下载
加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 力学考研面试问题完善版1

力学考研面试问题完善版1.doc

力学考研面试问题完善版1

杨盛德
2019-02-16 0人阅读 举报 0 0 暂无简介

简介:本文档为《力学考研面试问题完善版1doc》,可适用于高等教育领域

仅供参考!材料力学基本假设:连续性、均匀性、各项同性、小变形。杆件的四种基本变形:拉压、剪切、弯曲、扭转。材力研究问题的主要手段:静力平衡条件、物理条件、变形协调条件(几何条件)。角应变如何定义?为什么不能以某点微直线段的转角来定义某点的角应变?某点处两垂直微直线段的相对转角排除刚性转动的影响。冷作硬化对材料有何影响?提高材料的屈服应力。什么是圆杆扭转的极限扭矩?使圆杆整个横截面的切应力都达到屈服极限时所能承受的扭矩。杆件纯弯曲时的体积是否变化?拉压弹性模量不同时体积会发生变化。材料破坏的基本形式:流动、断裂四大强度理论?哪些是脆性断裂的强度理论哪些是塑性屈服的强度理论?、最大拉应力理论:这一理论认为引起材料脆性断裂破坏的因素是最大拉应力无论什么应力状态只要构件内一点处的最大拉应力σ达到单向应力状态下的极限应力σb材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ=σb。σbs=σ所以按第一强度理论建立的强度条件为:σ≤σ。、最大伸长线应变理论:这一理论认为最大伸长线应变是引起断裂的主要因素无论什么应力状态只要最大伸长线应变ε达到单向应力状态下的极限值εu材料就要发生脆性断裂破坏。εu=σbEε=σbE。由广义虎克定律得:ε=σu(σσ)E所以σu(σσ)=σb。按第二强度理论建立的强度条件为:σu(σσ)≤σ。、最大切应力理论:这一理论认为最大切应力是引起屈服的主要因素无论什么应力状态只要最大切应力τmax达到单向应力状态下的极限切应力τ材料就要发生屈服破坏。τmax=τ。依轴向拉伸斜截面上的应力公式可知τ=σs(σs横截面上的正应力)由公式得:τmax=τs=(σσ)。所以破坏条件改写为σσ=σs。按第三强度理论的强度条件为:σσ≤σ。、形状改变比能理论:这一理论认为形状改变比能是引起材料屈服破坏的主要因素无论什么应力状态只要构件内一点处的形状改变比能达到单向应力状态下的极限值材料就要发生屈服破坏。发生塑性破坏的条件所以按第四强度理论的强度条件为:sqrt(σ^σ^σ^σσσσσσ)<σ斜弯曲:梁弯曲后挠曲线所在平面与载荷作用面不在同一平面上。压杆失稳时将绕那根轴失稳?惯性矩最小的形心主惯性轴。为什么弹性力学中对微元体进行分析时两侧应力不同(如)而材料力学中对微元体进行分析时两侧应力相同(均为)?因为材料力学中没有考虑体力的影响而实质上弹性力学中记及体力的影响之后所得平衡微分方程就是体力项与不同侧多出的一阶项的平衡关系。弹性力学材料力学、结构力学、弹性力学的研究内容材料力学:求杆件在四种基本变形下的应力、应变、位移并校核其刚度、强度、稳定性结构力学:求杆系承载时的……弹性力学:研究各种形状结构在弹性阶段承载时的……弹性力学基本假设:连续性、线弹性、均匀性、各项同性、小变形。理想弹性体的概念:满足基本假设前个。弹性力学解为什么一般比材料力学解精确?材力在研究问题时除了从静力学、物理学、几何学三方面分析时还用了一些针对特定问题的形变或应力分布条件(如杆件拉压、扭转、弯曲时都用了平面假设)而弹性力学除了从基本的三个方程外一般没有用这些假设故……举例说明体力的概念:重力、惯性力面力正负号的规定方法:正面正向负面负向为正。小变形假设的作用:可略去各种高阶项使问题的控制方程包括代数方程和微分方程均化为线性方程。平面应力和平面应变问题区别?(可以分别从几何特征、外力特征、变性特征进行说明P)平面应力和平面应变都是起源于简化空间问题而设定的概念平面应力:只在平面内有应力,与该面垂直方向的应力可忽略,例如薄板拉压问题平面应变:只在平面内有应变,与该面垂直方向的应变可忽略,例如水坝侧向水压问题具体说来:平面应力是指所有的应力都在一个平面内,如果平面是OXY平面,那么只有正应力σx,σy,剪应力τxy(它们都在一个平面内),没有σz,τyz,τzx平面应变是指所有的应变都在一个平面内,同样如果平面是OXY平面,则只有正应变εx,εy和剪应变γxy,而没有εz,γyz,γzx举例说来:平面应变问题比如压力管道、水坝等,这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变作用外力与纵向轴垂直,并且沿长度不变柱体的两端受固定约束平面应力问题讨论的弹性体为薄板,薄壁厚度远远小于结构另外两个方向的尺度薄板的中面为平面,其所受外力,包括体力均平行于中面面内,并沿厚度方向不变弹性力学问题都是超静定问题平面弹性力学问题是次超静定问题为什么平面问题的平衡微分方程对于两类平面问题都适用?对于平面应力问题平面问题平衡微分方程的推导过程完全符合自然适用而对于平面应变问题推导过程没有记及轴向(Z向)应力的影响但根据平面应变问题特征前后面上轴向(Z向)应力相同自称平衡同样适用。另外推导的得到的方程不含材料常数故也是佐证。什么是圣维南原理?(P)三个要点为次要边界、静力等效、近处有影响远处几乎无影响。分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力在离荷载作用区稍远的地方基本上只同荷载的合力和合力矩有关荷载的具体分布只影响荷载作用区附近的应力分布。什么是静力等效?主矢量、主矩相等对刚体来而言完全正确但对变形体而言一般是不等效的。什么是弹性方程?用位移表示应力的方程为弹性方程是由几何方程代入物理方程得到。位移法的基本方程?用位移表示的平衡微分方程和用位移表示的应力边界条件。相容方程实质上就是由几何方程推得。应力法的基本方程?平衡微分方程、应力边界条件、相容方程、位移单值条件(对于多连体)。弹性力学的边界条件有哪些?位移边界、应力边界、混合边界。为什么应力边界问题用位移法、应力法均可求解而位移边界问题、混合边界问题一般都只能用位移法求解?因为位移边界条件一般无法用应力分量表示而应力边界条件可通过弹性方程用位移分量表示。相容条件的适用范围?所有位移单值连续的物体。常体力条件下的相容方程为调和方程而应力函数应为重调和函数。什么是逆解法?什么是半逆解法?(P)什么是可能的应力?可能的位移?可能的应力是指满足平衡微分方程、应力边界条件的应力可能的位移是指满足位移边界条件、相容方程的位移。什么是应力集中?因构件外形突然变化(如空洞、裂纹)而引起局部应力急剧增大的现象。差分法的基本思想?将构件网格化利用差分将节点各阶导数用临近节点处函数值表示进而将基本微分方程、边界条件用差分代数方程表示从而把求解微分方程变为求解代数方程的问题。平衡微分方程、几何方程、弹性本构方程、边界条件的张量表示?(主要前个)剪应变分量与工程剪应变有何不同?工程剪应变是剪应变分量的倍。泛函与变分的概念。泛函为以函数为自变量的函数变分是自变量函数形式上的微变。弹性力学变分法中的泛函指什么?形变势能、外力势能。位移变分原理是什么?根据能量守恒原理物体形变势能的变分等于外力在虚位移上所做的虚功即位移变分方程(等价于平衡微分方程、应力边界条件)从位移变分方程可推出虚功方程(P)和最小势能原理(P)即给定外力作用下在满足位移边界条件的各组位移中真实位移总使总势能为极小值。位移变分法的步骤:、假定位移分量形式(含待定系数)、将位移分量代入位移变分方程、将待定系数的变分归并待定系数变分的系数为得到代数方程组求解待定系数。应力变分原理是什么?(应力变分方程相当于相容方程、位移边界条件)、极端各向异性材料常数有个有一个弹性对称面的材料常数有个正交各向异性材料常数有个横贯各向异性材料常数有个各项同性材料常数有个。计算力学有限元法的基本思想?将一个结构离散为单元通过边界结点连结成组合体通过和原问题数学模型等效的变分原理或加权余量法建立求解未知场函数(通常是位移)在结点处值的代数方程组(矩阵形式)用数值方法求解而单元内部的未知场函数分布通过结点处函数值和单元内部插值函数求得这样就得到了未知场函数在整个求解域中的分布。有限元法中是如何实现位移连续的?通过单元内部位移插值函数实现。有限元法收敛的条件是什么?选取的单元位移模式满足完备性条件和协调性条件。计算力学中的总刚矩阵是如何集成的?通过单元节点自由度转换矩阵进行集成实际上就是直接将单刚阵中的元素对号直接叠加到总刚矩阵上。计算力学中总刚矩阵的奇异性如何消除?引入边界条件一般采用对角元素乘大数法。单刚矩阵为什么会奇异?()对于平面问题本因只有个平衡方程()单元应该可以有任意的刚性位移从这个角度上讲单刚阵必奇异。总刚矩阵的特点?对称性、奇异性、带状稀疏性、对角元大于有限元位移解为什么有下限性质?单元本应有无限多自由度但选定了单元位移模式后只有有限个自由度了相当于对单元施加了约束是单元刚度较实际增加致使整体偏刚故位移小于精确解。流体力学(以前出过答案)什么是流体?研究流体的个基本方法?(拉格朗日法、欧拉法)欧拉法和拉格朗日法的区别?流体可以受哪类力?(质量力、表面力)粘性流体的种流动方式?(层流、紊流)流体的受力与固体有何不同?流体不能受拉只能受压不能受集中力只能受表面力。什么是理想流体?流体运动的分类(按流体性质分、按流动状态分、按空间坐标分P)什么是定常流动、非定常流动?什么是沿程阻力、局部阻力?什么叫系统、控制体?什么是不可压缩流体?流体静力学的适用范围?(理想流体和粘性流体都适用)什么是急变流、缓变流?迹线和流线的区别?流管、流束、总流的概念?塑性力学弹塑性本构关系与弹性本构关系有何不同?原因是什么?不同在于应力与应变之间不存在一一对应的关系原因是弹塑性本构关系与加载历史有关。等向强化模型与随动强化模型有何区别?等向:认为拉伸和压缩时的强化屈服应力绝对值始终相等。随动:认为拉伸和压缩时的强化屈服应力(代数值)之差始终相等。什么是材料的包式效应?弹性极限曲线依赖于加载路径而极限载荷曲线为结构固有性质与加载路径无关。什么是塑性铰?与普通铰支有何区别?梁某截面处弯曲达到了塑性极限弯矩时该处曲率可任意增长。区别在于:塑性铰可承受弯矩反向转动相当于卸载。求主应力实际上就是特征值问题。两个屈服准则Tresca、Mises什么是加载、卸载?加载:产生新的塑性变形(应力增量向量指向加载面外法线方向)。卸载:材料状态处于屈服面上并从塑性状态进入弹性状态。有应变是不是一定有应力有应力是不是一定有应变为什么?

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/11

力学考研面试问题完善版1

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利