首页 11工程水文及水利计算第十一章 水库兴利调节计算

11工程水文及水利计算第十一章 水库兴利调节计算

举报
开通vip

11工程水文及水利计算第十一章 水库兴利调节计算 第十一章 水库兴利调节 第一节 水库及其特性 一、水库特性曲线 水库是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水的人工湖泊。水库的作用是拦蓄洪水,调节河川天然径流和集中落差。一般地说,坝筑得越高,水库的容积(简称库容)就越大。但在不同的河流上,即使坝高相同,其库容相差也很大,这主要是因为库区内的地形不同造成的。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小。此外,河流的坡降对库容大小也有影响,坡降小的库容较大,坡降大的库容较小。根据库区河谷形状,水库有河道型和湖泊型两种。 一般把用来反映水库地...

11工程水文及水利计算第十一章 水库兴利调节计算
第十一章 水库兴利调节 第一节 水库及其特性 一、水库特性曲线 水库是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水的人工湖泊。水库的作用是拦蓄洪水,调节河川天然径流和集中落差。一般地说,坝筑得越高,水库的容积(简称库容)就越大。但在不同的河流上,即使坝高相同,其库容相差也很大,这主要是因为库区内的地形不同造成的。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小。此外,河流的坡降对库容大小也有影响,坡降小的库容较大,坡降大的库容较小。根据库区河谷形状,水库有河道型和湖泊型两种。 一般把用来反映水库地形特征的曲线称为水库特性曲线。它包括水库水位~面积关系曲线和水库水位~容积关系曲线,简称为水库面积曲线和水库容积曲线,是最主要的水库特性资料。 (一)水库面积曲线 水库面积曲线是指水库蓄水位与相应水面面积的关系曲线。水库的水面面积随水位的变化而变化。库区形状与河道坡度不同,水库水位与水面面积的关系也不尽相同。面积曲线反映了水库地形的特性。 绘制水库面积曲线时,一般可根据 l/10 000~ l/50 00比例尺的库区地形图,用求积仪(或按比例尺数方格)计算不同等高线与坝轴线所围成的水库的面积(高程的间隔可用 l,2或5 m),然后以水位为纵座标,以水库面积为横坐标,点绘出水位~面积关系曲线,如图2-1所示。 图2-1 水库面积特性曲线绘法示意 (二)水库容积曲线 水库容积曲线也称为水库库容曲线。它是水库面积曲线的积分曲线,即库水位 与累积容积 的关系曲线。其绘制方法是:首先将水库面积曲线中的水位分层,其次,自河底向上逐层计算各相邻高程之间的容积。 1 2      △ △ 0   水面面积 (106 m2) 水库容积 (106 m3) 图 2-2 水库容积特性和面积特性 1-水库面积特性; 2-水库容积特性 假设水库形状为梯形台,则各分层间容积计算公式为:  (2-1) 式中: ——相邻高程间库容(m3); 、 ——相邻两高程的水库水面面积(m2); ——高程间距(m)。 或用较精确公式: (2-2) 然后自下而上按   (2-3) 依次叠加,即可求出各水库水位对应的库容,从而绘出水库库容曲线。 水库总库容 的大小是水库最主要指标。通常按此值的大小,把水库划分为下列五级: 大Ⅰ型——大于 l0亿 m3; 大Ⅱ型—— l~10亿 m3; 中 型——0.1~l亿 m3; 小Ⅰ型——0.01~0.1亿 m3; 小Ⅱ型——小于0.01亿 m3。 水库容积的计量单位除了用m3表示外,在生产中为了能与来水的流量单位直接对应,便于调节计算,水库容积的计量单位常采用 (m3/s)·Δ 表示。Δ 是单位时段,可取月、旬、日、时。如1 表示 l 的流量在一个月(每月天数计为30.4天)的累积总水量,即 l =30.4×24×3600=2.63×106 m3 前面所讨论的水库特性曲线,均建立在假定入库流量为零时,水库水面是水平的基础上绘制的。这是蓄在水库内的水体为静止(即流速为零)时,所观察到的水静力平衡条件下的自由水面,故称这种库容为静水库容。如有一定入库流量(水流有一定流速)时,则水库水面从坝址起沿程上溯的回水曲线并非水平,越近上游,水面越上翘,直到入库端与天然水面相交为止。因此,相应于坝址上游某一水位的水库库容,实际上要比静库容大,其超出部分如图2-3中斜影线所示。静库容相应的坝前水位水平线以上与洪水的实际水面线之间包含的楔形库容称为动库容。以入库流量为参数的坝前水位与计入动库容的水库容积之间的关系曲线,称为动库容曲线。 一般情况下,按静库容进行径流调节计算,精度已能满足要求。但在需详细研究水库回水淹没和浸没问题或梯级水库衔接情况时应考虑回水影响。对于多沙河流,泥沙淤积对库容有较大影响,应按相应 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 水平年和最终稳定情况下的淤积量和淤积形态修正库容曲线。 二、水库的特征水位及其相应库容 表示水库工程规模及运用要求的各种库水位,称为水库特征水位。它们是根据河流的水文条件、坝址的地形地质条件和各用水部门的需水要求,通过调节计算,并从政治、技术、经济等因素进行全面综合 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 论证来确定的。这些特征水位和库容各有其特定的任务和作用,体现着水库运用和正常工作的各种特定要求。它们也是规划设计阶段,确定主要水工建筑物尺寸(如坝高和溢洪道大小),估算工程投资、效益的基本依据。这些特征水位和相应的库容,通常有下列几种,分别标在图2-3中。 (一)死水位和死库容 水库在正常运用情况下,允许消落的最低水位,称为死水位 。死水位以下的水库容积称为死库容 。水库正常运行时蓄水位一般不能低于死水位。除非特殊干旱年份,为保证紧要用水,或其他特殊情况,如战备、地震等要求,经慎重研究,才允许临时泄放或动用死库容中的部分存水。 确定死水位应考虑的主要因素是: (1)保证水库有足够的能发挥正常效用的使用年限(俗称水库寿命),特别应考虑部分库容供泥沙淤积。 (2)保证水电站所需要的最低水头和自流灌溉必要的引水高程。 (3)库区航运和渔业的要求。 (二)正常蓄水位和兴利库容 在正常运用条件下,水库为了满足设计的兴利要求,在开始供水时应蓄到的水位,称为正常蓄水位 ,又称正常高水位。正常蓄水位到死水位之间的库容,是水库可用于兴利径流调节的库容,称为兴利库容,又称调节库容或有效库容。正常蓄水位与死水位之间的深度,称为消落深度或工作深度。 溢洪道无闸门时,正常蓄水位就是溢洪道堰顶的高程;当溢洪道有操作闸门时,多数情况下正常蓄水位也就是闸门关闭时的门顶高程。   正常蓄水位是水库最重要的特征水位之一,它是一个重要的设计数据。因为它直接关系到一些主要水工建筑物的尺寸、投资、淹没、综合利用效益及其他工作指标;大坝的结构设计、强度和稳定性计算,也主要以它为依据。因此,大中型水库正常蓄水位的选择是一个重要问题,往往牵涉到技术、经济、政治、社会、环境等方面的影响,需要全面考虑 ,综合分析确定。 图2-3 水库特征水位及其相应库容示意图 (三)防洪限制水位和结合库容 水库在汛期为兴利蓄水允许达到的上限水位称为防洪限制水位,又称为汛期限制水位,或简称为汛限水位。它是在设计条件下,水库防洪的起调水位。该水位以上的库容可作为滞蓄洪水的容积。当出现洪水时,才允许水库水位超过该水位。一旦洪水消退,应尽快使水库水位回落到防洪限制水位。兴建水库后,为了汛期安全泄洪和减少泄洪设备,常要求有一部分库容作为拦蓄洪水和削减洪峰之用。防洪限制水位或是低于正常蓄水位,或是与正常蓄水位齐平。若防洪限制水位低于正常蓄水位,则将这两个水位之间的水库容积称为结合库容,也称共用库容或重叠库容。汛期它是防洪库容的一部分,汛后又可用来兴利蓄水,成为兴利库容的组成部分。 若汛期洪水有明显的季节性变化规律,经论证,对主汛期和非主汛期可分别采用不同的防洪限制水位。 (四)防洪高水位和防洪库容 水库遇到下游防护对象的设计标准洪水时,坝前达到的最高水位称为防洪高水位 。该水位至防洪限制水位间的水库容积称为防洪库容 。 (五)设计洪水位和拦洪库容 当遇到大坝设计标准洪水时,水库坝前达到的最高水位,称为设计洪水位 。它至防洪限制水位间的水库容积称为拦洪库容 或设计调洪库容 。 设计洪水位是水库的重要参数之一,它决定了设计洪水情况下的上游洪水淹没范围,它同时又与泄洪建筑物尺寸、类型有关;而泄洪设备类型(包括溢流堰、泄洪孔、泄洪隧洞)则应根据地形、地质条件和坝型、枢纽布置等特点拟定。 (六)校核洪水位和调洪库容 当遇到大坝校核标准洪水时,水库坝前达到的最高水位,称为校核洪水位 。它至防洪限制水位间的水库容积称为调洪库容 或校核调洪库容 。 校核洪水位以下的全部水库容积就是水库的总库容。设计洪水位或校核洪水位加上一定数量的风浪高值和安全超高值,就得到坝顶高程。 三、水库的水量损失 水库建成蓄水后,因改变河流天然状况及库内外水力条件而引起额外的水量损失,主要包括蒸发损失和渗透损失,在寒冷地区还有可能有结冰损失。 (一)水库的蒸发损失 水库蓄水后,使库区形成广阔水面,原有的陆面蒸发变为水面蒸发。由于流入水库的径流资料是根据建库前坝址附近观测资料整编得出,其中已计入陆面蒸发部分。因此,计算时段Δt(年、月)水库的蒸发损失是指由陆面面积变为水面面积所增加的额外蒸发量 (以m3计),即    (2-4) 式中: ——计算时段Δ 内库区水面蒸发强度,以水层深度(mm)计; ——计算时段Δ 内库区陆面蒸发强度,以水层深度(mm)计; ——计算时段Δ 内水库平均水面面积(km2); ——建库以前库区原有天然河道水面及湖泊水面面积(km2); 1000——单位换算系数,1 mm•km2=106/103 m3=103 m3。 水库水面蒸发可根据水库附近蒸发站或气象站蒸发资料折算成自然水面蒸发,即    (2-5) 式中: ——水面蒸发皿实测水面蒸发(mm); ——水面蒸发皿折算系数,一般为0.65~0.80。 陆面蒸发,尚无较成熟的计算方法,在水库设计中常采用多年平均降雨量 和多年平均径流深 之差,作为陆面蒸发的估算值。    (2-6) (二)渗漏损失 建库之后,由于水库蓄水,水位抬高,水压力的增大改变了库区周围地下水的流动状态,因而产生了水库的渗漏损失。水库的渗漏损失主要包括下面几个方面: (l)通过能透水的坝身(如土坝、堆石坝等) 的渗漏,以及闸门、水轮机等的漏水; (2)通过坝基及绕坝两翼的渗漏; (3)通过库底、库周流向较低的透水层的渗漏。 一般可按渗漏理论的达西公式估算渗漏的损失量。计算时所需的数据(如渗漏系数、渗径长度等)必须根据库区及坝址的水文地质、地形、水工建筑物的型式等条件来决定,而这些地质条件及渗流运动均较复杂,往往难以用理论计算的方法获得较好的成果。因此,在生产实际中,常根据水文地质情况,定出一些经验性的数据,作为初步估算渗漏损失的依据。 若以一年或一月的渗漏损失相当于水库蓄水容积的一定百分数来估算时,则采用如下数值: (l)水文地质条件优良(指库床为不渗水层,地下水面与库面接近),0~10%/年或0~1%/月。 (2)透水性条件中等,10%~20%/年或1%~1.5%/月。 (3)水文地质条件较差,20%~40%/年或1.5%~3%/月。 在水库运行的最初几年,渗漏损失往往较大(大于上述经验数据),因为初蓄时,为了湿润土壤及抬高地下水位需要额外损失水量。水库运行多年之后,因为库床泥沙颗粒间的空隙逐渐被水内细泥或粘土淤塞,渗漏系数变小,同时库岸四周地下水位逐渐抬高,渗漏量减少。 (三)结冰损失 结冰损失是指严寒地区冬季水库水面形成冰盖,随着供水期水库水位的消落,一部分库周的冰层将暂时滞留于库周边岸,而引起水库蓄水量的临时损失。这项损失一般不大,可根据结冰期库水位变动范围的面积及冰层厚度估算。 四、库区淹没、浸没和水库淤积 (一)库区淹没、浸没 在河流上建造水库将带来库区的淹没和库区附近土地的浸没,使库区原有耕地及建筑物被废弃,居民、工厂和交通线路被迫迁移改建,造成一定的损失。在规划设计水库时,要十分重视水库淹没问题。我国地少人多,筑坝建库所引起的淹没问题往往比较突出,对淹没问题的考虑和处理就更需周密慎重。 淹没通常分为经常性淹没和临时性淹没两类。经常性淹没区域,一般指正常蓄水位以下的库区 ,由于经常被淹,且持续时间长,因此,在此范围内的居民、城镇、工矿企业、通信及输电线路、交通设施等大多需搬迁 、改线 ,土地也很少能被利用;临时性淹没区域,一般指正常蓄水位以上至校核洪水位之间的区域,被淹没机会较小,受淹时间也短暂,可根据具体情况确定哪些迁移,哪些进行防护,区内的土地资源大多可以合理利用。所有迁移对象或防护措施都将按规定标准给予补偿。此补偿费用和水库淹没范围内的各种资源的损失统称为水库淹没损失,计入水库总投资内。 水库淹没范围的确定,应根据淹没对象的重要性,按不同频率的入库洪水求得不同的库水位 ,并由回水计算结果从库区地形图上查得相应的淹没范围。淹没范围内淹没对象的种类和数量,应通过细致的实地调查取得。在多沙河流上,水库淹没范围还应计及水库尾部因泥沙淤积水位壅高及回水曲线向上游延伸等的影响。 浸没是指库水位抬高后引起库区周围地区地下水位上升所带来的危害,如可能使农田发生次生盐碱化,不利于农作物生长;可能形成局部的沼泽地,使环境卫生条件恶化;还可能使土壤失去稳定,引起建筑物地基的不均匀沉陷,以致发生裂缝或倒塌。水库周围的浸没范围一般可采用正常蓄水位或一年内持续两个月以上的运行水位为测算依据。 淹没和浸没损失不仅是经济问题,而且是具有一定社会和政治影响的问题。是规划工作中的一个重要课题。 (二)水库的淤积 在天然河流上筑坝建库后,随着库区水位的抬高,水面加宽,水深增大,过水断面扩大,水力坡降变缓,水流速度减小。原河道水力特性的这种变化,降低了水流挟沙能力,也改变了原河道的泥沙运动规律,导致大量泥沙在库区逐渐沉淀淤积。这一情况说明,水库的建造,带来河流泥沙的淤积。我国华北的黄河和海河水系,水流含沙量大,如黄河三门峡水库,多年平均含沙量达37.8 kg/m3,因此自1960年至1970年间,水库共淤积泥沙55.5亿t,使库水位335 m以下的库容损失43%。又如海河流域永定河上的官厅水库,多年平均含沙量高达44.2 kg/m3,水库运用6年后,泥沙淤积导致库容损失达15.2%。即使含沙量较小的长江水系,干支流上修建的水库也有泥沙淤积问题。 泥沙淤积对水库运用和上下游河流产生的不良影响是多方面的。淤积使水库调节库容减少,降低水库调节水量的能力和综合利用的效益。坝前淤积,使电站进水口水流含沙浓度增大,泥沙粒径变粗,引起对过水建筑物和水轮机的磨损,影响建筑物和设备的安全和寿命。库尾淤积体向库区推进的同时,也向上游延伸,即所谓“翘尾巴”,因而抬高库尾水位,扩大库区的淹没和浸没损失。水库下游则由于泄放清水,水流夹沙能力增大,引起对下游河床的冲刷,水位降低,甚至河槽变形。 影响水库淤积的因素很多,主要有水库的入库水流的含沙量多少及其年内分配、库区地形、地质特性以及水库的运用方式等。从已建水库的大量观测资料分析,我国水库泥沙淤积的纵向形态可分为三种基本类型: (1)三角洲淤积形态。库内泥沙淤积体的纵剖面呈三角形形状的称为三角形淤积。当河流含沙量大时,库区开阔,库容较大,库水位变幅小,泥沙易于在库尾淤积形成三角洲,并且随着水库淤积的发展,三角洲逐渐向坝前靠近,所以这类淤积有相当部分的泥沙淤积是在有效库容内,如官厅水库和刘家峡水库就属于这种类型。 (2)锥形淤积。常见于多沙河流上的中小型水库。由于库区较短,库容小,水深不大,底坡较陡,库内行近流速比较大,泥沙淤积首先靠近大坝,以后淤积逐渐向上游发展,呈锥形淤积。 (3)带状淤积形态。当水库来沙少,库区狭长,水位变幅较大时,淤积从库尾到坝前分布较均匀,呈带状纵剖面,淤积前后河底平均比降变化不大,对有效库容影响较小。如丰满水库就属于这种类型。 以上三种水库淤积形态中,带状淤积影响较小;三角洲淤积侵占水库有效库容影响最大;锥体淤积对于坝前淤积高程、进水口工作条件以及粗粒泥沙对过水建筑物和水轮机的磨损影响较为严重。 因此,在多沙河流上修建水库,调节径流,必须考虑泥沙的影响,甚至将其作为一个专门问题在规划设计中加以研究解决。一般河流上修建水库,在规划设计阶段也应认真分析水、沙资料,力求正确地估算沙量,以便确定淤积库容、淤积年限,并尽可能采取对策减轻淤积带来的不利影响。 水库淤积年限或淤积库容的计算,严格的说应根据水库泥沙运动规律及淤积过程进行。但目前由于水库泥沙资料不全,计算方法欠完善,故难以得出精确的计算结果。一般情况下多采用较简单的方法来核算,例如采用下面介绍的简算法和沙莫夫法等。 简算法假定水库泥沙淤积呈水平增长。把水库开始运行到泥沙全部淤满死库容 ,并开始影响有效库容时为止的这段时间,称为水库的使用年限,或称淤积年限 。设水库年淤积量为 。其中 为年径流总量(m3 ); 为年平均含沙量(kg/m3); 为入库泥沙留在水库中的相对值,视库容相对大小或水库调节程度而定。由此,水库年淤积体积为:    (2-7) 式中: ——淤积的空隙度; ——泥沙的比重(kg/m3); 当水库的死库容己定时,可求得水库的使用年限 为   (2-8) 或当水库的使用年限 已定时,可求得水库所需的淤积库容 为 (2-9) 上述简算法仅适用于悬移质泥沙,对于推移质泥沙,因观测资料不足,尚难确切估算。对于推移质多的河流,应有专门的观测资料作为估算的基础。但是,这种方法无法了解水库的淤积过程。为此沙莫夫根据前苏联水库的淤积资料提出了计算水库淤积的经验公式。此法设想水库中由于泥沙的淤积,库容会逐年减小,经过 年后,剩余库容(即未淤的库容)为 ,有:   (2-10) 式中: ——冲淤平衡时,水库的最大淤积库容(淤满了 的容积后,进库和出库泥沙 相平衡,水库不再增加淤积); ——经过的年数; ——参数,由下式计算 (2-11) 式中: ;   (2-12) 。 (2-13) ——年输沙量(体积) ; ——第一年泥沙淤积的体积; ——水库的总库容; ——建库前,河流横断面面积。通常情况下,相当于最大流量时的断面面积的 3/4; ——建库后靠近坝址的断面面积; ——指数,为一经验数字,一般可取1.7; ——指数,与河流坡降及水库长度有关,其值在 1~1/3之间变动。 当坡降小于0.000 1时, =1.0~0.8; 当坡降为0.000 1~0.001时, =0.8~0.5; 当坡降为0.001~0.01时, n=0.5~0.33。 求得 和 之后,即可由公式( 2-10),求得不同年份 的剩余库容 或淤积库容( )。 沙莫夫的计算方法 ,同样也未考虑推移质泥沙,因此所得淤积年限一般偏大。以上两法都只宜在库容较大,含沙量不大的河流上采用。这两种方法的另一不足之处是只能求得总的淤积年限或淤积库容,不能求得淤积过程,更不能求出具有重要意义的回水尾端区的淤积发展过程。 在多沙河流上规划设计水库时,除了对淤积库容需作慎重考虑外,还必须针对设计水库的具体情况,提出减轻水库淤积的措施。最根本的措施是做好流域的水土保持工作,但是不能把远景治理效果作为近期规划的依据;其次在坝底或坝身的不同高程上设置泄水孔,以便把较细的沙粒,在未来得及沉淀于库底前,就随水流排往下游。此外,结合水库运行调度,可采取蓄清排浑的运行方式,即在汛期主要来沙季节,选择一段时间作为排沙期,排沙期后蓄水兴利;或抓住洪峰前后出现高含沙量的特点,采取洪峰前后排沙,洪峰过后蓄水。以避开拦截沙峰入库,减轻淤积数量。这些都是多沙河流水库调度的专门问题。 第二节 设计标准和设计代表期 任何水资源工程从规划设计到投入使用,总有一个时间过程。较大的工程往往长达几年或十几年,工程投入使用后的正常使用期一般可达几十年或上百年。在这期间随着社会生产力的发展和人们生活水平的提高,生产和生活对水资源的需求量也随之扩大,而水资源本身又是随机多变的。因此,在规划设计水资源工程时,首先要解决的是,在什么样的来水情况下满足不同时候的需水要求,以及满足这种需水要求的保证程度。这就是所谓设计代表期、设计水平年和设计保证率的问题。其中设计水平年和设计保证率可概括为兴利方面的设计标准问题。 一、设计水平年 设计水平年是指与电力系统的电力负荷水平相应的未来某一年份,并以该年的国民经济状况与社会背景下的综合用水需求作为水利水电枢纽规划设计的依据。各用水部门的需水量随着国民经济的发展而逐年增长;而水利工程从规划到建成,再从投入运行到正常运行,往往需要长达十几年或更长的时间。因此,必须通过论证,合理选定未来的某一年份作为设计水平年,对该年各用水部门的用水量作出预测,并以此作为确定水利工程规模的依据。 水利工程的设计水平年,应根据其重要程度和工程寿命确定。一般的水利工程,可采用设计水平年和远景水平年两种需水量水平。设计水平年作为水利工程的依据,并按远景水平年进行校核。对于特别重要工程规模的确定,应尽量考虑得更长远一些。水电工程一般采用第一台机组投入后的5~10年作为设计水平年。所选设计水平年应与国民经济五年计划分界年份相一致。 综合利用水利枢纽应先论证、拟定各需水部门的设计水平年。对于以发电为主的综合利用枢纽,设计水平年的选择应根据地区的水力资源比重、水库调节性能及水电站的规模等情况综合分析确定。例如对于水力资源不丰富、水电比重小的地区,当设计水电站的规模较大,调节性能较高时,考虑到远景系统调峰的需要,设计水平年应适当选得远一些。承担灌溉任务的水利枢纽,在考虑其设计水平年时,必须结合灌区规划考虑其近期水平及灌区达到最终规模的需水水平。对于航运和给水部门的设计水平年的确定,主要是考虑航运最终发展的客运、货运规模和船只的吨位、城市人口发展和工矿企业的最终生产能力等因素。确定综合利用工程规模应以主要需水部门的设计水平年为依据,并考虑其他需水部门在该水平年的需水要求,然后再结合远景水平年的确定,适当考虑各需水部门的远景需水要求。 二、设计保证率 由于河川径流具有多变性,如果在稀遇的特殊枯水年份也要保证各兴利部门的正常用水需要,势必要加大水库的调节库容和其他水利设施。这样做在经济上是不合理的,在技术上也不一定行得通。为了避免不合理的工程投资,一般不要求在将来水库使用期间能绝对保证正常供水,而允许水库可适当减少供水量。因此,必须研究各用水部门允许减少供水的可能性和合理范围,定出多年工作期间用水部门正常工作得到保证的程度,即正常供水保证率,或简称设计保证率。由此可见,设计保证率是指工程投入运用后的多年期间用水部门的正常用水得到保证的程度,常以百分数表示。 设计保证率通常有年保证率和历时保证率两种形式。 年保证率 指多年期间正常工作年数(即运行年数与允许破坏年数之差)占总运行年数的百分比, 即 (2-14) 所谓破坏年数,包括不能维持正常工作的任何年份,不论该年内缺水时间的长短和缺水数量的多少。 历时保证率 是指多年期间正常工作的历时(日、旬或月)占总运行历时的百分比,即   (2-15) 采用什么形式的保证率,可视用水特性、水库调节性能及设计要求等因素而定。如灌溉水库的供水保证率常采用年保证率;航运和径流式水电站,由于它们的正常工作是以日数表示的,故一般采用历时保证率。 设计保证率是水利水电工程设计的重要依据,其选择是一个复杂的技术经济问题。若选得过低,则正常工作遭破坏的机率将会增加,破坏所引起的国民经济损失及其不良影响也就会加重;相反,如选得过高,用水部门的破坏损失虽可减轻,但工程的效能指标就会减小(如库容一定时,保证流量就减小),或工程投资和其他费用就要增加(如用水要求一定时,库容要加大)。所以,应通过技术经济比较分析,并考虑其他影响,合理选定设计保证率。由于破坏损失及其他后果涉及许多因素,情况复杂,难以确定,目前在设计中主要根据生产实践积累的经验,并参照 规范 编程规范下载gsp规范下载钢格栅规范下载警徽规范下载建设厅规范下载 选用设计保证率。 选择水电站设计保证率时,要分析水电站所在电力系统的用户组成和负荷特性、系统中水电容量比重、水电站的规模及其在系统中的作用、河川径流特性及水库调节性能,以及保证系统用电可能采取的其他备用措施等。一般地说,水电站的装机容量越大,系统中水电所占比重越大,系统重要用户越多,河川径流变化越剧烈,水库调节性能越高,水电站的设计保证率就应该取大一些。可参照表2-1提供的范围,经分析选定水电站的设计保证率。 表2-1 水电站设计保证率 电力系统中水电站容量比重(%) 25以下 25~50 50以上 水电站设计保证率(%) 80~90 90~95 95~98 注:表中数据引自我国水利部颁布的《水利水电工程水利动能 设计规范 民用建筑抗震设计规范配电网设计规范10kv变电所设计规范220kv变电站通用竖流式沉淀池设计 》SDJ 11-77 选择灌溉设计保证率,应根据灌区土地和水利资源情况、农作物种类、气象和水文条件、水库调节性能、国家对该灌区农业生产的要求以及工程建设和经济条件等因素进行综合分析。一般地说,灌溉设计保证率在南方水源较丰富地区比北方地区高,大型灌区比中、小型灌区高 ,自流灌溉比提水灌溉高 ,远景规划工程比近期工程高。可参照表2-2,适当选定灌溉设计保证率。 表2-2 灌溉设计保证率 地区特点 农作物种类 年设计保证率(%) 缺水地区 以旱作物为主 50~75 以水稻为主 70~80 水源丰富地区 以旱作物为主 70~80 以水稻为主 75~95 注:表中数据引自我国水利部颁布的《灌溉排水渠系设计规范》SDJ 217-84 由于工业及城市居民给水遭到破坏时,将会直接造成生产上的严重损失,并对人民生活有极大影响,因此,给水保证率要求较高,一般在95%~99%(年保证率),其中大城市及重要的工矿区可选取较高值。即使在正常给水遭受破坏的情况下,也必须满足消防用水、生产紧急用水及一定数量的生活用水。 航运设计保证率是指最低通航水位的保证程度 ,用历时(日)保证率表示。航运设计保证率一般按航道等级结合其他因素由航运部门提供。一般一、二级航道保证率为97%~99%,三、四级航道保证率为95%~97%,五、六级航道保证率为90%~95%。 三、设计代表年和代表期的选择 由设计保证率的概念可知,正常供水的保证程度是相对某一水库多年运用结果而言的。在详细设计阶段,一般可根据长系列水文资料,通过逐时段的调节计算求得正常供水量、调节库容及相应设计保证率之间的关系。但在初步规划阶段,未定因素较多,为了减少进行多 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 比较的计算工作量,常从长系列的水文资料中选择一些代表年或代表期的径流资料进行调节计算。 (一)设计设表年 在规划设计中常用的设计代表年有设计枯水年、中水年和丰水年。设计枯水年是指与设计保证率 有一定对应关系的年份,即用该年的径流资料进行调节计算求得的成果(所需的兴利库容或所提供的调节流量)可反映设计保证率的要求;设计中水年指年径流接近于多年平均情况的年份,对该年径流资料进行调节计算所得的成果用于反映水利工程的多年平均效益。设计丰水年一般选年径流频率相当于1- 的年份为代表,对该年径流资料进行调节计算所得的成果反映丰水条件下的兴利情况。 设计枯水年的选择,视计算要求和简化程度的不同,通常可采用下列方法之一。 1. 水量选年法 以设计枯水年为例,根据历年径流资料,分别绘制年水量(或枯季水量)频率曲线,在曲线上查得与设计保证率 相应的年水量(或枯季水量)。用《工程水文学》的方法可从实测径流系列中选出年水量接近的年份推出设计枯水年年内分配情况。一般地讲,枯水期水量的多少与供水期正常供水的情况关系更为密切。 类似地,对设计中水年和丰水年,则可分别以多年平均水量(或 =50%)和(1- )相应的年水量选择年内分配。 2. 调节流量选年法 因为供水期起始日期除与径流年内分配有关外,还与有效库容的大小有关,因此,按每年固定划分的枯水期径流频率曲线选择设计枯水年可能不确切。按水库供水期的调节流量选择设计枯水年,可以更准确地反映设计保证率。当水库兴利库容为已知量时,采用径流调节简化计算法对年径流系列可求得各年的供水期调节流量,经统计计算求得与各年调节流量相应的经验频率值,绘出调节流量与经验频率的关系曲线。据此曲线即可选出频率相当于设计保证率 的年份作为设计枯水年,相应的调节流量即为设计调节流量。 (二)设计代表期 设计代表期是指一个长达若干年的代表性时期,可用该时期径流资料进行径流调节计算的成果来近似地反映长系列径流调节计算的结果。与设计代表年类似,设计代表期也是径流调节的一种简化法,它适用于多年调节水库。设计枯水年组及中水代表期是常采用的两种代表期。 1. 设计枯水年组 多年调节水库调节周期为若干年。一般情况下,由于水文资料的限制,能获得的完整调节周期数是不多的。因此,很难通过枯水年系列频率分析来选定设计枯水年组,通常采用扣除允许破坏年数的方法加以确定,即   (2-l6) 式中: ——允许破坏年数; ——水文系列总年数; ——设计保证率。 按式(2-l6)计算在设计保证率条件下正常工作允许破坏的年数,然后在实测水文系列中选出最严重的连续枯水年组,逆时序从该枯水年组末扣除允许破坏年数,余下的即为所选的设计枯水年组。还必须对其他枯水年组进行校核,若其他年组出现破坏,则应从 中扣除其他年组的破坏年数。用设计枯水年组进行多年调节水库的调节计算可近似地反映兴利库容、调节流量与供水保证率之间的关系。 2. 中水代表期 采用中水代表期进行径流调节计算的目的是推求水库的多年平均效益指标。选择中水年组时应考虑以下条件: (1) 代表期应有丰、中、枯水年,至少有一个完整的调节周期; (2) 代表期的平均流量与长系列径流资料的多年平均流量相近; (3) 代表期的年径流变差系数 与长系列相近。 第三节 径流调节的作用及分类 一、径流调节的涵义 广义的径流调节是指整个流域内,人类对地面及地下径流的自然过程的一切有意识的干涉。例如,群众性的农田水利工程,包括塘堰、闸坝、河网等蓄水、拦水、引水措施,以及各种农、林措施和水土保持工程等。这些措施改变了径流形成的条件,对天然径流起一定的调节作用,有利于防洪兴利。 狭义的径流调节是指河川径流在时间和地区上的重新分配,即通过建造和运用水资源工程(枢纽等),将汛期过多的河川径流量蓄存起来,待枯水期来水不足时使用;在地区上根据需要进行水量余缺调配,如引黄(河)济卫(海河支流卫河)、引滦(河)济津(天津)以及正在研究并已局部实施的南水北调工程等。地区间的径流调配调节 ,其影响范围和经济意义更大,工程投资也更为可观。 二、径流调节的作用 众所周知,河川径流在一年之内或者在年际之间的丰枯变化都是很大的。我国河流年内洪水季的水量往往要占全年来水总量的70%~80%。河川径流的剧烈变化,给人类带来很多不利的后果,如汛期大洪水容易造成灾害,而枯水期水少,不能满足兴利需要。因此,无论是为了消除或减轻洪水灾害,还是为了满足兴利需要,都要求采取措施,对天然径流进行控制和调节。 为兴利而提高枯水径流的水量调节,称为兴利调节,或称枯水调节;为削减洪峰流量,利用水库拦蓄洪水,以消除或减轻下游洪涝灾害的调节,称为洪水调节。洪水调节将在第三章中讨论。 利用水库调节径流,是河流综合治理和水资源综合开发利用的一个重要技术措施。通过径流调节,消除或减轻洪灾和干旱灾害,更有效地利用水资源,充分发挥河流水资源在国民经济建设中的重大作用 综上所述,径流调节的作用就是:协调来水与用水在时间分配上和地区分布上的矛盾,以及统一协调各用水部门需求之间的矛盾。 三、径流调节的分类 径流调节总体上分为两大类:枯水调节和洪水调节。因枯水调节来水与用水之间矛盾具体表现形式并不相同,需要作进一步的划分,以便在调节计算中掌握其特点。 (一)按调节周期长短划分 1. 日调节 在一昼夜内,河中天然流量一般几乎保持不变(只在洪水涨落时变化较大),而用户的需水要求往往变化较大。如图2-4 所示,水平线 表示河中天然流量,曲线 为负荷要求发电引用流量的过程线。对照来水和用水可知,在一昼夜里某些时段内来水有余(如图上横线所示),可蓄存在水库里;而在其他时段内来水不足(如图上竖线所示),水库放水补给。这种径流调节,水库中的水位涨落在一昼夜内完成一个循环,即调节周期为24 ,故称日调节。 日调节的特点是将均匀的来水调节成变动的用水,以适应电力负荷的需要。所需要的水库调节库容不大,一般小于枯水日来水量的一半。 2. 周调节 在枯水季节里,河中天然流量在一周内的变化也是很小的,而用水部门由于假日休息,用水量减少,因此,可利用水库将周内假日的多余水量蓄存起来,在其他工作日用(如图2-5)。这种调节称周调节,它的调节周期为一周,它所需的调节库容一般不超过一天的来水量。周调节水库一般也可进行日调节,这时水库水位除了一周内的涨落大循环外,还有日变化。 3. 年调节 在一年内,河川流量有明显的季节性变化,洪水期流量很大,水量过剩,甚至可能造成洪水灾害;而枯水期流量很小,不能满足综合用水的要求。利用水库将洪水期内的一部分(或全部)多余水量蓄存起来,到枯水期放出以提高供水量。这种对年内丰、枯季的径流进行重新分配的调节就叫做年调节,它的调节周期为一年。 图2-6为年调节示意图。图上表明,只需一部分多余水量将水库蓄满(图中横线所示),其余的多余水量(斜线部分),只能由溢洪道弃掉。图中竖影线部分表示由水库放出的水量,以补充枯水季天然水量的不足,其总水量相当于水库的调节库容。 水库的兴利库容能够蓄纳设计枯水年丰水期的全部余水量时,称为完全年调节;若兴利库容相对较小,不足以蓄纳设计枯水年丰水期的全部余水量而产生弃水时,称为不完全年调节,或季调节。这是规划设计中划分水库调节性能所采用的界定。必须指出,从水库实际运行看,这种划分是相对的,完全年调节遇到比设计枯水年径流量更丰的年份,就不可能达到完全年调节。年调节水库一般都同时可进行周调节和日调节。 4. 多年调节 当水库容积大,丰水年份蓄存的多余水量,不仅用于补充年内供水,而且还可用以补充相邻枯水年份的水量不足,这种能进行年与年之间的水量重新分配的调节,叫做多年调节。这时水库可能要经过几个丰水年才蓄满,所蓄水量分配在几个连续枯水年份里用掉(如图2-7)。因此,多年调节水库的调节周期长达若干年,而且不是一个常数。多年调节水库,同时也进行年调节、周调节和日调节。 水库属何种调节类型,可用水库库容系数 来初步判断。水库库容系数 为水库库容调节与多年平均年水量 的比值,即 。具体可参照下列经验系数判断调节类型: >30%~50% 多属多年调节;3%~5%≤ <20%~25% 多属年调节; <2%~3% 属日调节。 (二)按两水库相对位置和调节方式划分 1. 补偿调节 水库至下游用水部门取水地点之间常见有较大的区间面积,区间入流显著而不受水库控制,为了充分利用区间来水量,水库应配合区间流量变化补充放水,尽可能使水库放水流量与区间入流量的合成流量等于或接近于下游用水要求。这种视水库下游区间来水流量大小,控制水库补充放水流量的调节方式,称为补偿调节,如图2-8所示。 2. 梯级调节 布置在同一条河流上多座水库,其形状像是由上而下的阶梯,称为梯级水库(如图2-9所示)。 梯级水库的特点是水库之间存在着水量的直接联系(对水电站来说有时还有水头的影响,称水力联系),上级水库的调节直接影响到下游各级水库的调节。在进行下级水库的调节计算时,必须考虑到流入下级水库的来水量是由上级水库调节和用水后而下泄的水量与上下两级水库间的区间来水量两部分组成。梯级调节计算一般自上而下逐级进行。当上级调节性能好,下级水库调节性能差时,可考虑上级水库对下级水库进行补偿调节,以提高梯级总的调节水量。对梯级水库进行的径流调节,简称梯级调节。 一级水库 二级水库 三级水库 图2-9 梯级调节水库示意图 3. 径流电力补偿调节 位于不同河流上但属同一电力系统联合供电的水电站群,可以根据它们所在流域的水文特性及各自的调节性能差别,通过电力联系来进行相互之间的径流补偿调节,以提高水库群总的水利水电效益。这种通过电力联系的补偿调节就叫做径流电力补偿调节。 4. 反调节 为了缓解上游水库进行径流调节时给下游用水部门带来的不良影响,在下游适当地点修建水库对上游水库的下泄流量过程进行重新调节,称为反调节,又称再调节。河流综合利用中,经常出现上游水库为水力发电进行日调节造成下泄流量和下游水位的剧烈变化而对下游航运带来不利影响;水电站年内发电用水过程与下游灌溉用水的季节性变化不一致,修建反调节水库有助于缓解这些矛盾。 四、径流调节计算所需基本资料 为完成径流调节计算任务所需的基本资料有: (1)径流资料,调节计算所需的径流资料,随调节程度的高低有不同要求。日和周调节需要有10年左右的历年日平均流量资料;年调节需要有20年以上的历年月平均流量和汛期旬平均流量资料;多年调节需要30年以上的年、月径流资料,以及年径流频率曲线和统计特征值资料。 (2)水库特性资料,即水库水位与水库面积、容积关系曲线; (3)用水资料,包括各部门正常用水保证率,正常用水量及其分配过程。 五、径流调节计算中的常用术语 在径流调节计算中,为简化计算又便于比较,常把来水、用水及调节库容用相对值表示。 (一) 调节系数( ) 调节系数由保证调节流量和多年平均来水流量的比值表示: (2-17) 如果调节流量在年内是变动的,则以保证年供水量与多年平均年水量之比值表示: (2-18) 式中: ——保证调节流量,m3/s; ——多年平均来水流量,m3/s; ——保证年供水量,m3; ——多年平均年来水量,或年径流量,m3。 (二) 库容系数( ) 库容系数以调节库容(或称有效库容、兴利库容)与多年平均年年来水量,或年径流量之比值表示: (2-19) 式中: ——调节库容,m3。 (三) 年径流量模比系数( ) 年径流量模比系数(年径流量相对值),表示各年径流量与多年平均年径流量之比: (2-20) 或 (2-21) 式中: ——第 年平均流量,m3/s; ——第 年年径流量,m3。 (四) 径流利用系数( ) 径流利用系数表示径流利用程度,以下式表示:    (2-22) 式中: ——平均年供水量, m3。 第四节 径流调节原理 一、径流调节计算基本原理 径流调节计算的基本原理是水库的水量平衡。将整个调节周期划分为若干个计算期 (一般取月或旬),然后按时历顺序进行逐时段的水库水量平衡计算。某一计算时段Δt内水库水量平衡方程式可由式(2-23)表示,即 (2-23) 式中: ——时段Δ 内的入库水量,m3; ——时段Δ 内的出库水量,m3; ——时段Δ 内水库蓄水容积的增减值,m3。   当用时段平均流量表示时,则式(2-23)可改写为 或 (2-24) 式中: ——天然入库流量,m3/s; ——调节流量,即用水流量,m3/s; ——取用或存入水库的平均流量,简称“水库流量”, m3/s。 上述水库水量平衡公式属最简单的情况。当考虑水库的水量损失,出库水量为几个部门所分用以及当水库已蓄满将产生弃水时,则可进一步表达为: (2-25) 式中: ——水库水量损失,包括蒸发和渗漏等损失; , …——各部门分用的调节流量; ——水库弃水流量,即通过泄水建筑物弃泄的流量。 二、径流调节周期中水库运用情况分析 径流调节周期是指水库从死水位开始蓄水,达到正常蓄水位后又消落到死水位的历时。不同调节性能的水库具有不同的调节周期,如日调节水库的调节周期为一日(24h),年调节水库的调节周期为一年。 必须注意到由于水库来水流量过程 ~ 与供水流量过程 ~ 配合情况不同,调节周期中水库的蓄水、供水过程有不同的组合。比如说,调节周期中可能只有一次连续蓄水过程和一次供水过程,也可能出现多次蓄水、供水的变化过程。必须分析调节周期水库的运用情况,以便正确确定水库的兴利库容。 (一) 水库一次运用 水库在调节周期内只有一次连续蓄水、供水的情况,叫做水库一次运用,如图2-10所示。图中 为余水量, 为缺水量,且 ≥ ,此时所需的水库调节库容 。 (二) 水库二次运用 当水库在一个调节周期内连续供水、蓄水有二次时,叫做水库二次运用,如图2-11所示。假设第一次运用余水量为 ,缺水量为 ,第二次运用余水量为 ,缺水量为 ,此时调节库容的确定可分为下列几种情况: (1) 当 > , > 时,表明两次运用之间无水量联系,此时 。 (2) 当 < , < 时,表明两次运用之间有水量联系,此时 。 (3) 当 < < 时,表明两次运用之间有水量联系,此时 。 (三) 水库多次运用 水库多次运用情况更为复杂,调节库容的确定难以通过图形表达,下面通过例子来解释多次运用情况调节库容的确定。 [例2-1]  假设图2-12中 =20万m3, =3万m3, =4万m3, =5万m3, =3万m3, =4万m3,求兴利库容。 [解] 由于 > ,用 完全可以补充 的缺水,因此, 缺水不影响后面时段的缺水。又由于受兴利库容限制, 也不可能影响后面时段的余缺水。由此可见, , , , 组成新的二次运用情况。由二次运用判断准则,可得: (万m3) 三、径流调节计算研究课题 如前所述,径流调节的任务就是借助水库的调节作用,按用水要求重新分配河川天然 径流。调节计算主要是研究天然来水、各部门的用水与水库库容三者之间的关系。调节计算的实质是进行来水和用水的对照和平衡:当来水大于用水时,水库蓄水;当来水小于用水时,水库供水。 从分析水库水量平衡式可以看出,径流调节计算可概括为如下三类课题: (1) 根据用水部门的要求,求所需兴利库容; (2) 根据已定的兴利库容,求所能提供的保证调节流量。 (3) 找出天然来水、各部门用水与兴利库容三者之间的关系,或是找出保证率、调节流量与与兴利库容三者之间的关系。 四、径流调节计算方法 径流调节计算的方法,根据所应用的河川径流特性可分为两大类。第一类是利用径流 的时历特性进行计算的方法,叫做时历法;第二类是利用径流的统计(频率)特性进行计算的方法,叫做数理统计法。 时历法采用按时序排列的实测径流系列作为入库径流过程进行水库径流调节计算,其特点是利用已出现的径流过程的时序特性反映未来的径流变化。时历法又分为列表法和模拟计算法:列表法是直接利用过去观测到的径流资料(即流量过程),以列表形式进行计算的方法;模拟计算法则是在电子计算机上进行模拟运行的调节计算法。在水库径流调节计算实践中,广泛地采用时历法。时历法的计算结果,给出调节后的利用流量、水库存蓄水量、弃水量以及水库水位等因素随时序的变化过程。它具有简易直观,便于考虑较复杂的用水过程和计入水量的损失等优点。 数理统计法多用于多年调节计算,计算的结果直接以调节水量、水库存水量、多余和不足水量的频率曲线的形式表示出来。 第五节 径流调节时历列表法 径流调节时历列表计算法是时历法的一种基本方法。它计算简单,实用性强,是规划设计中最常用的方法。列表计算法既可用于年调节计算,也可用于多年调节计算。无论是对设计代表年、设计代表期,还是对长系列的径流调节计算一般都采用列表计算法。 下面讨论不同调节计算课题的列表计算法。本节主要以年调节为对象,所介绍的计算方法也适用于
本文档为【11工程水文及水利计算第十一章 水库兴利调节计算】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_207582
暂无简介~
格式:doc
大小:1MB
软件:Word
页数:39
分类:
上传时间:2010-04-27
浏览量:117