首页 基于OSPF路由协议的网络互连

基于OSPF路由协议的网络互连

举报
开通vip

基于OSPF路由协议的网络互连实训报告 课程名称:          设计题目:  基于OSPF路由协议的网络互连         系    别:                      专    业:                    组    别:                                起止日期:   2012年12月26日~2013年1月5日  指导教师:                             2915级网络工程一班二○一 七年制 实训题目 基于OSPF路由协议的网络互...

基于OSPF路由协议的网络互连
实训报告 课程名称:          设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 题目:  基于OSPF路由 协议 离婚协议模板下载合伙人协议 下载渠道分销协议免费下载敬业协议下载授课协议下载 的网络互连         系    别:                      专    业:                    组    别:                                起止日期:   2012年12月26日~2013年1月5日  指导教师:                             2915级网络工程一班二○一 七年制 实训题目 基于OSPF路由协议的网络互连 组长   学号 班级   系别   专业   组员   指导教师   实训目的 (1) 掌握子网划分,路由原理等网络基本知识。 (2) 掌握OSPF协议的基本配置。 (3) 掌握基本的组网方法,利用OSPF协议互联5个独立的局域网。 实训所需环境 Cisco Packet Tracer 实训任务要求 利用OSPF协议互连5个独立的局域网,基于PacketTracer实现网络功能 实训工作进度 计划 项目进度计划表范例计划下载计划下载计划下载课程教学计划下载 序号 起止日期 工 作 内 容 分工情况 1 5.20-5.25 商讨问题的解决路径和初步实施 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 。   2 5.26-5.27 划分子网和画出初步拓扑图。 3 5.28-5.31 路由器和交换机的配置。 4 6.1-6.4 进一步完善拓扑图 5 6.5-6.10 完成实训实验报告,并作出分析。 指导教师签字: 年 月 日 教研室审核 意见 文理分科指导河道管理范围浙江建筑工程概算定额教材专家评审意见党员教师互相批评意见 : 教研室主任签字: 年 月 日                     实训任务书 目  录 1 引言    1 1.1实训目的    1 1.2 实训背景    1 1.3 实训主要内容    1 2需求分析    1 2.1 实验环境    1 2.2 设计思路    1 2.3 设计要求    2 3概要设计    2 3.1设计的流程图    2 3.2 OSPF路由协议的原理与配置    3 3.2.1 OSPF路由协议的原理    3 3.2.2 OSPF路由协议的配置    4 4 详细设计    5 4.1 子网的划分    5 4.2 网络拓扑图的设计    5 4.3路由器的配置信息    6 4.4交换机的配置    11 5 调试与操作说明    11 5.1 查看路由    11 5.2 使用Cisco Packet Tracer 调试与模拟    13 6 结束语    20 参考文献    20 实训主要内容 1 引言 1.1实训目的 本实训是为了让同学们了解学习计算机网络的作用和意义。通过实训,掌握路由器接口IP地址配置以及OSPF路由协议的配置。 培养我们在网络实践中的能力,和团队合作的能力。 1.2 实训背景 网络的发展离不开路由协议,OSPF路由协议是一种典型的链路状态的路由协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。在这个自治系统中,所有的OSPF路由器都维护一个相同的描述这个自治系统结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF路由器正是通过这个数据库计算出其OSPF路由表的。 作为一种链路状态的路由协议,OSPF将链路状态广播数据包LSA(Link State Advertisement)传送给在某一区域内的所有路由器,这一点与距离矢量路由协议不同。运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。OSPF路由协议支持路由验证,只有互相通过路由验证的路由器之间才能交换路由信息。并且OSPF可以对不同的区域定义不同的验证方式,提高网络的安全性,因此,OSPF路由协议应用非常广泛。 1.3 实训主要内容 路由选择协议可以将分布在不同地理位置的局域网连接成一个较大的网络。利用OSPF协议互连5个独立的局域网,且每个局域网的计算机数量分别为10台、7台、25台、31台、62台,将每个局域网作为一个独立的子网;整个网络可用私有地址段为192.168.0.0/24,利用VLSM技术划分子网;每个子网分别连接一个路由器,5个路由器依次连接成环状,路由器间使用OSPF路由协议选择路径,并基于Packet Tracer实现网络功能。 2需求分析 2.1 实验环境 安装了模拟软件Cisco Packet Tracer的计算机 2.2 设计思路 利用OSPF协议互连5个单独成立的局域网,将每个局域网划分为一个独立的子网。然后将5个路由器连成环状,由于拓扑为环形,没有层次之分,依次配置每一个路由器,拓扑主干如2-1所示: 图2-1拓扑主干图 2.3 设计要求 利用OSPF协议互连6个独立的局域网,其中有4个局域网属于区域0,2个局域网属于区域1,区域0的计算机数量分别为10台、7台、25台、62台,将每个局域网作为一个独立的子网,网络可用私有地址段为192.168.0.0/24,区域1的计算机数量为31台、62台,网络可用私有地址段为192.168.1.0/24。 利用VLSM技术划分子网;每个子网分别连接一个路由器,区域0有5个路由器依次连接成环状,区域1和区域0的一个路由器相连,3个路由器连成环,路由间使用OSPF路由协议选择路径。 3概要设计 3.1设计的流程图 设计流程: (1)根据需求划分子网; (2)构造网络图谱图; (3)配置路由器; (4)查看路由; (5)设计测试; 3.2 OSPF路由协议的原理与配置 3.2.1 OSPF路由协议的原理 OSPF(Open Shortest Path First)是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。与RIP相对,OSPF是链路状态路有协议,而RIP是距离向量路由协议。我们通过图3.2来概括网络互联主要的四种抽象模型。图中,抽象模型Model 1表示路由器的一个以太网接口不连接其他路由器,只连接了一个以太网段。此时,对于运行 OSPF的路由器R1,只能识别本身,无法识别该网段上的设备(主机等);抽象模型Model 2表示路由器R1通过点对点链路(如PPP、HDLC等)连接一台路由器R2;抽象模型Model 3表示路由器R1通过点对多点(如Frame Relay、X.25等)链路连接多台路由器R3、R4等,此时路由器R5、R6之间不进行互联;抽象模型Model 4表示路由器R1通过点对多点(如Frame Relay、X.25等)链路连接多台路由器R5、R6等,此时路由器R5、R6之间互联。以上抽象模型着重于各类链路层协议的特点,而不涉及具体的链路层协议细节。该模型基本表达了当前网络链路的连接种类。 对于抽象模型Model 1(以太网链路),使用Link ID(连接的网段)、Data(掩码)、Type(类型)和Metric(代价)来描述。此时的Link ID即为路由器R1接口所在网段,Data为所用掩码,Type为3,Metric为代价值。 对于抽象模型Model 2(点对点链路),先使用Link ID(连接的网段)、Data(掩码)、Type(类型)和Metric(代价)来描述接口路由,以上各参数与Model 1相似。接下来描述对端路由器R2,四个参数名不变,但其含义有所不同。此时Link ID为路由器R2的Router ID,Data为路由器R2的接口地址,Type为1(Router),Metric仍为代价值。 对于抽象模型Model 3(点对多点链路,不全连通),先使用Link ID(连接的网段)、Data(掩码)、Type(类型)和Metric(代价)来描述接口路由,以上各参数与Model 1相似。接下来分别描述对端路由器R3、R4的方法,与在Model 2中描述R2类似。 对于抽象模型Model 4(点对多点链路,全连通),先使用Link ID(网段中DR的接口地址)、Data(本接口的地址)、Type(类型)和Metric(代价)来描述接口路由。此时Type值为2(Transnet),然后是本网段中DR(指定路由器)描述的连接通告。 路由器在通报其获知的链路状态(即上面所述的参数)前,加上LSA头(Link State Advertisement Head),从而生成LSA(链路状态广播)。到此,路由器通过LSA完成周边网络的拓扑结构描述,并发送给网络中的其他路由器。 图3-2路由协议原理图 3.2.2 OSPF路由协议的配置 OSPF路由协议配置中的全局设置的有关命令如表3-3: 表3-3 全局设置的命令表 任务 命令 指定使用OSPF协议 router ospf process-id1 指定与该路由器相连的网络 network address wildcard-mask area area-id2 指定与该路由器相邻的节点地址 neighbor ip-address     OSPF路由进程process-id必须指定范围在1-65535,多个OSPF进程可以在同一个路由器上配置,但最好不这样做。多个OSPF进程需要多个OSPF数据库的副本,必须运行多个最短路径算法的副本。process-id只在路由器内部起作用,不同路由器的process-id可以不同。 wildcard-mask 是子网掩码的反码, 网络区域ID area-id在0-4294967295内的十进制数,也可以是带有IP地址格式的x.x.x.x。当网络区域ID为0或0.0.0.0时为主干域。不同网络区域的路由器通过主干域学习路由信息。 4 详细设计 4.1 子网的划分 利用OSPF协议互连6个独立的局域网,由于每个局域网的计算机数量分别为10台、7台、25台、62台、31台、62台,将每个局域网作为一个独立的子网,区域0的网络用私有地址段为192.168.0.0/24,区域1网络用私有地址段为192.168.1.0/24;利用VLSM技术划分子网,划分结果如表: 表4-1区域0的 子网划分 子网名 主机数 划分子网IP地址 子网IP地址范围 LAN0 10台计算机 192.168.0.0/28 192.168.0.1 —192.168.0.14 LAN1 7台计算机 192.168.0.16/28 192.168.0.17 —192.168.0.30 LAN2 25台计算机 192.168.0.32/27 192.168.0.33 —192.168.0.62 LAN3 62台计算机 192.168.0.128/26 192.168.0.129—192.168.0.190         表4-2区域1的 子网划分 子网名 主机数 划分子网IP地址 子网IP地址范围 LAN4 31台计算机 192.168.0.64/26 192.168.0.65—192.168.0.126 LAN5 62台计算机 192.168.0.128/26 192.168.0.129—192.168.0.190         4.2 网络拓扑图的设计 区域0:5个路由器R0、R1、R2、R3、R4连接成一个环,区域1:3个路由器互联成环, 每一个路由器的接口IP如表4-2所示: 表4-3区域0的路由器的接口IP 路由器名 F0/0接口IP S0/0接口IP S0/1接口IP R0 F0/0:192.168.0.14/28 S0/0:192.168.0.193/30 S0/1:192.168.0.210/30 R1 F0/0:192.168.0.30/28 S0/0:192.168.0.197/30 S0/1:192.168.0.194/30 R2 F0/0:192.168.0.62/27 S0/0:192.168.0.201/30 S0/1:192.168.0.198/30 R3   S0/0:192.168.0.205/30 S0/1:192.168.0.202/30 R4 F0/0:192.168.0.190/26 S0/0:192.168.0.209/30 S0/1:192.168.0.206/30         区域1的路由表: 表4-4区域1的路由器的接口IP 路由器名 F0/0接口IP F0/1接口IP S0/0接口IP R3 F0/0:192.168.1.1/28 F0/1:192.168.1.17/28   R5 F0/0:192.168.1.2/28 F0/1:192.168.1.65/26 S0/0:192.168.1.33/27 R6 F0/0:192.168.1.129/26 F0/1:192.168.1.18/28 S0/0:192.168.1.34/27         利用DNS服务器实现域名解析进而访问web服务器; 网络拓扑图如图4-3: 图4-1网络拓扑图 4.3路由器的配置信息 ⑴ 路由器R0的配置信息: hostname R0                            //将路由器命名为R0 interface FastEthernet0/0 ip address 192.168.0.14 255.255.255.240      //对接口F0/0分配IP地址 duplex auto                              //双工的协商模式为自动 speed auto  //速率为协商模式为自动 interface FastEthernet0/1                //对接口F0/1分配IP地址 no ip address                        //删除接口F0/1分配IP地址 duplex auto                          //双工的协商模式为自动 speed auto                            //速率为协商模式为自动 shutdown                          //激活接口 interface Serial0/0                  //对接口S0/0分配IP地址 ip address 192.168.0.193 255.255.255.252 clock rate 64000                    //设置时钟频率 interface Serial0/1                  //对接口S0/1分配IP地址 ip address 192.168.0.210 255.255.255.252 clock rate 64000                  //设置时钟频率 router ospf 1                    // 启动ospf进程 log-adjacency-changes //宣告192.168.0.0网段,反码为0.0.0.15 ospf区域为骨干区域area0 network 192.168.0.0 0.0.0.15 area 0  network 192.168.0.192 0.0.0.3 area 0 network 192.168.0.208 0.0.0.3 area 0 ip classless line con 0 line vty 0 4 login ⑵ 路由器R1的配置信息: hostname R1                          //将路由器命名为R1 interface FastEthernet0/0                //对接口F0/0分配IP地址 ip address 192.168.0.30 255.255.255.240 duplex auto                          //双工的协商模式为自动 speed auto                            //速率为协商模式为自动 interface FastEthernet0/1                //对接口F0/1分配IP地址 no ip address                          //删除接口F0/1分配IP地址 duplex auto                            //双工的协商模式为自动 speed auto                            //速率为协商模式为自动 shutdown                              //激活接口 interface Serial0/0                          //对接口S0/0分配IP地址 ip address 192.168.0.205 255.255.255.252 clock rate 64000 interface Serial0/1                            //对接口S0/1分配IP地址 ip address 192.168.0.210 255.255.255.252 router ospf 1                                  // 启动ospf进程 log-adjacency-changes network 192.168.0.208 0.0.0.3 area 0 network 192.168.0.204 0.0.0.3 area 0 network 192.168.0.16 0.0.0.15 area 0 line con 0 line vty 0 4 login ⑶ 路由器R2的配置信息: hostname R2                                //将路由器命名为R2 interface FastEthernet0/0                      //对接口F0/0分配IP地址 ip address 192.168.0.62 255.255.255.224 duplex auto                                //双工的协商模式为自动 speed auto                                  //速率为协商模式为自动 interface FastEthernet0/1                      //对接口F0/1分配IP地址 no ip address                                //删除接口F0/1分配IP地址 duplex auto                                //双工的协商模式为自动 speed auto                                //速率为协商模式为自动 shutdown interface Serial0/0                        //对接口S0/0分配IP地址 ip address 192.168.0.206 255.255.255.252 clock rate 64000                          //设置时钟频率 interface Serial0/1                        //对接口S0/1分配IP地址 ip address 192.168.0.201 255.255.255.252 router ospf 1                            // 启动ospf进程 log-adjacency-changes network 192.168.0.204 0.0.0.3 area 0 network 192.168.0.208 0.0.0.3 area 0 network 192.168.0.320.0.0.31 area 0 line con 0 line vty 0 4 login ⑷ 路由器R3的配置信息: hostname R3                                //对路由器R3进行命名 interface FastEthernet0/0                      //对接口F0/0分配IP地址 ip address 192.168.1.1 255.255.255.240          duplex auto                                  //双工的协商模式为自动 speed auto                                  //速率为协商模式为自动 interface FastEthernet0/1                        //对接口F0/1分配IP地址 ip address 192.168.1.17 255.255.255.240 duplex auto                                  //双工的协商模式为自动 speed auto                                  //速率为协商模式为自动 interface Serial0/0                            //对接口S0/0分配IP地址 ip address 192.168.0.197 255.255.255.252 interface Serial0/1                            //对接口S0/1分配IP地址 ip address 192.168.0.202 255.255.255.252 clock rate 64000                              //设置时钟频率 interface Serial0/1                            //对接口S0/1分配IP地址 log-adjacency-changes network 192.168.0.200 0.0.0.3 area 0 network 192.168.0.196 0.0.0.3 area 0 network 192.168.1.0 0.0.0.15 area 1 network 192.168.1.16 0.0.0.15 area 1 ip classless line con 0 line vty 0 4 login ⑸ 路由器R4的配置信息: hostname R4                              //将路由器命名为R4 interface FastEthernet0/0                    //对接口F0/0分配IP地址 ip address 192.168.0.190 255.255.255.192 duplex auto                              //双工的协商模式为自动 speed auto                                //速率为协商模式为自动 interface FastEthernet0/1                    //对接口F0/1分配IP地址 no ip address duplex auto                            //双工的协商模式为自动 speed auto                              //速率为协商模式为自动 shutdown interface Serial0/0                          //对接口S0/0分配IP地址 ip address 192.168.0.194 255.255.255.252 interface Serial0/1                          //对接口S0/1分配IP地址 ip address 192.168.0.198 255.255.255.252 clock rate 64000                            //设置时钟频率 router ospf 1                            // 启动ospf进程 log-adjacency-changes network 192.168.0.128 0.0.0.63 area 0 network 192.168.0.192 0.0.0.3 area 0 network 192.168.0.196 0.0.0.3 area 0 line con 0 line vty 0 4 Login ⑹路由器R11的配置信息: hostname R11                              //对R11进行命名 interface FastEthernet0/0                      ip address 192.168.1.129 255.255.255.192 duplex auto                                //双工的协商模式为自动 speed auto                                //速率为协商模式为自动 interface FastEthernet0/1 ip address 192.168.1.18 255.255.255.240 duplex auto                            // 双工的协商模式为自动 speed auto                              //速率为协商模式为自动 interface Serial0/0                          //对接口S0/0分配IP地址 ip address 192.168.1.34 255.255.255.224 interface Serial0/1                        //对接口S0/1分配IP地址 no ip address shutdown router ospf 1                              // 启动ospf进程 log-adjacency-changes network 192.168.1.16 0.0.0.15 area 1 network 192.168.1.32 0.0.0.31 area 1 network 192.168.1.128 0.0.0.63 area 1 ip classless line con 0 line vty 0 4 login 4.4交换机的配置 interface FastEthernet0/2 switchport access vlan 2          //划分vlan2 switchport mode trunk interface FastEthernet0/3 switchport access vlan 3        //划分vlan3 switchport mode trunk interface FastEthernet0/4 switchport access vlan 4          //划分vlan4 switchport mode trunk 4.5服务器的配置 5 调试与操作说明 5.1 查看路由 利用路由显示命令show ip route,依次查看每一个路由器的路由信息。 路由器R3的路由表如图5-1: 图5-1 路由器R3的路由表 路由器R4的路由表如图5-2: 图5-2 路由器R4的路由表 路由器R10的路由表如图5-2 图5-3 路由器R10的路由表 路由器R11的路由表如图5-2 图5-4 路由器R11的路由表 5.2 使用Cisco Packet Tracer 调试与模拟  5.2.1故障测试 ⑴配置故障测试,由于配置错误,导致路由器没有选择最优路径,测试结果,如下图所示: 图5-5配置故障测试图 由于R2的ospf的配置错误,导致了路径选择错误,系统没有选择最优路径。 ⑵人为故障测试 图5-6人为故障测试图 在修改好ospf配置错误之后,我们测试成功了,在人为的操作下,删除了一条最短路径,系统自动的选择了剩下的唯一的一条路径。 5.2.2测试各个PC机是否能Ping通 测试PC0是否能Ping通,测试结果如图5-7 图5-7测试PC0是否能Ping通 测试PC1是否能Ping通,测试结果如图5-8: 图5-8测试PC1是否能Ping通 测试PC2是否能Ping通,测试结果如图5-9: 图5-9 测试PC2是否能Ping通 测试PC3是否能Ping通,测试结果如图5-10: 图5-10 测试PC3是否能Ping通 测试PC4是否能Ping通,测试结果如图5-11: 图5-11测试PC4是否能Ping通 测试PC5是否能Ping通,测试结果如图5-12: 图5-12测试PC4是否能Ping通 使用Cisco Packet Tracer进行模拟,如图5-13所示: 图5-13模拟发信过程 通过利用Cisco Packet Tracer模拟的方法,依次测试每一台计算机之间的通信,测试结果如图5-14: 图5-14 利用Cisco Packet Tracer测试结果 5.2.3 DNS域名解析测试 PC3的IP配置: 图5-15 IP配置图 服务器的DNS配置如图所示: 图5-16服务器DNS配置图 通过DNS域名解析可以在PC3机上访问网页www.test.com,PC3首先通过Server1域名解析,找到了www.test.com的IP地址,返回给PC3,再查找路由器找到最短路径,访问Server0,测试结果如下图所示: 图5-17 测试结果图 6 结束语 此次的实训我们较为快速的完成了,这与各个组员之间密不可分的合作是分不开的,团队之间的合作使得我们的实训相对的做的还是比较成功的,有许多的地方,大家一起想点子,想办法,是的一切的问题也因此迎刃而解,当然这一些还是与老师平时教诲我们的东西是不可分,这次的ospf设计中,我们先是上网查询大量的ospf设计成功的实例进行参考,再在网络上学习利用Cisco Packet Tracer的合理使用,怎样才能完美的运行,在制作拓扑图的时候,我们也明确的分工,将其分为画图,连接,配置,运行,测试,四大部分,一些细节性的工作都是由大家一起来完成的。所以这次实训,感谢我们做友好的组员,我们一起的努力才换回现在的成果,谢谢你们。 参考文献 [1] 谢希仁.计算机网络[J].第五版.北京:电子工业出版社,2008年1月 [2] 陈国君.计算机网络实验教程[J].北京:清华大学出版社,2008年11月 [3] 李领志、杨哲、纪其进.使用计算机网络教程[J]北京:清华大学出版社,2012年7月 致谢 在此感谢我们的董尼老师,在实训中对我们的帮助,以及平时对我们网络知识的普及,在这次实训中我们通过网络寻找资料,再利用平时老师叫我们的知识对一系列的主机,路由,交换机等进行配置,测试,这与平时在实验课中老师叫我们的只是是紧密相连的,没有老师的教诲,我们不会作数这样的成果,其中有许多的不同问题,老师在设计中都帮我们一一的解答,在这里,我第三组的全体成员对我们敬爱的董尼老师做出最敬重的感谢,谢谢您,老师,辛苦了。 评语: 评阅教师签名: 年 月 日 成 绩    
本文档为【基于OSPF路由协议的网络互连】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_729658
暂无简介~
格式:doc
大小:116KB
软件:Word
页数:29
分类:互联网
上传时间:2019-02-17
浏览量:205