购买

¥ 6.0

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 2018年四川省成都市中考数学试卷真题含答案解析(Word版)

2018年四川省成都市中考数学试卷真题含答案解析(Word版).doc

2018年四川省成都市中考数学试卷真题含答案解析(Word版)

北溟愚鱼
2018-09-14 0人阅读 举报 0 0 暂无简介

简介:本文档为《2018年四川省成都市中考数学试卷真题含答案解析(Word版)doc》,可适用于考试题库领域

年中考真题四川省成都市年中考数学试卷(解析版)一、选择题(A卷)实数在数轴上对应的点的位置如图所示这四个数中最大的是( )A                                            B                                            C                                            D 【答案】D【考点】数轴及有理数在数轴上的表示有理数大小比较【解析】【解答】解:根据数轴可知a<b<<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大即可得出结果。年月日西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星卫星进入近地点高度为公里、远地点高度为万公里的预定轨道将数据万用科学记数法表示为( )A                              B                             C                             D 【答案】B【考点】科学记数法表示绝对值较大的数【解析】【解答】解:万=×故答案为:B【分析】根据科学计数法的表示形式为:a×n。其中≤|a|<此题是绝对值较大的数因此n=整数数位,即可求解。如图所示的正六棱柱的主视图是( )A                                B       C                                           D 【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的个矩形中间的矩形面积较大两边的矩形面积相同∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形即可求解。在平面直角坐标系中点关于原点对称的点的坐标是( )ABCD【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(,)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数就可得出答案。下列计算正确的是( )A         B               C         D 【答案】D【考点】同底数幂的乘法完全平方公式及运用合并同类项法则及应用积的乘方【解析】【解答】解:A、xx=x因此A不符合题意B、(xy)=xxyy因此B不符合题意C、(xy)=xy因此C不符合题意D、因此D符合题意故答案为:D【分析】根据合并同类项的法则可对A作出判断根据完全平方公式可对B作出判断根据积的乘方运算法则及同底数幂的乘法可对C、D作出判断即可得出答案。如图已知添加以下条件不能判定的是( )A                    B                    C                    D 【答案】C【考点】三角形全等的判定【解析】【解答】解:A、∵∠A=∠D∠ABC=∠DCBBC=CB∴△ABC≌△DCB因此A不符合题意B、∵AB=DC∠ABC=∠DCBBC=CB∴△ABC≌△DCB因此B不符合题意C、∵∠ABC=∠DCBAC=DBBC=CB不能判断△ABC≌△DCB因此C符合题意D、∵AB=DC∠ABC=∠DCBBC=CB∴△ABC≌△DCB因此D不符合题意故答案为:C【分析】根据全等三角形的判定定理及图中的隐含条件对各选项逐一判断即可。如图是成都市某周内日最高气温的折线统计图关于这天的日最高气温的说法正确的是( )A 极差是℃                    B 众数是℃                    C 中位数是℃                    D 平均数是℃【答案】B【考点】平均数及其计算中位数极差、标准差众数【解析】【解答】A、极差=℃℃=℃因此A不符合题意B、∵、、、、、、这个数中出现两次是出现次数最多的数∴众数是因此B符合题意C、排序:、、、、、、最中间的数是、∴中位数为:()÷=因此C不符合题意D、平均数为:()÷≠因此D不符合题意故答案为:B【分析】根据极差=最大值减去最小值可对A作出判断根据众数和中位数的定义可对B、C作出判断根据平均数的计算方法可对D作出判断。从而可得出答案。分式方程的解是( )A x=                                B                                 C                                 D 【答案】A【考点】解分式方程【解析】【解答】解:方程两边同时乘以x(x)得:(x)(x)x=x(x)xxx=xx解之:x=经检验:x=是原方程的根。故答案为:A【分析】方程两边同时乘以x(x)将分式方程转化为整式方程再解整式方程然后检验即可求解。如图在中的半径为则图中阴影部分的面积是( )A                                          B                                          C                                          D 【答案】C【考点】平行四边形的性质扇形面积的计算【解析】【解答】解:∵平行四边形ABCD∴AB∥DC∴∠B∠C=°∴∠C=°°=°∴阴影部分的面积=×÷=故答案为:C【分析】根据平行四边形的性质及平行线的性质可求出∠C的度数再根据扇形的面积公式求解即可。关于二次函数下列说法正确的是( )A 图像与轴的交点坐标为                          B 图像的对称轴在轴的右侧      C 当时的值随值的增大而减小          D 的最小值为【答案】D【考点】二次函数的性质二次函数的最值【解析】【解答】解:A、当x=时y=图像与轴的交点坐标为()因此A不符合题意B、对称轴为直线x=对称轴再y轴的左侧因此B不符合题意C、当x<时y的值随值的增大而减小当<x<时y随x的增大而增大因此C不符合题意D、a=>当x=时,y的最小值==因此D符合题意故答案为:D【分析】求出抛物线与y轴的交点坐标可对A作出判断求出抛物线的对称轴可对B作出判断根据二次函数的增减性可对C作出判断求出抛物线的顶点坐标可对D作出判断即可得出答案。二、填空题(A卷)等腰三角形的一个底角为则它的顶角的度数为.【答案】°【考点】三角形的面积等腰三角形的性质【解析】【解答】解:∵等腰三角形的一个底角为∴它的顶角的度数为:°°×=°故答案为:°【分析】根据等腰三角形的两底角相等及三角形的内角和定理就可求得结果。在一个不透明的盒子中装有除颜色外完全相同的乒乓球共个从中随机摸出一个乒乓球若摸到黄色乒乓球的概率为则该盒子中装有黄色兵乓球的个数是.【答案】【考点】概率公式简单事件概率的计算【解析】【解答】解:设该盒子中装有黄色兵乓球的个数为x个根据题意得:=解之:x=故答案为:【分析】根据黄球的概率建立方程求解即可。已知且则的值为.【答案】【考点】解一元一次方程比例的性质【解析】【解答】解:设则a=kb=kc=k∵∴kkk=解之:k=∴a=×=故答案为:【分析】设分别用含k的式子表示出a、b、c的值再根据建立关于k的方程求出k的值就可得出a的值。如图在矩形中按以下步骤作图:①分别以点和为圆心以大于的长为半径作弧两弧相交于点和②作直线交于点若则矩形的对角线的长为.【答案】【考点】线段垂直平分线的性质勾股定理作图基本作图【解析】【解答】连接AE根据题意可知MN垂直平分AC∴AE=CE=在Rt△ADE中AD=AEDEAD==∵AC=ADDCAC==∴AC=【分析】根据作图可知MN垂直平分AC根据垂直平分线的性质可求出AE的长再根据勾股定理可求出AD的长然后再利用勾股定理求出AC即可。三、解答题(A卷)()()化简【答案】()原式         ()解:原式【考点】实数的运算分式的混合运算特殊角的三角函数值【解析】【分析】()先算乘方、开方、绝对值代入特殊角的三角函数值再算乘法然后在合并同类二次根式即可。()先将括号里的分式通分计算再将除法转化为乘法然后约分化简即可。若关于的一元二次方程有两个不相等的实数根求的取值范围【答案】由题知:原方程有两个不相等的实数根【考点】一元二次方程的求根公式及应用【解析】【分析】根据已知条件此方程有两个不相等的实数根得出bac>,解不等式求解即可。为了给游客提供更好的服务某景区随机对部分游客进行了关于“景区服务工作满意度”的调查并根据调查结果绘制成如下不完整的统计图表根据图标信息解答下列问题:()本次调查的总人数为表中的值()请补全条形统计图()据统计该景区平均每天接待游客约人若将“非常满意”和“满意”作为游客对景区服务工作的肯定请你估计该景区服务工作平均每天得到多少名游客的肯定【答案】()()比较满意(人)补全条形统计图如下:()(人)答:该景区服务工作平均每天得到人的肯定【考点】用样本估计总体统计表条形统计图【解析】【解答】()÷%=人m=%%%=%【分析】()根据统计表可得出:本次调查的总人数=非常满意的人数除以所占百分比m=其它三项的百分比计算即可。()根据根据统计表中的数据可得出n=抽查的总人数×%再补全条形统计图。()用ד非常满意”和“满意”所占的百分比之和计算即可。由我国完全自主设计、自主建造的首舰国产航母于年月成功完成第一次海上试验任务如图航母由西向东航行到达处时测得小岛位于它的北偏东方向且于航母相距海里再航行一段时间后到达处测得小岛位于它的北偏东方向如果航母继续航行至小岛的正南方向的处求还需航行的距离的长(参考数据:)【答案】解:由题知:在中(海里)在中(海里)答:还需要航行的距离的长为海里【考点】解直角三角形解直角三角形的应用﹣方向角问题【解析】【分析】根据题意可得出再利用解直角三角形在Rt△ACD和Rt△BCD中先求出CD的长再求出BD的长即可解答。如图在平面直角坐标系中一次函数的图象经过点与反比例函数的图象交于()求一次函数和反比例函数的表达式()设是直线上一点过作轴交反比例函数的图象于点若为顶点的四边形为平行四边形求点的坐标【答案】()∵一次函数y=xb的图象经过点A(,)∴b=,得b=∴一次函数的解析式为y=x∵一次函数的解析式为y=x与反比例函数y=(x>)的图象交于B(a)∴=a,得a=∴=得k=即反比例函数解析式为:y=(x>)()∵点A(,)∴OA=设点M(m,m)点N(,m),当MN∥AO且MN=AO时四边形AOMN是平行四边形,解得m=或m=∴点M的坐标为()或()【考点】待定系数法求反比例函数解析式反比例函数与一次函数的交点问题平行四边形的判定与性质【解析】【分析】()根据点A的坐标求出一次函数解析式再根据两图像交于点B利用反比例函数解析式求出点B的坐标然后利用待定系数法求出反比例函数解析式即可。()设出点M、N的坐标根据当且时四边形是平行四边形建立关于m的方程根据m>求出m的值从而可得出点M的坐标即可解答。如图在中平分交于点为上一点经过点的分别交于点连接交于点()求证:是的切线()设试用含的代数式表示线段的长()若求的长【答案】()如图链接CD∵AD为∠BAC的角平分线∴∠BAD=∠CAD∵OA=OD∴∠ODA=∠OAD∴∠ODA=∠CAD∴OD∥AC又∵∠C=°∴∠ODC=°∴OD⊥BC∴BC是⊙O的切线()连接DF由()可知BC为切线∴∠FDC=∠DAF∴∠CDA=∠CFD∴∠AFD=∠ADB又∵∠BAD=∠DAF∴∆ABD∽∆ADF,∴,∴AD=AB·AF∴AD=xy,∴AD=()连接EF在Rt∆BOD中sinB=,设圆的半径为r∴∴r=∴AE=,AB=∵AE是直径∠AFE=°,而∠C=°∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=∴AF=AE·sin∠AEF=×=∵AF∥OD,∴,∴DG=AD∴AD=,∴DG=【考点】切线的判定与性质相似三角形的判定与性质解直角三角形【解析】【分析】()连接OD根据角平分线的性质及等腰三角形的性质去证明∠ODC=°即可。()连接DFDE根据圆的切线可证得∠FDC=∠DAF再证∠CDA=∠CFD=∠AED根据平角的定义可证得∠AFD=∠ADB从而可证得△ABD∽△ABF得出对应边成比例可得出答案。()连接EF在Rt△BOD中利用三角函数的定义求出圆的半径、AE、AB的长再证明EF∥BC得出∠B=∠AEF利用锐角三角函数的定义求出AF的长再根据AF∥OD得出线段成比例求出DG的长然后可求出AD的长从而可求得DG的长。四、填空题(B卷)已知则代数式的值为【答案】【考点】代数式求值二元一次方程组的其他应用【解析】【解答】∵①②由①②得:xy=即xy=∵=(xy)==【分析】由①②得出xy的值再将已知代数式分解因式然后整体代入即可求解。汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝如图所示的弦图中四个直角三角形都是全等的它们的两直角边之比均为现随机向该图形内掷一枚小针则针尖落在阴影区域的概率为【答案】【考点】勾股定理正方形的性质简单事件概率的计算【解析】【解答】解:∵四个直角三角形都是全等的它们的两直角边之比均为设两直角边的长分别为x、x∴大正方形的面积为(x)(x)=x小正方形的边长为xx=x则小正方形的面积为x,∴阴影部分的面积为:xx=x,∴针尖落在阴影区域的概率为:故答案为:【分析】根据已知四个直角三角形都是全等的它们的两直角边之比均为因此设两直角边的长分别为x、x利用勾股定理求出大正方形的面积再求出小正方形的面积再求出阴影部分的面积利用概率公式求解即可。已知…(即当为大于的奇数时当为大于的偶数时)按此规律【答案】【考点】探索数与式的规律【解析】【解答】解:∵∴S==∵   ∴S=÷()=∵∴S=()=  ∴S=a、S=a、S=、S=…∴÷=…∴S=故答案为:【分析】根据已知求出S=S=S=、S=a、S=a、S=、S=…可得出规律按此规律可求出答案。如图在菱形中分别在边上将四边形沿翻折使的对应线段经过顶点当时的值为【答案】【考点】勾股定理菱形的性质翻折变换(折叠问题)相似三角形的判定与性质解直角三角形【解析】【解答】解:∵菱形沿翻折使的对应线段经过顶点∴∠A=∠E=∠C∠=∠BEM=AMAB=EF=DC=AD∵EF⊥EF∴∠EDM=°∴tan∠E==设DM=xDE=x则EM=AM=x=EF∴DC=AD=AMDM=xDF=EFDE=xx=x  延长EF交BC于点H∴AD∥BCEF⊥EF∴∠EDM=∠DHC=°∵∠E=∠C∴△DEM∽△HCD∴EM:DC=DE:CH即x:x=x:CH解之:CH=在Rt△DHC中DH=DCCHDH=x()解之:DH=∴FH=DHDF=x=∵∠∠HFN=°∠B∠C=°∠=∠B∴∠HFN=∠C∠DHC=∠FHN=°∴△FHN∽△CHD∴FN:DC=FH:CH即FN:x=:解之:FN=x=BN∴CN=BCBN=xx=x∴=故答案为:【分析】根据折叠的性质可得出菱形沿翻折使的对应线段经过顶点可得出∠A=∠E=∠C∠=∠BEM=AMAB=EF=DC=AD利用锐角三角形函数的定义可得出tan∠E==设DM=xDE=x则EM=AM=x=EF就可求出菱形的边长及EM的长延长EF交BC于点H再证明△DEM∽△HCD求出CH的长利用勾股定理求出DH的长就可得出FH的长然后证明△FHN∽△CHD求出FN的长即可得出BN的长从而可求出BN和CN之比。设双曲线与直线交于两点(点在第三象限)将双曲线在第一象限的一支沿射线的方向平移使其经过点将双曲线在第三象限的一支沿射线的方向平移使其经过点平移后的两条曲线相交于点两点此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”为双曲线的“眸径”当双曲线的眸径为时的值为【答案】【考点】反比例函数图象的对称性菱形的性质平移的性质解直角三角形【解析】【解答】解:∵双曲线是关于原点成中心对称点P、Q关于原点对称和直线AB对称∴四边形PAQB是菱形∵PQ=∴PO=根据题意可得出△APB是等边三角形∴在Rt△POB中OB=tan°×PO=×=设点B的坐标为(x,x)∴x=x==k故答案为:【分析】根据平移的性质和反比例函数的对称性可证得四边形PAQB是菱形及△APB是等边三角形就可求出PO的长利用解直角三角形求出OB的长直线y=x与x轴的夹角是°设点B的坐标为(x,x)利用勾股定理求出x的值就可求出k的值。五、解答题(B卷)为了美化环境建设宜居成都我市准备在一个广场上种植甲、乙两种花卉经市场调查甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米元()直接写出当和时与的函数关系式()广场上甲、乙两种花卉的种植面积共若甲种花卉的种植面积不少于且不超过乙种花卉种植面积的倍那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?【答案】()()设甲种花卉种植为则乙种花卉种植当时当时元当时当时元当时总费用最低最低为元此时乙种花卉种植面积为答:应分配甲种花卉种植面积为乙种花卉种植面积为才能使种植总费用最少最少总费用为元【考点】待定系数法求一次函数解析式一次函数与不等式(组)的综合应用一次函数的实际应用【解析】【分析】()利用函数图像上的点的坐标可得出当和时与的函数关系式。()设甲种花卉种植为则乙种花卉种植根据甲种花卉的种植面积不少于且不超过乙种花卉种植面积的倍建立不等式组期初a的取值范围利用一次函数的性质及自变量的取值范围即可解答。在中过点作直线将绕点顺时针得到(点的对应点分别为)射线分别交直线于点()如图当与重合时求的度数()如图设与的交点为当为的中点时求线段的长()在旋转过程时当点分别在的延长线上时试探究四边形的面积是否存在最小值若存在求出四边形的最小面积若不存在请说明理由【答案】()由旋转的性质得:()为的中点由旋转的性质得:()最小即最小法一:(几何法)取中点则当最小时最小即与重合时最小法二:(代数法)设由射影定理得:当最小即最小当时“”成立【考点】三角形的面积解直角三角形旋转的性质【解析】【分析】()根据旋转的性质可得出根据已知易证m∥AC得出∠A'BC是直角利用特殊角的三角函数值可求出∠A'CB的度数就可求出结果。()根据中点的定义及性质的性质可证得∠A=∠A'CM利用解直角三角形求出PB和BQ的长再根据PQ=PBBQ计算即可解答。()根据已知得出四边形FA'B'Q的面积最小则△PCQ的面积最小可表示出△PCQ的面积利用几何法取中点则得出PQ=CG当CG最小时则PQ最小根据垂线段最短求出CG的值从而可求出PQ的最小值就可求出四边形FA'B'Q面积的最小值。也可以利用代数式解答此题。如图在平面直角坐标系中以直线为对称轴的抛物线与直线交于两点与轴交于直线与轴交于点()求抛物线的函数表达式()设直线与抛物线的对称轴的交点为、是抛物线上位于对称轴右侧的一点若且与面积相等求点的坐标()若在轴上有且仅有一点使求的值【答案】()由题可得:解得二次函数解析式为:()作轴轴垂足分别为则解得同理①(在下方)即②在上方时直线与关于对称综上所述点坐标为()由题意可得:即设的中点为点有且只有一个以为直径的圆与轴只有一个交点且为切点轴为的中点即【考点】待定系数法求二次函数解析式相似三角形的判定与性质二次函数的实际应用几何问题利用二次函数图像判断一元二次方程根的情况【解析】【分析】()根据对称轴为直线及点A、C的坐标利用待定系数法建立方程组就可求出函数解析式。()作轴轴垂足分别为则得出MQ、NQ的长可得出点B的坐标再利用待定系数法求出直线BC的函数解析式分情况讨论:①(在下方)②在上方时直线与关于对称建立方程求出方程的解分别求出点G的坐标即可。()由题意可得:()根据题意得出km=即m=k可得出y=kxk将两函数联立方程得出求出方程的解就可得出点B的坐标再设的中点为求出点P的坐标再证明△AMP和△PNB相似得出对应边成比例建立方程根据k>求出方程的解即可解答。PAGE

VIP尊享8折文档

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/20

2018年四川省成都市中考数学试卷真题含答案解析(Word版)

¥6.0

会员价¥4.8

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利