下载
加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 毕业设计(论文)-小型轧钢机设计(全套图纸)

毕业设计(论文)-小型轧钢机设计(全套图纸).doc

毕业设计(论文)-小型轧钢机设计(全套图纸)

風起_吹散誰的容顏
2017-11-27 0人阅读 举报 0 0 暂无简介

简介:本文档为《毕业设计(论文)-小型轧钢机设计(全套图纸)doc》,可适用于高等教育领域

毕业设计(论文)小型轧钢机设计(全套图纸)摘要设计的轧钢机为×型钢轧钢机轧辊的直径为mm。轧钢机主要用来为轧制小型线材采用三辊式工作机座。轧钢机的主要设备是由一个主机列组成的。轧钢机的主机列是由原动机传动装置和执行机构三个基本部分组成的。采用的配置方式为电动机减速机齿轮机座轧机。由于轧辊的转向和转速不可逆转原动机采用造价较底的高速交流主电机。考虑到轧制负荷很不均匀为了均衡电机负荷减少电机的容量在减速机和电动机之间加有飞轮。齿轮机座:其用途是传递转矩给工作辊设计采用三个直径相等的圆柱形人字齿轮在垂直面排成一排装在密闭的箱体内。联轴器:在减速器与齿轮机座之间采用的是安全连轴器。而主联轴器采用的的梅花接轴联轴器。关键词:轧钢机齿轮机座飞轮全套CAD图纸联系IIIAbstractRollingmilldesignedforxpaymentsrollingmill,rollerdiameterofmmRollingmillforrollingmainlytosmallwirerod,athreerollerworkingmachineBlockRollingmillequipmentisamajorcomponentofthemainframeoutRollingmillistheformermainframeismotivatedtransmissiondevicesandthethreebasiccomponentsoftheimplementingagenciesAllocationmethodusedforelectricmotorsslowdownplaneplusseatrollingmillTherollertotheirreversibleandrotationalspeed,theoriginalmotivationfortheintroductionofamorerapidexchangeofthecostsofElectricalTakingintoaccounttherollingloadisuneven,tobalanceelectricalloadsandreducetheelectricalcapacityslowdownintheincreasebetweenaflywheelandelectricmotorsFlywheeldesignan写出如下应力与应变的关系式:γθt()ε(σσ)=ε(σσ)=ε(σσ)=kγγθθtmmtm式中εεε分别是轴对称冲压成形时的径向主应变、切向主应变γθt和厚度方向上的主应变σσσ分别是轴对称冲压成形时的径向主应力、切向主应力和厚度γθt方向上的主应力σ平均应力σ=(σσσ)γθmmtk常数。在平面应力状态式()具有如下形式:ε(σσ)=ε(σσ)=ε(σσ)=k()γγθθθtθtt因为σ>σ>所以必定有σσ>与ε>。这个结果表明:在两向γθγθθ拉应力的平面应力状态时如果绝对值最大拉应力是σ则在这个方向上的主γ应变一定是正应变即是伸长变形。又因为σ>σ>所以必定有(σσ)<与ε<即在板料厚度方γθθtt向上的应变是负的即为压缩变形厚度变薄。在σ方向上的变形取决于σ与σ的数值:当σ=σ时ε=当σ>θγθγθθγσ时ε<当σ<σ时ε>。θθγθθσ的变化范围是σ>=σ>=。在双向等拉力状态时σ=σ有θγθγθ式()得ε=ε>及ε<在受单向拉应力状态时σ=有γθtθ式()可得ε=ε。θγ根据上面的分析可知这种变形情况处于冲压应变图中的AON范围内(见图)而在冲压应力图中则处于GOH范围内(见图)。()当σ>σ>且σ=时有式()可知:因为σ>σ>所以θγθγt)定有σ>σ>与ε>。这个结果表明:对于两向拉应力的平面应力状θγθ态当σ的绝对值最大时则在这个方向上的应变一定时正的即一定是θ伸长变形。又因为σ>σ>所以必定有(σσ)<与ε<即在板料厚度方γθθtt向上的应变是负的即为压缩变形厚度变薄。在σ方向上的变形取决于σ与σ的数值:当σ=σ时ε当σ>θγθθγγθσε<当σ<σ时ε>。γγθγγσ的变化范围是σ>=σ>=。当σ=σ时ε=ε>也就是γθγγθγθ在双向等拉力状态下在两个拉应力方向上产生数值相同的伸长变形在受单向拉应力状态时当σ=时ε=ε也就是说在受单向拉应力状态γγθ下其变形性质与一般的简单拉伸是完全一样的。这种变形与受力情况处于冲压应变图中的AOC范围内(见图)而在冲压应力图中则处于AOH范围内(见图)。上述两种冲压情况仅在最大应力的方向上不同而两个应力的性质以及它们引起的变形都是一样的。因此对于各向同性的均质材料这两种变形是完全相同的。()冲压毛坯变形区受两向压应力的作用这种变形也分两种情况分析即σ<σ<γθσ=和σ<σ<σ=。θγtt)当σ<σ<且σ=时有式()可知:因为σ<σ<一定有γθγθtσσ<与ε<。这个结果表明:在两向压应力的平面应力状态时如果γθγ绝对值最大拉应力是σ<则在这个方向上的主应变一定是负应变即是压γ缩变形。又因为σ<σ<所以必定有(σσ)>与ε>即在板料厚度方γθθtt向上的应变是正的板料增厚。在σ方向上的变形取决于σ与σ的数值:当σ=σ时ε=当σ>θγθγθθγσ时ε<当σ<σ时ε>。θθγθθ这时σ的变化范围是σ与之间。当σ=σ时是双向等压力状态θγγθ时故有ε=ε<当σ=时是受单向压应力状态所以ε=ε。γθθθγ这种变形情况处于冲压应变图中的EOG范围内(见图)而在冲压应力图中则处于COD范围内(见图)。)当σ<σ<且σ=时有式()可知:因为σ<σ<所以θγθγt一定有σσ<与ε<。这个结果表明:对于两向压应力的平面应力状θγθ态如果绝对值最大是σ则在这个方向上的应变一定时负的即一定是压θ缩变形。又因为σ<σ<所以必定有(σσ)>与ε>即在板料厚度方γθθtt向上的应变是正的即为压缩变形板厚增大。在σ方向上的变形取决于σ与σ的数值:当σ=σ时ε=当σ>θγθθγγθσε<当σ<σ时ε>。γγθγγ这时σ的数值只能在σ<=σ<=之间变化。当σ=σ时是双向γθγγθ等压力状态所以ε=ε<当σ=时是受单向压应力状态所以有εγθγγ=ε>。这种变形与受力情况处于冲压应变图中的GOL范围内(见图θ)而在冲压应力图中则处于DOE范围内(见图)。()冲压毛坯变形区受两个异号应力的作用而且拉应力的绝对值大于压应力的绝对值。这种变形共有两种情况分别作如下分析。)当σ>σ<及|σ|>|σ|时由式()可知:因为σ>σγθγθγθ<及|σ|>|σ|所以一定有σσ>及ε>。这个结果表明:在异号的γθγθγ平面应力状态时如果绝对值最大应力是拉应力则在这个绝对值最大的拉应力方向上应变一定是正应变即是伸长变形。又因为σ>σ<及|σ|>|σ|所以必定有ε<即在板料厚度方向γθγθθ上的应变是负的是压缩变形。这时σ的变化范围只能在σ=σ与σ=的范围内。当σ=σ时θθγθθγε>ε<且|ε|=|ε|当σ=时ε>ε<而且ε=ε这是γθγθθγθθγ受单向拉的应力状态。这种变形情况处于冲压应变图中的MON范围内(见图)而在冲压应力图中则处于FOG范围内(见图)。)当σ>σ<σ=及|σ|>|σ|时由式()可知:用与前θγθγt项相同的方法分析可得ε>。即在异号应力作用的平面应力状态下如果绝θ对值最大应力是拉应力σ则在这个方向上的应变是正的是伸长变形而在θ压应力σ方向上的应变是负的(ε<=)是压缩变形。γγ这时σ的变化范围只能在σ=σ与σ=的范围内。当σ=σ时γγθγγθε>ε<且|ε|=|ε|当σ=时ε>ε<而且ε=ε。θγγθγθγγθ这种变形情况处于冲压应变图中的COD范围内(见图)而在冲压应力图中则处于AOB范围内(见图)。虽然这两种情况的表示方法不同但从变形的本质看是一样的。()冲压毛坯变形区受两个方向上的异号应力的作用而且压应力的绝对值大于拉应力的绝对值。以下对这种变形的两种情况分别进行分析。)当σ>σ<而且|σ|>|σ|时由式()可知:因为σ>γθθγγσ<及|σ|>|σ|所以一定有σσ<及ε<。这个结果表明:在异θθγθγθ号的平面应力状态时如果绝对值最大应力是压应力σ则在这个方向上应变θ是负的即是压缩变形。又因为σ>σ<必定有σσ<及ε>即在拉应力方向上γθγθγ的应变是正的是伸长变形。这时σ的变化范围只能在σ=σ与σ=的范围内。当σ=σ时γγθγγθε>ε<且ε=ε当σ=时ε>ε<而且ε=ε。这种γθγθγγθγθ变形情况处于冲压应变图中的DOF范围内(见图)而在冲压应力图中则处于BOC范围内(见图)。)当σ>σ<σ=及|σ|>|σ|时由式()可知:用与前θγγθt项相同的方法分析可得ε<σ。即在异号应力作用的平面应力状态下如果γγ绝对值最大应力是压应力σ则在这个方向上的应变是负的是压缩变形而γ在拉应力σ方向上的应变是正的是伸长变形。θ这时σ的数值只能介于σ=σ与σ=的范围内。当σ=σ时εθθγθθγ>ε<且ε=ε当σ=时ε>ε<而且ε=ε。这θγθγθθγθγ种变形情况处于冲压应变图中的DOE范围内(见图)而在冲压应力图中则处于BOC范围内(见图)。这四种变形与相应的冲压成形方法之间是相对的它们之间的对应关系用文字标注在图与图上。上述分析的四种变形情况相当于所有的平面应力状态也就是说这四种变形情况可以把全部的冲压变形毫无遗漏地概括为两大类别即伸长类与压缩类。当作用于冲压毛坯变形区内的拉应力的绝对值最大时在这个方向上的变形一定是伸长变形称这种变形为伸长类变形。根据上述分析伸长类变形在冲压应变图中占有五个区间即MON、AON、AOB、BOC及COD而在冲压应力图中则占有四个区间FOG、GOH、AOH及AOB。当作用于冲压毛坯变形区内的压应力的绝对值最大时在这个方向上的变形一定是压缩变形称这种变形为压缩类变形。根据上述分析压缩类变形在冲压应变图中占有五个区间即LOM、HOL、GOH、FOG与DOF而在冲压应力图中则占有四个区间EOF、DOE、COD、BOC。MD与FB分别是冲压应变图与冲压应力图中两类变形的分界线。分界线的右上方是伸长类变形而分界线的左下方是压缩变形。由于塑性变形过程中材料所受的应力和由此应力所引起的应变之间存在着相互对应的关系所以冲压应力图与冲压应变图也一定存在着一定的对应关系。每一个冲压变形都可以在冲压应力图上和冲压应变图上找到它固定的位置。根据冲压毛坯变形区内的应力状态或变形情况利用冲压变形图或冲压应力图中的分界线(MD或FB)就可以容易地判断该冲压变形的性质与特点。概括以上分析结果把各种应力状态在冲压应变图和冲压应力图中所处的位置以及两个图的对应关系列于表。从表中的关系可知冲压应力图与冲压应变图中各区间所处的几何位置并不一样但它们在两个图中的顺序是相同的。最重要是一点是:伸长类与压缩类变形的分界线在两个图里都是与坐标轴成角的一条斜线。表中列出了伸长类变形与压缩类变形在冲压成形工艺方面的特点。从表可以清楚地看出由于每一类别的冲压成形方法其毛坯变形区的受力与变形特点相同而与变形有关的一些规律也都是一样的所以有可能在对各种具体的冲压成形方法进行研究之外开展综合性的体系化研究工作。体系化研究方法的特点是对每一类别冲压成形方法的共性规律进行研究工作体系化研究的结果对每一个属于该类别的成形方法都是适用的。这种体系化的研究工作在板材冲压性能、冲压成形极限等方面已有一定程度的开展。应用体系化方法研究冲压成形极限的内容可用图予以说明。表冲压应力状态与冲压变形状态的对照在绝对值最大应力状态冲压应变冲压应变的应力方向上变形图中位置图中位置类别应力应变双向受拉>σσAONGOH伸长类γσ>,σ>θγθσ>σAOCAOH伸长类θγ双向受压σ<σEOGCOD压缩类γσ<,σ<θγθσ<σGOLDOE压缩类θγ异号应力|σ|>|σMONFOG伸长类γσ>,σ<|γθθ|σ|>|σLOMEOF压缩类θ|γ异号应力|>|σ|σCODAOB伸长类θσ>,σ<|θγγ|σ|>|σDOEBOC压缩类γ|θ表伸长类成形与压缩类成形的对比项目伸长类成形压缩类成形变形区质量问题的表变形程度过大引起变形区压力作用下失稳起皱现形式产生破裂现象(主要取决于板材的塑(主要取决于传力区的性与厚度无关承载能力成形极限(可用伸长率及成形极(取决于抗失稳能力限DLF判断(与板厚有关变形区板厚的变化减薄增厚(改善板材塑性(采用多道工序成形提高成形极限的方法(使变形均匀化降低局(改变传力区与变形区部变形程度的力学关系(工序间热处理(采用防起皱措施压缩类成形σγεγ伸长类成形伸长类成形胀形胀形翻边拉深拉深ππ缩口σθ翻边εθσθ扩口εθ缩口扩口压缩类成形εγσγ图冲压应变图化学成分组织塑性变形条件硬化性能抗缩颈伸长类应力状态能力变形应变梯度硬化性能变形均化与扩展能力模具状态变形区的力学性能成形极限抗起皱值与值能力相对厚度化学成分冲压成形压缩类极限塑性组织变形变形条件强度变形抗力传动区的成形极限变形力及硬化性能抗拉与抗压其变化缩失衡能力各向异性值图体系化研究方法举例附录外文原文CategoriesofstampingformingManydeformationprocessescanbedonebystamping,thebasicprocessesofthestampingcanbedividedintotwokinds:cuttingandformingCuttingisashearingprocessthatonepartoftheblankiscutformtheotherItmainlyincludesblanking,punching,trimming,partingandshaving,wherepunchingandblankingarethemostwidelyusedFormingisaprocessthatonepartoftheblankhassomedisplacementformtheotherItmainlyincludesdeepdrawing,bending,localforming,bulging,flanging,necking,sizingandspinningInsubstance,stampingformingissuchthattheplasticdeformationoccursinthedeformationzoneofthestampingblankcausedbytheexternalforceThestressstateanddeformationcharacteristicofthedeformationzonearethebasicfactorstodecidethepropertiesofthestampingformingBasedonthestressstateanddeformationcharacteristicsofthedeformationzone,theformingmethodscanbedividedintoseveralcategorieswiththesameformingpropertiesandtobestudiedsystematicallyThedeformationzoneinalmostalltypesofstampingformingisintheplanestressstateUsuallythereisnoforceoronlysmallforceappliedontheblanksurfaceWhenitisassumedthatthestressperpendiculartotheblanksurfaceequaltozero,twoprincipalstressesperpendiculartoeachotherandactontheblanksurfaceproducetheplasticdeformationofthematerialDuetothesmallthicknessoftheblank,itisassumedapproximatelythatthetwoprincipalstressesdistributeuniformlyalongthethicknessdirectionBasedonthisanalysis,thestressstateandthedeformationcharacteristicsofthedeformationzoneinallkindofstampingformingcanbedenotedbythepointinthecoordinatesoftheplaneprincipalstress(diagramofthestampingstress)andthecoordinatesofthecorrespondingplaneprincipalstains(diagramofthestampingstrain)Thedifferentpointsinthefiguresofthestampingstressandstrainpossessdifferentstressstateanddeformationcharacteristics()Whenthedeformationzoneofthestampingblankissubjectedtoplanetensilestresses,itcanbedividedintotwocases,thatisσ>σ>,σ=andσ>σ>,σ=Inγθtθγtbothcases,thestresswiththemaximumabsolutevalueisalwaysatensilestressThesetwocasesareanalyzedrespectivelyasfollows)Inthecasethatσ>σ>andσ=,accordingtotheintegraltheory,theγθtrelationshipsbetweenstressesandstrainsare:ε(σσ)=ε(σσ)=ε(σσ)=kγγmθθmttmwhere,εεεaretheprincipalstrainsoftheradial,tangentialandthicknessγθtdirectionsoftheaxialsymmetricalstampingformingσσandσaretheprincipalγθtstressesoftheradial,tangentialandthicknessdirectionsoftheaxialsymmetricalstampingformingσistheaveragestress,σ=(σσσ)kisaconstantmmγθtInplanestressstate,Equationε(σσ)=ε(σσ)=ε(σσ)=kγγθθθtttθSinceσ>σ>,soσσ>andε>Itindicatesthatinplanestressstatewithγθγθθtwoaxialtensilestresses,ifthetensilestresswiththemaximumabsolutevalueisσ,γtheprincipalstraininthisdirectionmustbepositive,thatis,thedeformationbelongstotensileformingInaddition,becauseσ>σ>therefore(σσ)<andε<Thestrainintheγθtθtthicknessdirectionoftheblankεisnegative,thatis,thedeformationbelongstotcompressiveforming,andthethicknessdecreasesThedeformationconditioninthetangentialdirectiondependsonthevaluesofσandσWhenσ=σ,ε=whenσ>σ,ε<andwhenσ<σ,ε>γθγθθγθθγθθTherangeofσisσ>=σ>=Intheequibiaxialtensilestressstateσ=σθγθγθaccordingtoEquation,ε=ε>andε<Intheuniaxialtensilestressγθtstateσ=accordingtoEquationε=εθθγAccordingtoaboveanalysis,itisknownthatthiskindofdeformationconditionisintheregionAONofthediagramofthediagramofthestampingstrain(seeFig),andintheregionGOHofthediagramofthestampingstress(seeFig))Whenσ>σ>andσ=,accordingtoEquation,σ>σ>andθγtθγε>,Thisresultshowsthatfortheplanestressstatewithtwotensilestresses,whenθtheabsolustevalueofσisthestraininthisdirectionmustbepositive,thatis,itθmustbeinthestateoftensileformingAlsobecauseσ>σ>therefore(σσ)<andε<Thestrainintheγθtθtthicknessdirectionoftheblankεisnegative,orinthestateofcompressiveforming,tandthethicknessdecreasesThedeformationconditionintheradialdirectiondependsonthevaluesofσγandσWhenσ=σ,εwhenσ>σ,ε<andwhenσ<σ,ε>θθγγθγγθγγTherangeofσisσ>=σ>=Whenσ=σ,ε=ε>,thatis,inequibiaxialγθγγθγθtensilestressstate,thetensiledeformationwiththesamevaluesoccursinthetwotensilestressdirectionswhenσ=,ε=ε,thatis,inuniaxialtensilestressstate,γγθthedeformationcharacteristicinthiscaseisthesameasthatoftheordinaryuniaxialtensileThiskindofdeformationisintheregionAONofthediagramofthestampingstrain(seeFig),andintheregionGOHofthediagramofthestampingstress(seeFig)Betweenabovetwocasesofstampingdeformation,thepropertiesofσandσ,θγandthedeformationcausedbythemarethesame,onlythedirectionofthemaximumstressisdifferentThesetwodeformationsaresameforisotropichomogeneousmaterial()Whenthedeformationzoneofstampingblankissubjectedtotwocompressivestressesσandσ(σ=),itcanalsobedividedintotwocases,whichareγθtσ<σ<,σ=andσ<σ<,σ=γθtθγt)Whenσ<σ<andσ=,accordingtoEquation,σσ<与ε=Thisγθtγθγresultshowsthatintheplanestressstatewithtwocompressivestresses,ifthestresswiththemaximumabsolutevalueisσ<,thestraininthisdirectionmustbeγnegative,thatis,inthestateofcompressiveformingAlsobecauseσ<σ<,therefore(σσ)>andε>Thestraininthethicknessγθtθtdirectionoftheblankεispositive,andthethicknessincreasestThedeformationconditioninthetangentialdirectiondependsonthevaluesofσandσWhenσ=σ,ε=whenσ>σ,ε<andwhenσ<σ,ε>γθγθθγθθγθθTherangeofσisσ<σ<Whenσ=σ,itisinequibiaxialtensilestressstate,θγθγθhenceε=ε<whenσ=,itisinuniaxialtensilestressstate,henceε=εThisγθθθγkindofdeformationconditionisintheregionEOGofthediagramofthestampingstrain(seeFig),andintheregionCODofthediagramofthestampingstress(seeFig))Whenσ<σ<andσ=,accordingtoEquation,σσ<andε<Thisθγtθγθresultshowsthatintheplanestressstatewithtwocompressivestresses,ifthestresswiththemaximumabsolutevalueisσ,thestraininthisdirectionmustbenegative,θthatis,inthestateofcompressiveformingAlsobecauseσ<σ<,therefore(σσ)>andε>Thestrainintheθγtθtthicknessdirectionoftheblankεispositive,andthethicknessincreasestThedeformationconditionintheradialdirectiondependsonthevaluesofσγandσWhenσ=σ,ε=whenσ>σ,ε<andwhenσ<σ,ε>θθγγθγγθγγTherangeofσisσ<=σ<=Whenσ=σ,itisinequibiaxialtensilestressγθγγθstate,henceε=ε<whenσ=,itisinuniaxialtensilestressstate,henceε=εγθγγθ>ThiskindofdeformationisintheregionGOLofthediagramofthestampingstrain(seeFig),andintheregionDOEofthediagramofthestampingstress(seeFig)()Thedeformationzoneofthestampingblankissubjectedtotwostresseswithoppositesigns,andtheabsolutevalueofthetensilestressislargerthanthatofthecompressivestressThereexisttwocasestobeanalyzedasfollow:)Whenσ>,σ<and|σ|>|σ|,accordingtoEquation,σσ>andγθγθγθε>Thisresultshowsthatintheplanestressstatewithoppositesigns,ifthestressγwiththemaximumabsolutevalueistensile,thestraininthemaximumstressdirectionispositive,thatis,inthestateoftensileformingAlsobecauseσ>,σ<and|σ|>|σ|,thereforeε<Thestrainintheγθγθθcompressivestressdirectionisnegative,thatis,inthestateofcompressiveformingTherangeofσis>=σ>=σWhenσ=σ,thenε>,ε<,and|ε|=|ε|whenθθγθγγθγθσ=,thenε>,ε<,andε=ε,itistheuniaxialtensilestressstateThiskindofθγθθγdeformationconditionisintheregionMONofthediagramofthestampingstrain(seeFig),andintheregionFOGofthediagramofthestampingstress(seeFig))Whenσ>,σ<,σ=and|σ|>|σ|,accordingtoEquation,byθγtθγmeansofthesameanalysismentionedabove,ε>,thatis,thedeformationzoneisθintheplanestressstatewithoppositesignsIfthestresswiththemaximumabsolutevalueistensilestressσ,thestraininthisdirectionispositive,thatis,inthestateofθtensileformingThestrainintheradialdirectionisnegative(ε<=),thatis,intheγstateofcompressiveformingTherangeofσis>=σ>=σWhenσ=σ,thenε>,ε<and|ε|=|ε|whenγγθγθθγγθσ=,thenε>,ε<,andε=εThiskindofdeformationconditionisintheγθγγθregionCODofthediagramofthestampingstrain(seeFig),andintheregionAOBofthediagramofthestampingstress(seeFig)Althoughtheexpressionsofthesetwocasesaredifferent,theirdeformationessencesarethesame()Thedeformationzoneofthestampingblankissubjectedtotwostresseswithoppositesigns,andtheabsolutevalueofthecompressivestressislargerthanthatofthetensilestressThereexisttwocasestobeanalyzedasfollows:)Whenσ>,σ<and|σ|>|σ|,accordingtoEquation,σσ<andγθθγθγε<Thisresultshowsthatinplanestressstatewithoppositesigns,ifthestresswithθthemaximumabsolutevalueiscompressivestressσ,thestraininthisdirectionisθnegative,orinthestateofcompressiveformingAlsobecauseσ>andσ<,thereforeσσ<andε>Thestrainintheγθγθγtensilestressdirectionispositive,orinthestateoftensileformingTherangeofσis>=σ>=σWhenσ=σ,thenε>,ε<,andε=εwhenγγθγθγθγθσ=,thenε>,ε<,andε=εThiskindofdeformationisintheregionLOMofγγθγθthediagramofthestampingstrain(seeFig),andintheregionEOFofthediagramofthestampingstress(seeFig))Whenσ>,σ<and|σ|>|σ|,accordingtoEquationandbymeansofθγγθthesameanalysismentionedabove,ε<Thisresultshowsthatinplanestressstateγwithoppositesigns,ifthestresswiththemaximumabsolutevalueiscompressivestressσ,thestraininthisdirectionisnegative,orinthestateofcompressiveγforming,Thestraininthetensilestressdirectionispositive,orinthestateoftensileformingTherangeofσis>=σ>=σWhenσ=σ,thenε>,ε<,andε=εwhenθθγθγθγθγσ=,thenε>,ε<,andε=εSuchdeformationisintheregionDOFoftheθθγθγdiagramofthestampingstrain(seeFig),andintheregionBOCofthediagramofthestampingstress(seeFig)ThefourdeformationconditionsarerelatedtothecorrespondingstampingformingmethodsTheirrelationshipsarelabeledwithlettersinFigandFigThefourdeformationconditionsanalyzedaboveareapplicabletoallkindsofplanestressstates,thatis,thefourdeformationconditionscansumupallkindsofstampingformingintotwotypes,tensileandcompressiveWhenthestresswiththemaximumabsolutevalueinthedeformationzoneofthestampingblankistensile,thedeformationalongthisstressdirectionmustbetensileSuchstampingdeformationiscalledtensileformingBasedonaboveanalysis,thetensileformingoccupiesfiveregionsMON,AON,AOB,BOCandCODinthediagramofthestampingstainandfourregionsFOG,GOH,AOHandAOBinthediagramofthestampingstressWhenthestresswiththemaximumabsolutevalueinthedeformationzoneofthestampingblankiscompressive,thedeformationalongthisstressdirectionmustbecompressiveSuchstampingdeformationiscalledcompressiveformingBasedonaboveanalysis,thecompressiveformingoccupiesfiveregionsLOM,HOL,GOH,FOGandDOFinthediagramofthestampingstrainandfourregionsEOF,DOE,CODandBOCinthediagramofthestampingstressMDandFBaretheboundariesofthetwotypesofforminginthediagramsofthestampingstrainandstressrespectivelyThetensileformingislocatedinthetoprightoftheboundary,andthecompressiveformingislocatedinthebottomleftoftheboundaryBecausethestressproducedbytheplasticdeformationofthematerialisrelatedtothestraincausedbythestress,therealsoexistcertainrelationshipsbetweenthediagramsofthestampingstressandstrainTherearecorrespondinglocationsinthediagramsofthestampingstressandstrainforeverystampingdeformationAccordingtothestateofstressorstraininthedeformationzoneoftheformingblank,andusingtheboundarylineinthediagramofthestampingstressMDortheboundarylineinthediagramofthestampingstrainFB,itiseasytoknowthepropertiesandcharacteristicsofthestampingformingThelocationsinthediagramsofthestampingstressandstrainforvariousstressstatesandthecorrespondingrelationshipsofthetwodiagramsarelistedinTableItshowsthatthegeometricallocationforeveryregionaredifferentinthediagramsofthestampingstressandstrain,buttheirsequencesinthetwodiagramsarethesameOnekeypointisthattheboundarylinebetweenthetensileandthecompressiveformingisaninclinedlineattothecoordinateaxisThecharacteristicsofthestampingtechniquefortensileandcompressiveformingarelistedinTableTableclearlyshowsthatinthedeformationzoneoftheblank,thecharacteristicsoftheforceanddeformation,andthepatternsrelevanttothedeformationforeachstampingmethodarethesameTherefore,inadditiontotheresearchonthedetailstampingmethod,itisfeasibletostudystampingsystematicallyandcomprehensivelyThecharacteristicofthesystematicresearchistostudythecommonprincipleofalldifferenttypesofstampingmethodsTheresultsofthesystematicresearchareapplicabletoallstampingmethodsTheresearchonthepropertiesandlimitofthesheetmetalstampinghasbeencarriedoutincertainextentThecontentsoftheresearchonthestampingforminglimitbyusingsystematicmethodareshowninFigTableComparisonbetweenstatesofstressandstraininstampingStateofstressLocationLocationintheintheTypesofdiagramdiagramoftheofthedeformatistampingstampingonstrainstressStressStrainBiaxial>σAONGOHσγθTensiletensileσ>σAOCAOHstressstateθγTensileσ>,σ>θγBiaxial<σEOGCODσγθCompresscompressiveivestressstateσ<,σ<σ<σGOLDOEθγθγCompressiveStateof|>|σ|MONFOG|σγθTensilestresswith|σ|>|σ|LOMEOFoppositeθγCompresssignsiveσ>,σ<γθStateof|>|σ|CODAOB|σθγTensilestresswith|σ|>|σ|DOEBOCoppositeγθCompresssignsiveσ>,σ<θγTableComparisonbetweentensileandcompressiveformingItemTensileformingCompressiveformingRepresentationoftheFractureinthedeformationInstabilitywrinklecausedqualityprobleminthezoneduetoexcessivebycompressivestressdeformationzonedeformation(Mainlydependsonthe(MainlydependsonplasticityofthetheloadingcapabilityForminglimitmaterial,andisintheforceirrelevanttothetransferringzonethickness(Dependsonthe(CanbeestimatedbyantiinstabilityextensibilityorthecapabilityforminglimitDLF(HascertainrelationshiptotheblankthicknessVariationoftheblankThinningThickeningthicknessinthedeformationzoneMethodstoimprove(Improvetheplasticity(Adoptmultipassforminglimitofthematerialformingprocess(Decreaselocal(Changethemechanicsdeformation,andrelationshipbetweenincreasedeformationtheforcetransferringuniformityanddeformation(Adoptanintermediatezonesheattreatmentprocess(AdoptantiwrinklemeasuresFigDiagramofstampingstraincompressiveformingσγεγtensileformingtensileformingbulgingbulgingflangingdeepdrawingπdeepdrawingπneckingσθflangingεθexpandingσθεθneckingexpandingcompressiveformingεγσγFigDiagramofstampingstressChemistrycomponentStructurePlasticityDeformationconditionsHardeningcharacteristicsTensileCapabilityofStateofstressformingantineckingGradientofstrainHardeningcharacteristicsDeformationuniformityandextensioncapabilityDieshapeMechanicalproertyCapabilityofThevalueofthenandrantiwrinkleRelativethicknessChemistrycomponentCompressionPlasticityStructureformingDeformationconditionsStrengthDeformationresistanceDeformationHardeningcharacteristicsforceanditsCapabilityofantiwrinkleAnisotropyvalueofrunderthetensileandcompressivestressesFigExamplesforsystematicresearchmethods黑龙江科技学院毕业设计(论文)任务书姓名:曹珊任务下达日期:年月日设计(论文)开始日期:年月日年月日设计(论文)完成日期:一、设计(论文)题目:小型轧钢机的设计二、专题题目:轧辊的工艺规程设计三、设计的目的和意义:设计的为小型的轧钢机本轧钢机具有一机多能的特点既可在开坯的同时又可轧制小型的线材产品的品种可以通过替换精轧机的轧辊来实现从而免去了开坯的工序减少了工人的劳动强度提高工作效率。另外通过对轧钢机主机座设计采用预应力轧钢机机架并且通过上、中、下轧辊调整机构对轧辊进行调整可保证轧制线材的加工质量通过对市场的调查小型线材的需求量比较大并且生产设备投资较小适合小形投资生产四、设计(论文)主要内容:对于本次设计主要包括:电动机的选择与计算飞轮的设计与计算主减速器的选择与计算齿轮机座的设计与计算轧钢机机座的设计与计算最终设计结束后达到张号装配图以及万于字的毕业设计说明书。轧钢机的设计过程中主要对轧钢机各部五、设计目标:在分工作装置的设计。设计的要求是:一完成主电动机的选择与飞轮的设计二、完成传动装置齿轮机座的设计三、完成轧钢机主要工作机座轧钢机机座的设计与计算四、孔型的设计。六、进度计划:年月日至月日进行为期周的生产实习月日至月日完成对设计题目的资料收集与查询月日至月日完成对轧钢机机总体结构的初步布置月日至月日完成轧钢机机各部分装置的设计月日至月日进行设计图纸的绘制月日至月日进行毕业设计说明书的编写月日至月日最后的审稿及说明书和图纸的打印。七、参考文献资料:中小型轧钢机设计与计算马鞍山钢铁设计院等编轧钢机机械设计机械工业出版社王海文编初轧机设计轧钢冶金工业出版社许志永、邵锡宝编孔型设计郑树森上海人民出版社指导教师:院(系)主管领导:年月

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/73

毕业设计(论文)-小型轧钢机设计(全套图纸)

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利