首页 给初学单片机的40个实验-2

给初学单片机的40个实验-2

举报
开通vip

给初学单片机的40个实验-214. 4×4矩阵式键盘识别技术 1. 实验任务 如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。对应的按键的序号排列如图4.14.1所示 图4.14.1 2. 硬件电路原理图 图4.14.2 3. 系统板上硬件连线 (1. 把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上; (2. 把“单片...

给初学单片机的40个实验-2
14. 4×4矩阵式键盘识别技术 1. 实验任务 如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。对应的按键的序号排列如图4.14.1所示 图4.14.1 2. 硬件电路原理图 图4.14.2 3. 系统板上硬件连线 (1. 把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上; (2. 把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。 4. 程序设计内容 (1. 4×4矩阵键盘识别处理 (2. 每个按键有它的行值和列值 ,行值和列值的组合就是识别这个按键的编码。矩阵的行线和列线分别通过两并行接口和CPU通信。每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。 5. 程序框图 图4.14.3 6. 汇编源程序 KEYBUF EQU 30H ORG 00H START: MOV KEYBUF,#2 WAIT: MOV P3,#0FFH CLR P3.4 MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY1 LCALL DELY10MS MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY1 MOV A,P3 ANL A,#0FH CJNE A,#0EH,NK1 MOV KEYBUF,#0 LJMP DK1 NK1: CJNE A,#0DH,NK2 MOV KEYBUF,#1 LJMP DK1 NK2: CJNE A,#0BH,NK3 MOV KEYBUF,#2 LJMP DK1 NK3: CJNE A,#07H,NK4 MOV KEYBUF,#3 LJMP DK1 NK4: NOP DK1: MOV A,KEYBUF MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A DK1A: MOV A,P3 ANL A,#0FH XRL A,#0FH JNZ DK1A NOKEY1: MOV P3,#0FFH CLR P3.5 MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY2 LCALL DELY10MS MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY2 MOV A,P3 ANL A,#0FH CJNE A,#0EH,NK5 MOV KEYBUF,#4 LJMP DK2 NK5: CJNE A,#0DH,NK6 MOV KEYBUF,#5 LJMP DK2 NK6: CJNE A,#0BH,NK7 MOV KEYBUF,#6 LJMP DK2 NK7: CJNE A,#07H,NK8 MOV KEYBUF,#7 LJMP DK2 NK8: NOP DK2: MOV A,KEYBUF MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A DK2A: MOV A,P3 ANL A,#0FH XRL A,#0FH JNZ DK2A NOKEY2: MOV P3,#0FFH CLR P3.6 MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY3 LCALL DELY10MS MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY3 MOV A,P3 ANL A,#0FH CJNE A,#0EH,NK9 MOV KEYBUF,#8 LJMP DK3 NK9: CJNE A,#0DH,NK10 MOV KEYBUF,#9 LJMP DK3 NK10: CJNE A,#0BH,NK11 MOV KEYBUF,#10 LJMP DK3 NK11: CJNE A,#07H,NK12 MOV KEYBUF,#11 LJMP DK3 NK12: NOP DK3: MOV A,KEYBUF MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A DK3A: MOV A,P3 ANL A,#0FH XRL A,#0FH JNZ DK3A NOKEY3: MOV P3,#0FFH CLR P3.7 MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY4 LCALL DELY10MS MOV A,P3 ANL A,#0FH XRL A,#0FH JZ NOKEY4 MOV A,P3 ANL A,#0FH CJNE A,#0EH,NK13 MOV KEYBUF,#12 LJMP DK4 NK13: CJNE A,#0DH,NK14 MOV KEYBUF,#13 LJMP DK4 NK14: CJNE A,#0BH,NK15 MOV KEYBUF,#14 LJMP DK4 NK15: CJNE A,#07H,NK16 MOV KEYBUF,#15 LJMP DK4 NK16: NOP DK4: MOV A,KEYBUF MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A DK4A: MOV A,P3 ANL A,#0FH XRL A,#0FH JNZ DK4A NOKEY4: LJMP WAIT DELY10MS: MOV R6,#10 D1: MOV R7,#248 DJNZ R7,$ DJNZ R6,D1 RET TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H END 7. C语言源程序 #include unsigned char code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; unsigned char temp; unsigned char key; unsigned char i,j; void main(void) { while(1) { P3=0xff; P3_4=0; temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { temp=P3; temp=temp & 0x0f; switch(temp) { case 0x0e: key=7; break; case 0x0d: key=8; break; case 0x0b: key=9; break; case 0x07: key=10; break; } temp=P3; P1_0=~P1_0; P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) { temp=P3; temp=temp & 0x0f; } } } P3=0xff; P3_5=0; temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { temp=P3; temp=temp & 0x0f; switch(temp) { case 0x0e: key=4; break; case 0x0d: key=5; break; case 0x0b: key=6; break; case 0x07: key=11; break; } temp=P3; P1_0=~P1_0; P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) { temp=P3; temp=temp & 0x0f; } } } P3=0xff; P3_6=0; temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { temp=P3; temp=temp & 0x0f; switch(temp) { case 0x0e: key=1; break; case 0x0d: key=2; break; case 0x0b: key=3; break; case 0x07: key=12; break; } temp=P3; P1_0=~P1_0; P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) { temp=P3; temp=temp & 0x0f; } } } P3=0xff; P3_7=0; temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3; temp=temp & 0x0f; if (temp!=0x0f) { temp=P3; temp=temp & 0x0f; switch(temp) { case 0x0e: key=0; break; case 0x0d: key=13; break; case 0x0b: key=14; break; case 0x07: key=15; break; } temp=P3; P1_0=~P1_0; P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) { temp=P3; temp=temp & 0x0f; } } } } } 15. 定时计数器T0作定时应用技术(一) 1. 实验任务 用AT89S51单片机的定时/计数器T0产生一秒的定时时间,作为秒计数时间,当一秒产生时,秒计数加1,秒计数到60时,自动从0开始。硬件电路如下图所示 2. 电路原理图 图4.15.1 3. 系统板上硬件连线 (1. 把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。 (2. 把“单片机系统”区域中的P2.0/A8-P2.7/A15端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P2.0/A8对应着a,P2.1/A9对应着b,……,P2.7/A15对应着h。 4. 程序设计内容 AT89S51单片机的内部16位定时/计数器是一个可编程定时/计数器,它既可以工作在13位定时方式,也可以工作在16位定时方式和8位定时方式。只要通过设置特殊功能寄存器TMOD,即可完成。定时/计数器何时工作也是通过软件来设定TCON特殊功能寄存器来完成的。 现在我们选择16位定时工作方式,对于T0来说,最大定时也只有65536us,即65.536ms,无法达到我们所需要的1秒的定时,因此,我们必须通过软件来处理这个问题,假设我们取T0的最大定时为50ms,即要定时1秒需要经过20次的50ms的定时。对于这20次我们就可以采用软件的方法来统计了。 因此,我们设定TMOD=00000001B,即TMOD=01H 下面我们要给T0定时/计数器的TH0,TL0装入预置初值,通过下面的公式可以计算出 TH0=(216-50000) / 256 TL0=(216-50000) MOD 256 当T0在工作的时候,我们如何得知50ms的定时时间已到,这回我们通过检测TCON特殊功能寄存器中的TF0标志位,如果TF0=1表示定时时间已到。 5. 程序框图                         图4.15.2 6. 汇编源程序(查询法) SECOND EQU 30H TCOUNT EQU 31H ORG 00H START: MOV SECOND,#00H MOV TCOUNT,#00H MOV TMOD,#01H MOV TH0,#(65536-50000) / 256 MOV TL0,#(65536-50000) MOD 256 SETB TR0 DISP: MOV A,SECOND MOV B,#10 DIV AB MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A MOV A,B MOVC A,@A+DPTR MOV P2,A WAIT: JNB TF0,WAIT CLR TF0 MOV TH0,#(65536-50000) / 256 MOV TL0,#(65536-50000) MOD 256 INC TCOUNT MOV A,TCOUNT CJNE A,#20,NEXT MOV TCOUNT,#00H INC SECOND MOV A,SECOND CJNE A,#60,NEX MOV SECOND,#00H NEX: LJMP DISP NEXT: LJMP WAIT TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH END 7. C语言源程序(查询法) #include unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x00}; unsigned char second; unsigned char tcount; void main(void) { TMOD=0x01; TH0=(65536-50000)/256; TL0=(65536-50000)%256; TR0=1; tcount=0; second=0; P0=dispcode[second/10]; P2=dispcode[second%10]; while(1) { if(TF0==1) { tcount++; if(tcount==20) { tcount=0; second++; if(second==60) { second=0; } P0=dispcode[second/10]; P2=dispcode[second%10]; } TF0=0; TH0=(65536-50000)/256; TL0=(65536-50000)%256; } } } 1. 汇编源程序(中断法) SECOND EQU 30H TCOUNT EQU 31H ORG 00H LJMP START ORG 0BH LJMP INT0X START: MOV SECOND,#00H MOV A,SECOND MOV B,#10 DIV AB MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A MOV A,B MOVC A,@A+DPTR MOV P2,A MOV TCOUNT,#00H MOV TMOD,#01H MOV TH0,#(65536-50000) / 256 MOV TL0,#(65536-50000) MOD 256 SETB TR0 SETB ET0 SETB EA SJMP $ INT0X: MOV TH0,#(65536-50000) / 256 MOV TL0,#(65536-50000) MOD 256 INC TCOUNT MOV A,TCOUNT CJNE A,#20,NEXT MOV TCOUNT,#00H INC SECOND MOV A,SECOND CJNE A,#60,NEX MOV SECOND,#00H NEX: MOV A,SECOND MOV B,#10 DIV AB MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A MOV A,B MOVC A,@A+DPTR MOV P2,A NEXT: RETI TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH END 2. C语言源程序(中断法) #include unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x00}; unsigned char second; unsigned char tcount; void main(void) { TMOD=0x01; TH0=(65536-50000)/256; TL0=(65536-50000)%256; TR0=1; ET0=1; EA=1; tcount=0; second=0; P0=dispcode[second/10]; P2=dispcode[second%10]; while(1); } void t0(void) interrupt 1 using 0 { tcount++; if(tcount==20) { tcount=0; second++; if(second==60) { second=0; } P0=dispcode[second/10]; P2=dispcode[second%10]; } TH0=(65536-50000)/256; TL0=(65536-50000)%256; } 16. 定时计数器T0作定时应用技术(二) 1. 实验任务 用AT89S51的定时/计数器T0产生2秒钟的定时,每当2秒定时到来时,更换指示灯闪烁,每个指示闪烁的频率为0.2秒,也就是说,开始L1指示灯以0.2秒的速率闪烁,当2秒定时到来之后,L2开始以0.2秒的速率闪烁,如此循环下去。0.2秒的闪烁速率也由定时/计数器T0来完成。 2. 电路原理图 图4.16.1 3. 系统板硬件连线 (1. 把“单片机系统”区域中的P1.0-P1.3用导线连接到“八路发光二极管指示模块”区域中的L1-L4上 4. 程序设计内容 (1. 由于采用中断方式来完成,因此,对于中断源必须它的中断入口地址,对于定时/计数器T0来说,中断入口地址为000BH,因此在中断入口地方加入长跳转指令来执行中断服务程序。书写汇编源程序格式如下所示: ORG 00H LJMP START ORG 0BH  ;定时/计数器T0中断入口地址 LJMP INT_T0 START: NOP  ;主程序开始 . .   INT_T0: PUSH ACC  ;定时/计数器T0中断服务程序 PUSH PSW . . POP PSW POP ACC RETI  ;中断服务程序返回 END (2. 定时2秒,采用16位定时50ms,共定时40次才可达到2秒,每50ms产生一中断,定时的40次数在中断服务程序中完成,同样0.2秒的定时,需要4次才可达到0.2秒。对于中断程序,在主程序中要对中断开中断。 (3. 由于每次2秒定时到时,L1-L4要交替闪烁。采用ID来号来识别。当ID=0时,L1在闪烁,当ID=1时,L2在闪烁;当ID=2时,L3在闪烁;当ID=3时,L4在闪烁 5. 程序框图   T0中断服务程序框图 主程序框图 图4.16.2  6. 汇编源程序 6. 汇编源程序 TCOUNT2S EQU 30H TCNT02S EQU 31H ID EQU 32H ORG 00H LJMP START ORG 0BH LJMP INT_T0 START: MOV TCOUNT2S,#00H MOV TCNT02S,#00H MOV ID,#00H MOV TMOD,#01H MOV TH0,#(65536-50000) / 256 MOV TL0,#(65536-50000) MOD 256 SETB TR0 SETB ET0 SETB EA SJMP $ INT_T0: MOV TH0,#(65536-50000) / 256 MOV TL0,#(65536-50000) MOD 256 INC TCOUNT2S MOV A,TCOUNT2S CJNE A,#40,NEXT MOV TCOUNT2S,#00H INC ID MOV A,ID CJNE A,#04H,NEXT MOV ID,#00H NEXT: INC TCNT02S MOV A,TCNT02S CJNE A,#4,DONE MOV TCNT02S,#00H MOV A,ID CJNE A,#00H,SID1 CPL P1.0 SJMP DONE SID1: CJNE A,#01H,SID2 CPL P1.1 SJMP DONE SID2: CJNE A,#02H,SID3 CPL P1.2 SJMP DONE SID3: CJNE A,#03H,SID4 CPL P1.3 SID4: SJMP DONE DONE: RETI END 7. C语言源程序 #include unsigned char tcount2s; unsigned char tcount02s; unsigned char ID; void main(void) { TMOD=0x01; TH0=(65536-50000)/256; TL0=(65536-50000)%256; TR0=1; ET0=1; EA=1; while(1); } void t0(void) interrupt 1 using 0 { tcount2s++; if(tcount2s==40) { tcount2s=0; ID++; if(ID==4) { ID=0; } } tcount02s++; if(tcount02s==4) { tcount02s=0; switch(ID) { case 0: P1_0=~P1_0; break; case 1: P1_1=~P1_1; break; case 2: P1_2=~P1_2; break; case 3: P1_3=~P1_3; break; } } } 17. 99秒马表设计 1. 实验任务 (1. 开始时,显示“00”,第1次按下SP1后就开始计时。 (2. 第2次按SP1后,计时停止。 (3. 第3次按SP1后,计时归零。 2. 电路原理图 图4.17.1 3. 系统板上硬件连线 (1. 把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。 (2. 把“单片机系统”区域中的P2.0/A8-P2.7/A15端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P2.0/A8对应着a,P2.1/A9对应着b,……,P2.7/A15对应着h。 (3. 把“单片机系统“区域中的P3.5/T1用导线连接到”独立式键盘“区域中的SP1端口上; 4. 程序框图 主程序框图   T0中断服务程序框图 图4.17.2 5. 汇编源程序 TCNTA EQU 30H TCNTB EQU 31H SEC EQU 32H KEYCNT EQU 33H SP1 BIT P3.5 ORG 00H LJMP START ORG 0BH LJMP INT_T0 START: MOV KEYCNT,#00H MOV SEC,#00H MOV A,SEC MOV B,#10 DIV AB MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A MOV A,B MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P2,A MOV TMOD,#02H SETB ET0 SETB EA WT: JB SP1,WT LCALL DELY10MS JB SP1,WT INC KEYCNT MOV A,KEYCNT CJNE A,#01H,KN1 SETB TR0 MOV TH0,#06H MOV TL0,#06H MOV TCNTA,#00H MOV TCNTB,#00H LJMP DKN KN1: CJNE A,#02H,KN2 CLR TR0 LJMP DKN KN2: CJNE A,#03H,DKN MOV SEC,#00H MOV A,SEC MOV B,#10 DIV AB MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A MOV A,B MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P2,A MOV KEYCNT,#00H DKN: JNB SP1,$ LJMP WT DELY10MS: MOV R6,#20 D1: MOV R7,#248 DJNZ R7,$ DJNZ R6,D1 RET INT_T0: INC TCNTA MOV A,TCNTA CJNE A,#100,NEXT MOV TCNTA,#00H INC TCNTB MOV A,TCNTB CJNE A,#4,NEXT MOV TCNTB,#00H INC SEC MOV A,SEC CJNE A,#100,DONE MOV SEC,#00H DONE: MOV A,SEC MOV B,#10 DIV AB MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,A MOV A,B MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P2,A NEXT: RETI TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH END 6. C语言源程序 #include unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x00}; unsigned char second; unsigned char keycnt; unsigned int tcnt; void main(void) { unsigned char i,j; TMOD=0x02; ET0=1; EA=1; second=0; P0=dispcode[second/10]; P2=dispcode[second%10]; while(1) { if(P3_5==0) { for(i=20;i>0;i--) for(j=248;j>0;j--); if(P3_5==0) { keycnt++; switch(keycnt) { case 1: TH0=0x06; TL0=0x06; TR0=1; break; case 2: TR0=0; break; case 3: keycnt=0; second=0; P0=dispcode[second/10]; P2=dispcode[second%10]; break; } while(P3_5==0); } } } } void t0(void) interrupt 1 using 0 { tcnt++; if(tcnt==400) { tcnt=0; second++; if(second==100) { second=0; } P0=dispcode[second/10]; P2=dispcode[second%10]; } } 18. “嘀、嘀、……”报警声 1. 实验任务 用AT89S51单片机产生“嘀、嘀、…”报警声从P1.0端口输出,产生频率为1KHz,根据上面图可知:1KHZ方波从P1.0输出0.2秒,接着0.2秒从P1.0输出电平信号,如此循环下去,就形成我们所需的报警声了。 2. 电路原理图 图4.18.1 3. 系统板硬件连线 (1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中的SPK IN端口上, (2. 在“音频放大模块”区域中的SPK OUT端口上接上一个8欧或者是16欧的喇叭; 4. 程序设计方法 (1.生活中我们常常到各种各样的报警声,例如“嘀、嘀、…”就是常见的一种声音报警声,但对于这种报警声,嘀0.2秒钟,然后断0.2秒钟,如此循环下去,假设嘀声的频率为1KHz,则报警声时序图如下图所示: 上述波形信号如何用单片机来产生呢? (2. 由于要产生上面的信号,我们把上面的信号分成两部分,一部分为1KHZ方波,占用时间为0.2秒;另一部分为电平,也是占用0.2秒;因此,我们利用单片机的定时/计数器T0作为定时,可以定时0.2秒;同时,也要用单片机产生1KHZ的方波,对于1KHZ的方波信号周期为1ms,高电平占用0.5ms,低电平占用0.5ms,因此也采用定时器T0来完成0.5ms的定时;最后,可以选定定时/计数器T0的定时时间为0.5ms,而要定时0.2秒则是0.5ms的400倍,也就是说以0.5ms定时400次就达到0.2秒的定时时间了。 5. 程序框图   主程序框图 中断服务程序框图 图4.18.2 6. 汇编源程序 T02SA EQU 30H T02SB EQU 31H FLAG BIT 00H ORG 00H LJMP START ORG 0BH LJMP INT_T0 START: MOV T02SA,#00H MOV T02SB,#00H CLR FLAG MOV TMOD,#01H MOV TH0,#(65536-500) / 256 MOV TL0,#(65536-500) MOD 256 SETB TR0 SETB ET0 SETB EA SJMP $ INT_T0: MOV TH0,#(65536-500) / 256 MOV TL0,#(65536-500) MOD 256 INC T02SA MOV A,T02SA CJNE A,#100,NEXT INC T02SB MOV A,T02SB CJNE A,#04H,NEXT MOV T02SA,#00H MOV T02SB,#00H CPL FLAG NEXT: JB FLAG,DONE CPL P1.0 DONE: RETI END 7. C语言源程序 #include unsigned int t02s; unsigned char t05ms; bit flag; void main(void) { TMOD=0x01; TH0=(65536-500)/256; TL0=(65536-500)%256; TR0=1; ET0=1; EA=1; while(1); } void t0(void) interrupt 1 using 0 { TH0=(65536-500)/256; TL0=(65536-500)%256; t02s++; if(t02s==400) { t02s=0; flag=~flag; } if(flag==0) { P1_0=~P1_0; } } 19. “叮咚”门铃 1. 实验任务 当按下开关SP1,AT89S51单片机产生“叮咚”声从P1.0端口输出到LM386,经过放大之后送入喇叭。 2. 电路原理图 图4.19.1 3. 系统板上硬件连线 (1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中的SPK IN端口上; (2. 在“音频放大模块”区域中的SPK OUT端口上接上一个8欧或者是16欧的喇叭; (3. 把“单片机系统”区域中的P3.7/RD端口用导线连接到“独立式键盘”区域中的SP1端口上; 4. 程序设计方法 (1. 我们用单片机实定时/计数器T0来产生700HZ和500HZ的频率,根据定时/计数器T0,我们取定时250us,因此,700HZ的频率要经过3次250us的定时,而500HZ的频率要经过4次250us的定时。 (2. 在设计过程,只有当按下SP1之后,才启动T0开始工作,当T0工作完毕,回到最初状态。 (3. “叮”和“咚”声音各占用0.5秒,因此定时/计数器T0要完成0.5秒的定时,对于以250us为基准定时2000次才可以。 5. 程序框图 主程序框图 T0中断服务程序框图 INCLUDEPICTURE "http://www.51dz.com/51htm/c51/img/1905.gif" \* MERGEFORMATINET 图4.19.2 6. 汇编源程序 T5HZ EQU 30H T7HZ EQU 31H T05SA EQU 32H T05SB EQU 33H FLAG BIT 00H STOP BIT 01H SP1 BIT P3.7 ORG 00H LJMP START ORG 0BH LJMP INT_T0 START: MOV TMOD,#02H MOV TH0,#06H MOV TL0,#06H SETB ET0 SETB EA NSP: JB SP1,NSP LCALL DELY10MS JB SP1,NSP SETB TR0 MOV T5HZ,#00H MOV T7HZ,#00H MOV T05SA,#00H MOV T05SB,#00H CLR FLAG CLR STOP JNB STOP,$ LJMP NSP DELY10MS: MOV R6,#20 D1: MOV R7,#248 DJNZ R7,$ DJNZ R6,D1 RET INT_T0: INC T05SA MOV A,T05SA CJNE A,#100,NEXT MOV T05SA,#00H INC T05SB MOV A,T05SB CJNE A,#20,NEXT MOV T05SB,#00H JB FLAG,STP CPL FLAG LJMP NEXT STP: SETB STOP CLR TR0 LJMP DONE NEXT: JB FLAG,S5HZ INC T7HZ MOV A,T7HZ CJNE A,#03H,DONE MOV T7HZ,#00H CPL P1.0 LJMP DONE S5HZ: INC T5HZ MOV A,T5HZ CJNE A,#04H,DONE MOV T5HZ,#00H CPL P1.0 LJMP DONE DONE: RETI END 7. C语言源程序 #include unsigned char t5hz; unsigned char t7hz; unsigned int tcnt; bit stop; bit flag; void main(void) { unsigned char i,j; TMOD=0x02; TH0=0x06; TL0=0x06; ET0=1; EA=1; while(1) { if(P3_7==0) { for(i=10;i>0;i--) for(j=248;j>0;j--); if(P3_7==0) { t5hz=0; t7hz=0; tcnt=0; flag=0; stop=0; TR0=1; while(stop==0); } } } } void t0(void) interrupt 1 using 0 { tcnt++; if(tcnt==2000) { tcnt=0; if(flag==0) { flag=~flag; } else { stop=1; TR0=0; } } if(flag==0) { t7hz++; if(t7hz==3) { t7hz=0; P1_0=~P1_0; } } else { t5hz++; if(t5hz==4) { t5hz=0; P1_0=~P1_0; } } } 20. 数字钟﹝★﹞ 1. 实验任务 (1. 开机时,显示12:00:00的时间开始计时; (2. P0.0/AD0控制“秒”的调整,每按一次加1秒; (3. P0.1/AD1控制“分”的调整,每按一次加1分; (4. P0.2/AD2控制“时”的调整,每按一次加1个小时; 2. 电路原理图 图4.20.1 3. 系统板上硬件连线 (1. 把“单片机系统”区域中的P1.0-P1.7端口用8芯排线连接到“动态数码显示”区域中的A-H端口上; (2. 把“单片机系统:区域中的P3.0-P3.7端口用8芯排线连接到“动态数码显示”区域中的S1-S8端口上; (3. 把“单片机系统”区域中的P0.0/AD0、P0.1/AD1、P0.2/AD2端口分别用导线连接到“独立式键盘”区域中的SP3、SP2、SP1端口上; 4. 相关基本知识 (1. 动态数码显示的方法 (2. 独立式按键识别过程 (3. “时”,“分”,“秒”数据送出显示处理方法 5. 程序框图 6. 汇编源程序 SECOND EQU 30H MINITE EQU 31H HOUR EQU 32H HOURK BIT P0.0 MINITEK BIT P0.1 SECONDK BIT P0.2 DISPBUF EQU 40H DISPBIT EQU 48H T2SCNTA EQU 49H T2SCNTB EQU 4AH TEMP EQU 4BH ORG 00H LJMP START ORG 0BH LJMP INT_T0 START: MOV SECOND,#00H MOV MINITE,#00H MOV HOUR,#12 MOV DISPBIT,#00H MOV T2SCNTA,#00H MOV T2SCNTB,#00H MOV TEMP,#0FEH LCALL DISP MOV TMOD,#01H MOV TH0,#(65536-2000) / 256 MOV TL0,#(65536-2000) MOD 256 SETB TR0 SETB ET0 SETB EA WT: JB SECONDK,NK1 LCALL DELY10MS JB SECONDK,NK1 INC SECOND MOV A,SECOND CJNE A,#60,NS60 MOV SECOND,#00H NS60: LCALL DISP JNB SECONDK,$ NK1: JB MINITEK,NK2 LCALL DELY10MS JB MINITEK,NK2 INC MINITE MOV A,MINITE CJNE A,#60,NM60 MOV MINITE,#00H NM60: LCALL DISP JNB MINITEK,$ NK2: JB HOURK,NK3 LCALL DELY10MS JB HOURK,NK3 INC HOUR MOV A,HOUR CJNE A,#24,NH24 MOV HOUR,#00H NH24: LCALL DISP JNB HOURK,$ NK3: LJMP WT DELY10MS: MOV R6,#10 D1: MOV R7,#248 DJNZ R7,$ DJNZ R6,D1 RET DISP: MOV A,#DISPBUF ADD A,#8 DEC A MOV R1,A MOV A,HOUR MOV B,#10 DIV AB MOV @R1,A DEC R1 MOV A,B MOV @R1,A DEC R1 MOV A,#10 MOV@R1,A DEC R1 MOV A,MINITE MOV B,#10 DIV AB MOV @R1,A DEC R1 MOV A,B MOV @R1,A DEC R1 MOV A,#10 MOV@R1,A DEC R1 MOV A,SECOND MOV B,#10 DIV AB MOV @R1,A DEC R1 MOV A,B MOV @R1,A DEC R1 RET INT_T0: MOV TH0,#(65536-2000) / 256 MOV TL0,#(65536-2000) MOD 256 MOV A,#DISPBUF ADD A,DISPBIT MOV R0,A MOV A,@R0 MOV DPTR,#TABLE MOVC A,@A+DPTR MOV P1,A MOV A,DISPBIT MOV DPTR,#TAB MOVC A,@A+DPTR MOV P3,A INC DISPBIT MOV A,DISPBIT CJNE A,#08H,KNA MOV DISPBIT,#00H KNA: INC T2SCNTA MOV A,T2SCNTA CJNE A,#100,DONE MOV T2SCNTA,#00H INC T2SCNTB MOV A,T2SCNTB CJNE A,#05H,DONE MOV T2SCNTB,#00H INC SECOND MOV A,SECOND CJNE A,#60,NEXT MOV SECOND,#00H INC MINITE MOV A,MINITE CJNE A,#60,NEXT MOV MINITE,#00H INC HOUR MOV A,HOUR CJNE A,#24,NEXT MOV HOUR,#00H NEXT: LCALL DISP DONE: RETI TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,40H TAB: DB 0FEH,0FDH,0FBH,0F7H,0EFH,0DFH,0BFH,07FH END 7. C语言源程序 #include unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x00}; unsigned char dispbitcode[]={0xfe,0xfd,0xfb,0xf7, 0xef,0xdf,0xbf,0x7f}; unsigned char dispbuf[8]={0,0,16,0,0,16,0,0}; unsigned char dispbitcnt; unsigned char second; unsigned char minite; unsigned char hour; unsigned int tcnt; unsigned char mstcnt; unsigned char i,j; void main(void) { TMOD=0x02; TH0=0x06; TL0=0x06; TR0=1; ET0=1; EA=1; while(1) { if(P0_0==0) { for(i=5;i>0;i--) for(j=248;j>0;j--); if(P0_0==0) { second++; if(second==60) { second=0; } dispbuf[0]=second%10; dispbuf[1]=second/10; while(P0_0==0); } } if(P0_1==0) { for(i=5;i>0;i--) for(j=248;j>0;j--); if(P0_1==0) { minite++; if(minite==60) { minite=0; } dispbuf[3]=minite%10; dispbuf[4]=minite/10; while(P0_1==0); } } if(P0_2==0) { for(i=5;i>0;i--) for(j=248;j>0;j--); if(P0_2==0) { hour++; if(hour==24) { hour=0; } dispbuf[6]=hour%10; dispbuf[7]=hour/10; while(P0_2==0); } } } } void t0(void) interrupt 1 using 0 { mstcnt++; if(mstcnt==8) { mstcnt=0; P1=dispcode[dispbuf[dispbitcnt]]; P3=dispbitcode[dispbitcnt]; dispbitcnt++; if(dispbitcnt==8) { dispbitcnt=0; } } tcnt++; if(tcnt==4000) { tcnt=0; second++; if(second==60) { second=0; minite++; if(minite==60) { minite=0; hour++; if(hour==24) { hour=0; } } } dispbuf[0]=second%10; dispbuf[1]=second/10; dispbuf[3]=minite%10; dispbuf[4]=minite/10; dispbuf[6]=hour%10; dispbuf[7]=hour/10; } }  21. 拉幕式数码显示技术 1. 实验任务 用AT89S51单片机的P0.0/AD0-P0.7/AD7端口接数码管的a-h端,8位数码管的S1-S8通过74LS138译码器的Y0-Y7来控制选通每个数码管的位选端。AT89S51单片机的P1.0-P1.2控制74LS138的A,B,C端子。在8位数码管上从右向左循环显示“12345678”。能够比较平滑地看到拉幕的效果。 2. 电路原理图 图4.21.1 3. 系统板上硬件连线 (1. 把“单片机系统”区域中的P0.0/AD0-P0.7/AD7用8芯排线连接到“动态数码显示”区域中的a-h端口上; (2. 把“三八译码模块”区域中的Y0-Y7用8芯排线连接到“动态数码显示”区域中的S1-S8端口上; (3. 把“单片机系统”区域中的P1.0-P1.2端口用3根导线连接到“三八译码模块”区域中的A、B、C“端口上; 4. 程序设计方法 (1. 动态数码显示技术;如何进行动态扫描,由于一次只能让一个数码管显示,因此,要显示8位的数据,必须经过让数码管一个一个轮流显示才可以,同时每个数码管显示的时间大约在1ms到4ms之间,所以为了保证正确显示,我必须每隔1ms,就得刷新一个数码管。而这刷新时
本文档为【给初学单片机的40个实验-2】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_006856
暂无简介~
格式:doc
大小:554KB
软件:Word
页数:50
分类:互联网
上传时间:2010-05-13
浏览量:22