首页 Student Sheet part B Properties at the Nanoscale…:学生表B部分的性能在纳米尺度…

Student Sheet part B Properties at the Nanoscale…:学生表B部分的性能在纳米尺度…

举报
开通vip

Student Sheet part B Properties at the Nanoscale…:学生表B部分的性能在纳米尺度…Student Sheet part B Properties at the Nanoscale…:学生表B部分的性能在纳米尺度… SYNTHESIZING SILVER NANOPARTICLES Student Sheet part B: Properties at the Nanoscale… Isn’t silver always silver? INTRODUCTION In the last class period, you saw that we can make solutions of...

Student Sheet part B Properties at the Nanoscale…:学生表B部分的性能在纳米尺度…
Student Sheet part B Properties at the Nanoscale…:学生 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf B部分的性能在纳米尺度… SYNTHESIZING SILVER NANOPARTICLES Student Sheet part B: Properties at the Nanoscale… Isn’t silver always silver? INTRODUCTION In the last class period, you saw that we can make solutions of different colors by reducing silver nitrate (AgNO) in aqueous solution (in water) using different amounts of 3 sodium borohydride (NaBH). Hopefully you realized that the amount of sodium 4 borohydride was an independent variable which was different for each group, and the color of the solution produced depended upon the amount of NaBH added. 4 You also may have realized that the silver you made did not look like silver at all! In fact, it was too small to be seen and a different color from the “silver” color which you may associate with silver. Today you’re going to read a little bit more about this reaction and answer some questions. Then we will look at a question related to why the silver might not look silver! THE REACTION The full chemical reaction which occurs in the lab you did is shown below. AgNO(aq) + NaBH(aq) ? Ag(s) + 1/2H(g) + 1/2BH(g) + NaNO(aq) 342263 1) Interpret this statement in words below: Silver nitrate dissolved in water + _________________ react to form ____________ , NaBH4 (aq) Ag (s) ________ gas, gaseous diboron hexahydride, and aqueous _______________ . H2(g) NaNO3 (aq) In the reaction, you can see that silver initially has a charge of +1, and afterwards has no charge. + Ag -----> Ag (aq)(s) 2) To which side of this equation must you add an electron to make it valid in terms of conservation of charge? Why do we say silver is being reduced? Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 1 of 7 SILVER NANOPARTICLES When researchers first looked at the colored solutions, there were not sure what was inside. They took samples, let the water evaporate and looked under a light microscope, and small very very small particles. So they used a fancier microscope, called a Scanning Electron Microscope, so take a closer look at the materials dissolved in water in the solutions. A scanning electron microscope at Carleton College. To learn more, go to SEM/seminfo.html The picture they saw looked a bit like the one shown below. These are particles made of pure silver. Yeechi Chen, Keiko Munechika, Jessica M. Smith, David S. Ginger University of Washington Department of Chemistry Unpublished results Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 2 of 7 3) Estimate the size of the particles you see here using the scale bar. How many particles would need to be lined up to equal the length of a meter stick? Show your work. 4) How many silver atoms would you estimate are in one of these nanoparticles? Assume that each silver atom occupies the volume of a cube with an edge of 0.30 nm. You can estimate the volume of the nanoparticle by assuming it’s a sphere. 3 , where r is the radius. Clearly The formula for the volume of a sphere is 4/3 π r show your work or explain the process you used. A COLLOIDAL SOLUTION Last class period, you saw that “bulk” silver can be made by mixing silver nitrate and a more reactive metal. This method of production makes chunks large enough to be seen with the naked eye. But in the synthesis you performed, something stops the production of silver when the particles are much smaller. Because these silver particles have sizes which are measured in nanometers, they are called silver nanoparticles, nanocrystals, or nanoprisms. What stops the particles from growing into larger, visible pieces of silver? If you have studied stoichiometry and solutions you can answer this question. 5) Look at the chemical reaction on the first page. What is the molar ratio of AgNO 3 to NaBH? A different way of asking this question is do you need more AgNO, 43 more NaBH, or an equal amount of each reactant? 4 So we know that whichever reactant is present in a smaller molar amount is going to be the limiting reagent. You used 1 mL of a 1.0 mM solution of AgNO, and about 4 mL of 3 a 10 mM solution of NaBH. 4 6) Which solution is more concentrated: the 1.0 mM solution of AgNO or the 10 3 mM solution of NaBH? 4 7) You also added more volume of the NaBH compared to the AgNO. So which 43 reactant, the silver nitrate, or the sodium borohydride, was present in a larger amount in terms of moles? Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 3 of 7 The excess sodium borohydride is required to prevent the silver particles which form from clumping together to form visible particles of silver. A picture of what happens is shown below. The sodium borohydride is dissolved in water and is an ionic +-) and borohydride polyatomic ions (BH). compound made up of sodium ions (Na4-There is an excess of BH ions because the sodium borohydride is present in excess. 4-The extra BH ions which do not react surround the silver nanoparticles (Ag NP in 4 the picture below), and prevent them from clumping together. Solomon et. al. J. Chem. Edu. Vol 84 #2, Feb 2007 pg 322 -8) Why would silver particles surrounded by BH ions not clump together? 4 Solutions which have small charged particles, which are too small to be seen with the eye, are called colloids. Examples of colloids include soapy water and milk. Isn’t silver always silver? You might remember that you added different amount of sodium borohydride, and this led to different colors. Why is this? The answer is that adding different amounts of sodium borohydride leads to different sizes of nanoparticles, and each nanoparticle has its own color! Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 4 of 7 This is a crucial fact. SILVER PARTICLES WHICH ARE NANOMETER SIZED DO NOT HAVE THE SAME PROPERTIES AS BULK SILVER!!! THE MATERIAL PROPERTIES CHANGE BECAUSE THE SIZE OF THE PARTICLES IS SO SMALL. Yeechi Chen, Keiko Munechika, Jessica M. Smith, David S. Ginger University of Washington Department of Chemistry Unpublished results In this picture, you can see that each silver nanoparticle has a slightly different color depending on how large it is. Why might different sized particles have different colors? It turns out that the explanation for this phenomenon is very complicated, and is too complex for us to look at. But we can understand why small silver particles might have some other different properties (besides color) compared to larger silver particles by using a two dimensional model of nanoparticles. Here’s an example. Notice that silver atoms in the middle of the crystal make more bonds than those on the outside. This means that the outside silver atoms have some unbonded electrons and are not “happy”. 9) For each of the following three two dimensional silver nanoparticles, count the number of bonds ( lines - ) and silver atoms (Ag). Then determine the number of bonds per atoms by dividing the second number by the first. Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 5 of 7 Number of bonds: ____________ Number of silver atoms: ___________ Number of bonds per atom: __________ Number of bonds: ____________ Number of silver atoms: ____________ Number of bonds per atom: ____________ Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 6 of 7 Number of bonds: ____________ Number of silver atoms: ____________ Number of bonds per atom: ____________ 10) What is the trend in terms of the number of bonds per atom? Do larger crystals or smaller crystals have more strongly bonded atoms on average? 11) Based on your answer to question 10), are there any properties which you might expect to be different for larger versus smaller silver nanoparticles? Think about properties which depend upon the strength of bonding. State your predictions clearly (I would expect smaller nanoparticles to be …. because … ). Ag Nanoparticles – SWB - version 5/8/2014 Copyright University of Washington, 2008 - Permission granted for printing and copying for local classroom use without modification Developed by Gabriel Cronin - with support from the National Science Foundation Page 7 of 7
本文档为【Student Sheet part B Properties at the Nanoscale…:学生表B部分的性能在纳米尺度…】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_954223
暂无简介~
格式:doc
大小:142KB
软件:Word
页数:0
分类:经济学
上传时间:2017-12-21
浏览量:20