配送到合同装置的各个用户,如造粒水系统的补给。 变电站和输配电系统 大功率的电机( 200 kW) 由界区外变电站的10 kV 电源供电。 由输配电系统的35kV 电源向合同装置变电站供电。 10 kV 和380 V 的电力会输送到合同装置的电力用户。
本文档为【聚乙烯工艺描述英文】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_682974
暂无简介~
格式:doc
大小:264KB
软件:Word
页数:38
分类:生活休闲
上传时间:2017-09-27
浏览量:130