首页 8051全英文资料

8051全英文资料

举报
开通vip

8051全英文资料 Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 3-31996 Aug 16 853–0169 17187 DESCRIPTION The Philips 80C31/80C51/87C51 is a high-performance microcontroller fabricated with Philips high-density CMOS te...

8051全英文资料
Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 3-31996 Aug 16 853–0169 17187 DESCRIPTION The Philips 80C31/80C51/87C51 is a high-performance microcontroller fabricated with Philips high-density CMOS technology. The CMOS 8XC51 is functionally compatible with the NMOS 8031/8051 microcontrollers. The Philips CMOS technology combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. Philips epitaxial substrate minimizes latch-up sensitivity. The 8XC51 contains a 4k × 8 ROM (80C51) EPROM (87C51), a 128 × 8 RAM, 32 I/O lines, two 16-bit counter/timers, a five-source, two-priority level nested interrupt structure, a serial I/O port for either multi-processor communications, I/O expansion or full duplex UART, and on-chip oscillator and clock circuits. In addition, the device has two software selectable modes of power reduction—idle mode and power-down mode. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative. FEATURES • 8031/8051 compatible – 4k × 8 ROM (80C51) – 4k × 8 EPROM (87C51) – ROMless (80C31) – 128 × 8 RAM – Two 16-bit counter/timers – Full duplex serial channel – Boolean processor • Memory addressing capability – 64k ROM and 64k RAM • Power control modes: – Idle mode – Power-down mode • CMOS and TTL compatible • Five speed ranges at VCC = 5V – 12MHz – 16MHz – 24MHz – 33MHz • Five package styles • Extended temperature ranges • OTP package available PIN CONFIGURATIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 RST RxD/P3.0 TxD/P3.1 INT0/P3.2 INT1/P3.3 T0/P3.4 T1/P3.5 P1.7 WR/P3.6 RD/P3.7 XTAL2 XTAL1 VSS P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 PSEN ALE/PROG EA/VPP P0.7/AD7 P0.6/AD6 P0.5/AD5 P0.4/AD4 P0.3/AD3 P0.2/AD2 P0.1/AD1 P0.0/AD0 VCC CERAMIC AND PLASTIC DUAL IN-LINE PACKAGE CERAMIC AND PLASTIC LEAD CHIP CARRIER 6 1 40 7 17 39 29 18 28 PLASTIC QUAD FLAT PACK 44 34 1 11 33 23 12 22 SU00001 SEE PAGE 3-6 FOR QFP AND LCC PIN FUNCTIONS. Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-4 ORDERING INFORMATION PHILIPS NORTH AMERICA EPROM DRAWING NUMBER ROMless ROM DRAWING NUMBER TEMPERATURE RANGE oC AND PACKAGE1 Freq MHz SC87C51CCF40 0590B 0 to +70, Ceramic Dual In-line Package, UV 3.5 to 12 SC87C51CCK44 1472A 0 to +70, Ceramic Leaded Chip Carrier, UV 3.5 to 12 SC87C51CCN40 SOT129-1 SC80C31BCCN40 SC80C51BCCN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 3.5 to 12 SC87C51CCA44 SOT187-2 SC80C31BCCA44 SC80C51BCCA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 3.5 to 12 SC87C51CCB44 SOT307-2 SC80C31BCCB44 SC80C51BCCB44 SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP 3.5 to 12 SC87C51ACF40 0590B –40 to +85, Ceramic Dual In-line Package, UV 3.5 to 12 SC87C51ACN40 SOT129-1 SC80C31BACN40 SC80C51BACN40 SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 3.5 to 12 SC87C51ACA44 SOT187-2 SC80C31BACA44 SC80C51BACA44 SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP 3.5 to 12 SC87C51ACB44 SOT307-2 SC80C31BACB44 SC80C51BACB44 SOT307-2 –40 to +85, Plastic Quad Flat Pack, OTP 3.5 to 12 SC87C51CGF40 0590B 0 to +70, Ceramic Dual In-line Package, UV 3.5 to 16 SC87C51CGK44 1472A 0 to +70, Ceramic Leaded Chip Carrier, UV 3.5 to 16 SC87C51CGN40 SOT129-1 SC80C31BCGN40 SC80C51BCGN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 3.5 to 16 SC87C51CGA44 SOT187-2 SC80C31BCGA44 SC80C51BCGA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 3.5 to 16 SC87C51CGB44 SOT307-2 SC80C31BCGB44 SC80C51BCGB44 SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP 3.5 to 16 SC87C51AGF40 0590B –40 to +85, Ceramic Dual In-line Package, UV 3.5 to 16 SC87C51AGN40 SOT129-1 SC80C31BAGN40 SC80C51BAGN40 SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 3.5 to 16 SC87C51AGA44 SOT187-2 SC80C31BAGA44 SC80C51BAGA44 SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP 3.5 to 16 SC87C51AGB44 SOT307-2 SC80C31BAGB44 SC80C51BAGB44 SOT307-2 –40 to +85, Plastic Quad Flat Pack, OTP 3.5 to 16 SC87C51CPF40 0590B 0 to +70, Ceramic Dual In-line Package, UV 3.5 to 24 SC87C51CPK44 1472A 0 to +70, Ceramic Leaded Chip Carrier, UV 3.5 to 24 SC87C51CPN40 SOT129-1 SC80C31BCPN40 SC80C51BCPN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 3.5 to 24 SC87C51CPA44 SOT187-2 SC80C31BCPA44 SC80C51BCPA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 3.5 to 24 SC87C51APF40 0590B –40 to +85, Ceramic Dual In-line Package, UV SC87C51APN40 SOT129-1 SC80C31BAPN40 SC80C51BAPN40 SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 3.5 to 24 SC87C51APA44 SOT187-2 SC80C31BAPA44 SC80C51BAPA44 SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP 3.5 to 24 SC87C51CYF40 0590B 0 to +70, Ceramic Dual In-line Package, UV 3.5 to 33 SC87C51CYK44 1472A 0 to +70, Ceramic Leaded Chip Carrier, UV 3.5 to 33 SC87C51CYN40 SOT129-1 SC80C31BCYN40 SC80C51BCYN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 3.5 to 33 SC87C51CYA44 SOT187-2 SC80C31BCYA44 SC80C51BCYA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 3.5 to 33 1. OTP = One Time Programmable EPROM. UV = UV Erasable EPROM 2. SOT311 replaced by SOT307-2. Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-5 ORDERING INFORMATION (Continued) PHILIPS ROMless (ORDER NUMBER) ROMless (MARKING NUMBER) ROM DRAWING NUMBER TEMPERATURE RANGE oC AND PACKAGE1 Freq MHz PCB80C31-2 N PCB80C31BH2-12P PCB80C51BH-2P SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 0.5 to 12 PCB80C31-2 A PCB80C31BH2-12WP PCB80C51BH-2WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 0.5 to 12 PCB80C31BH2-12H PCB80C51BH-2H SOT307-22 0 to +70, Plastic Quad Flat Pack, OTP 0.5 to 12 PCB80C31-3 N PCB80C31BH3-16P PCB80C51BH-3P SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 1.2 to 16 PCB80C31-3 A PCB80C31BH3-16WP PCB80C51BH-3WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 1.2 to 16 PCB80C31BH3-16H PCB80C51BH-3H SOT307-22 0 to +70, Plastic Quad Flat Pack, OTP 1.2 to 16 PCF80C31-3 N PCF80C31BH3-16P PCF80C51BH-3P SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 1.2 to 16 PCF80C31-3 A PCF80C31BH3-16WP PCF80C51BH-3WP SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP 1.2 to 16 PCF80C31BH3-16H PCF80C51BH-3H SOT307-22 –40 to +85, Plastic Quad Flat Pack, OTP 1.2 to 16 PCA80C31BH3-16P PCA80C51BH-3P SOT129-1 –40 to +125, Plastic Dual In-line Package 1.2 to 16 PCA80C31BH3-16WP PCA80C51BH-3WP SOT187-2 –40 to +125, Plastic Leaded Chip Carrier 1.2 to 16 PCB80C31-4 N PCB80C31BH4-24P PCB80C51BH-4P SOT129-1 0 to +70, Plastic Dual In-line Package, OTP 1.2 to 24 PCB80C31-4 A PCB80C31BH4-24WP PCB80C51BH-4WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP 1.2 to 24 PCB80C31BH4-24H PCB80C51BH-4H SOT307-22 0 to +70, Plastic Quad Flat Pack, OTP 1.2 to 24 PCF80C31-4 N PCF80C31BH4-24P PCF80C51BH-4P SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 1.2 to 24 PCF80C31-4 A PCF80C31BH4-24WP PCF80C51BH-4WP SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP 1.2 to 24 PCF80C31BH4-24H PCF80C51BH-4H SOT307-22 –40 to +85, Plastic Leaded Chip Carrier, OTP 1.2 to 24 PCB80C31-5 N PCB80C31BH5-30P PCB80C51BH-5P SOT129-1 0 to +70, Plastic Dual In-line Package 1.2 to 33 PCB80C31-5 A PCB80C31BH5-30WP PCB80C51BH-5WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier 1.2 to 33 PCB80C31-5 B PCB80C31BH5-30H PCB80C51BH-5H SOT307-22 0 to +70, Plastic Quad Flat Pack 1.2 to 33 Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-6 CERAMIC AND PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS LCC 6 1 40 7 17 39 29 18 28 Pin Function 1 NC* 2 P1.0 3 P1.1 4 P1.2 5 P1.3 6 P1.4 7 P1.5 8 P1.6 9 P1.7 10 RST 11 P3.0/RxD 12 NC* 13 P3.1/TxD 14 P3.2/INT0 15 P3.3/INT1 Pin Function 16 P3.4/T0 17 P3.5/T1 18 P3.6/WR 19 P3.7/RD 20 XTAL2 21 XTAL1 22 VSS 23 NC* 24 P2.0/A8 25 P2.1/A9 26 P2.2/A10 27 P2.3/A11 28 P2.4/A12 29 P2.5/A13 30 P2.6/A14 Pin Function 31 P2.7/A15 32 PSEN 33 ALE/PROG 34 NC* 35 EA/VPP 36 P0.7/AD7 37 P0.6/AD6 38 P0.5/AD5 39 P0.4/AD4 40 P0.3/AD3 41 P0.2/AD2 42 P0.1/AD1 43 P0.0/AD0 44 VCC SU00002* DO NOT CONNECT PLASTIC QUAD FLAT PACK PIN FUNCTIONS Pin Function 1 P1.5 2 P1.6 3 P1.7 4 RST 5 P3.0/RxD 6 NC* 7 P3.1/TxD 8 P3.2/INT0 9 P3.3/INT1 10 P3.4/T0 11 P3.5/T1 12 P3.6/WR 13 P3.7/RD 14 XTAL2 15 XTAL1 Pin Function 16 VSS 17 NC* 18 P2.0/A8 19 P2.1/A9 20 P2.2/A10 21 P2.3/A11 22 P2.4/A12 23 P2.5/A13 24 P2.6/A14 25 P2.7/A15 26 PSEN 27 ALE/PROG 28 NC* 29 EA/VPP 30 P0.7/AD7 Pin Function 31 P0.6/AD6 32 P0.5/AD5 33 P0.4/AD4 34 P0.3/AD3 35 P0.2/AD2 36 P0.1/AD1 37 P0.0/AD0 38 VCC 39 NC* 40 P1.0 41 P1.1 42 P1.2 43 P.13 44 P1.4 PQFP 44 34 1 11 33 23 12 22 SU00003* DO NOT CONNECT LOGIC SYMBOL PO RT 0 PO RT 1 PO RT 2 PO RT 3 ADDRESS AND DATA BUS ADDRESS BUS SE CO ND AR Y FU NC TI O NS RxD TxD INT0 INT1 T0 T1 WR RD RST EA/VPP PSEN ALE/PROG VSSVCC XTAL1 XTAL2 SU00004 Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-7 BLOCK DIAGRAM PSEN EA/VPP ALE/PROG RST XTAL1 XTAL2 VCC VSS PORT 0 DRIVERS PORT 2 DRIVERS RAM ADDR REGISTER RAM PORT 0 LATCH PORT 2 LATCH ROM/EPROM REGISTER B ACC STACKPOINTER TMP2 TMP1 ALU TIMING AND CONTROL IN ST RU CT IO N R EG IS TE R PD OSCILLATOR PSW PORT 1 LATCH PORT 3 LATCH PORT 1 DRIVERS PORT 3 DRIVERS PROGRAM ADDRESS REGISTER BUFFER PC INCRE- MENTER PROGRAM COUNTER DPTR PCON SCON TMOD TCON TH0 TL0 TH1 TL1 SBUF IE IP INTERRUPT, SERIAL PORT AND TIMER BLOCKS P1.0–P1.7 P3.0–P3.7 P0.0–P0.7 P2.0–P2.7 SU00005 Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-8 PIN DESCRIPTION PIN NO. MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION VSS 20 22 16 I Ground: 0V reference. VCC 40 44 38 I Power Supply: This is the power supply voltage for normal, idle, and power-down operation. P0.0–0.7 39–32 43–36 37–30 I/O Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the 87C51. External pull-ups are required during program verification. P1.0–P1.7 1–8 2–9 40-44, 1–3 I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: IIL). Port 1 also receives the low-order address byte during program memory verification. P2.0–P2.7 21–28 24–31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: IIL). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. P3.0–P3.7 10–17 11, 13–19 5, 7–13 I/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: IIL). Port 3 also serves the special features of the 80C51 family, as listed below: 10 11 5 I RxD (P3.0): Serial input port 11 13 7 O TxD (P3.1): Serial output port 12 14 8 I INT0 (P3.2): External interrupt 13 15 9 I INT1 (P3.3): External interrupt 14 16 10 I T0 (P3.4): Timer 0 external input 15 17 11 I T1 (P3.5): Timer 1 external input 16 18 12 O WR (P3.6): External data memory write strobe 17 19 13 O RD (P3.7): External data memory read strobe RST 9 10 4 I Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to VSS permits a power-on reset using only an external capacitor to VCC. ALE/PROG 30 33 27 I/O Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. PSEN 29 32 26 O Program Store Enable: The read strobe to external program memory. When the device is executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory. EA/VPP 31 35 29 I External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H to 0FFFH. If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 0FFFH. This pin also receives the 12.75V programming supply voltage (VPP) during EPROM programming. XTAL1 19 21 15 I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits. XTAL2 18 20 14 O Crystal 2: Output from the inverting oscillator amplifier. Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-9 Table 1. 80C52/80C54/80C58 Special Function Registers SYMBOL DESCRIPTION DIRECTADDRESS BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION MSB LSB RESET VALUE ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H AUXR# Auxiliary 8EH – – – – – – – AO xxxxxxx0B AUXR1# Auxiliary 1 (Note 2) A2H – – – – WUPD 0 – DPS xxxx00x0B B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H DPTR: Data Pointer (2 bytes) DPH Data Pointer High 83H 00H DPL Data Pointer Low 82H 00H AF AE AD AC AB AA A9 A8 IE* Interrupt Enable A8H EA EC ET2 ES ET1 EX1 ET0 EX0 00H BF BE BD BC BB BA B9 B8 IP* Interrupt Priority B8H – – PT2 PS PT1 PX1 PT0 PX0 x0000000B B7 B6 B5 B4 B3 B2 B1 B0 IPH# Interrupt Priority High B7H – – PT2H PSH PT1H PX1H PT0H PX0H x0000000B 87 86 85 84 83 82 81 80 P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH 97 96 95 94 93 92 91 90 P1* Port 1 90H – – – – – – T2EX T2 FFH A7 A6 A5 A4 A3 A2 A1 A0 P2* Port 2 A0H AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 FFH B7 B6 B5 B4 B3 B2 B1 B0 P3* Port 3 B0H RD WR T1 T0 INT1 INT0 TxD RxD FFH PCON#1 Power Control 87H SMOD1 SMOD0 – – GF1 GF0 PD IDL 00xx0000B D7 D6 D5 D4 D3 D2 D1 D0 PSW* Program Status Word D0H CY AC F0 RS1 RS0 OV – P 00H SADDR# Slave Address A9H 00H SADEN# Slave Address Mask B9H 00H SBUF Serial Data Buffer 99H xxxxxxxxB 9F 9E 9D 9C 9B 9A 99 98 SCON* Serial Control 98H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 00H SP Stack Pointer 81H 07H 8F 8E 8D 8C 8B 8A 89 88 TCON* Timer Control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H CF CE CD CC CB CA C9 C8 T2MOD# Timer 2 Mode Control C9H – – – – – – T2OE DCEN xxxxxx00B TH0 Timer High 0 8CH 00H TH1 Timer High 1 8DH 00H TL0 Timer Low 0 8AH 00H TL1 Timer Low 1 8BH 00H TMOD Timer Mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H * SFRs are bit addressable. # SFRs are modified from or added to the 80C51 SFRs. – Reserved bits. 1. Reset value depends on reset source. 2. Available only on SC80C51. Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-10 OSCILLATOR CHARACTERISTICS XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the logic symbol. To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed. RESET A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-up reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. IDLE MODE In idle mode, the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset. POWER-DOWN MODE In the power-down mode, the oscillator is stopped and the instruction to invoke power-down is the last instruction executed. Only the contents of the on-chip RAM are preserved. A hardware reset is the only way to terminate the power-down mode. the control bits for the reduced power modes are in the special function register PCON. Table 2 shows the state of I/O ports during low current operating modes. Table 2. External Pin Status During Idle and Power-Down Modes MODE PROGRAM MEMORY ALE PSEN PORT 0 PORT 1 PORT 2 PORT 3 Idle Internal 1 1 Data Data Data Data Idle External 1 1 Float Data Address Data Power-down Internal 0 0 Data Data Data Data Power-down External 0 0 Float Data Data Data ROM CODE SUBMISSION When submitting ROM code for the 80C51, the following must be specified: 1. 4k byte user ROM data 2. 64 byte ROM encryption key (SC80C51 only) 3. ROM security bits (SC80C51 only). ADDRESS CONTENT BIT(S) COMMENT 0000H to 0FFFH DATA 7:0 User ROM Data 1000H to 101FH KEY 7:0 ROM Encryption Key 1020H SEC 0 ROM Security Bit 1 1020H SEC 1 ROM Security Bit 2 Security Bit 1: When programmed, this bit has two effects on masked ROM parts: 1. External MOVC is disabled, and 2. EA# is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. Philips Semiconductors Product specification 80C31/80C51/87C51CMOS single-chip 8-bit microcontrollers 1996 Aug 16 3-11 Electrical Deviations from Commercial Specifications for Extended Temperature Range (87C51) DC and AC parameters not included here are the same as in the commercial temperature range table. DC ELECTRICAL CHARACTERISTICS Tamb = –40°C to +85°C, VCC = 5V ±10%, VSS = 0V (Philips North America SC87C51); For SC87C51 (33MHz only), Tamb = 0°C to +70°C, VCC = 5V ±5% Tamb = –40°C to
本文档为【8051全英文资料】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_977327
暂无简介~
格式:pdf
大小:327KB
软件:PDF阅读器
页数:22
分类:互联网
上传时间:2010-09-09
浏览量:25