爱问 爱问共享资料 爱问分类
首页 >娱乐、生活 >文学艺术 >世界科技全景百卷书(61)--动物的进化.PDF

世界科技全景百卷书(61)--动物的进化.PDF举报

简介:

世界科技全景百卷书(61)--动物的进化

动物的进化从水世界开始早期生命大约在32亿年前左右,地球上诞生了细菌等原始生物,这样的低等生物怎样演变成现在我们看到的花鸟虫鱼等高等动植物呢?科学家们通过对古代生物遗留下来的遗体、遗迹——化石的研究,基本上摸清了生物的演变过程。细菌等原始生物在海洋诞生后,经过27亿年左右的漫长历史,约在5亿年前,海洋生物可以说是“大家庭”了。海底长着翠绿多姿的海带一类的植物,水里游着憨态笨形的乌贼、飘逸柔美的海星,还有苔藓虫、螺蛳、牡蛎,一派繁荣昌盛的景象。但这时的陆地上仍是一片荒凉。到三四亿年前,因为地壳的运动,有水的地方变为陆地了。这样像海带一类的藻类植物慢慢地适应了陆地生活条件。起初,它们没有叶、没有根,以后逐渐分化产生了根、茎、叶。从此,陆地上便有了绿色植物,并逐渐蔓延开来。绿色植物的登陆,为某些鱼类的登陆提供了适宜的环境和食饵。甲胄鱼类出现美国科罗拉多州奥陶纪淡水沉积岩中发现的具有骨质结构的鳞片是已知最早的脊椎动物化石,它说明在遥远的奥陶纪,地球上的河流与湖泊之中,曾生活着身上有鳞甲的脊椎动物。英格兰志留纪中期的海相沉积中发现过另一些脊椎动物化石,即莫氏鱼和花鳞鱼。莫氏鱼可能是一种非常原始的无颌脊椎动物,其系统地位可能接近于生活到现代的无颌类七鳃鳗的祖先。它是身体细长的小型管状动物,前端有一个吸盘状的口,眼的后面、头部两侧各有一排圆形的鳃孔;尾鳍下叶较长,上叶较短而高,此外可能还有保持身体平衡的侧鳍褶和一条长的背鳍。到了泥盆纪,早期的脊椎动物达到了繁盛时期,大量的泥盆纪脊椎动物化石在世界各地都有发现。这些最早的脊椎动物属于无颌纲,统称为甲胄鱼类。它们没有上下颌骨,作为取食器官的口不能有效地张合,因此它们获取广泛食物资源的能力就很受限制。它们没有真正的偶鳍,也没有骨质的中轴骨骼。有代表性的甲胄鱼体表具有发育较好的由骨板或鳞甲组成的甲胃,这便是“甲胄鱼”这一名称的由来。不同类群的甲胄鱼彼此之间差异很大。很可能,这些不同类群在其有化石记录的时代之前,已经各自经历了长期的进化过程。根据这些差异,可以把包括现代类型在内的无颌类分为以下两个亚纲及几个目:单鼻孔亚纲:具有单一的鼻孔,较多的鳃孔和骨质的头盾。分为以下4目:头甲鱼目、盔甲鱼目、缺甲鱼目和圆口目。双鼻孔亚纲:具有一对内鼻孔,外鼻孔不存在;形态多样,甲片复杂。分为鳍甲目、盾鳞目和多鳃鱼目。脊椎动物张开了大口生物的进化史上,发生过一些重大事件。这些重大事件的意义超过各种一般性事件的总和,具有革命的性质,深远地影响着后来的进化方向。脊椎动物登上历史舞台之后,第一次这种革命就是颌的出现。由较早期的动物向较晚期的动物进化的过程,实际上是通过其结构由一种功能向另一种功能转变来完成的。颌就是由一些原来执行的功能与取食并无关系的结构转变而来的。甲胄鱼类有大量的鳃,这些鳃由一系列的骨骼构造所支持,每一构造由数节骨头组成,形状像尖端指向后方的躺着的“”字形。每一个这样的“”字形构造就是一个鳃弓。原始脊椎动物所有的鳃弓排列成左右两排横卧的“”字形结构:>>>>。在脊椎动物进化的某一个早期阶段,原来前边的两对鳃弓消失了,第三对鳃弓上长出了牙齿,并在“”字的尖端处以关节结构铰合在一起。这样,能够张合自如,有效地咬啮食物的上下颌形成了,脊椎动物从此真正地张开了“血盆大口”。高等鱼类的进步典型的高等鱼类都是流线型身体,这一点与许多善于游泳的原始鱼形动物并无太大差别,所不同的是,它们发展出了一套后者从来没有过的完善的运动器官——鳍。典型的高等鱼类有一个大而有力的尾鳍,尾鳍来回摆动在水中引起反作用力,从而推动身体前进。背部有1~2个背鳍,腹面一般还有一个臀鳍,均为平衡器,当鱼游动时防止滚动和侧滑。偶鳍包括位于前方的一对胸鳍和一对位置或前或后的腹鳍。在进步的鱼类中,这些偶鳍非常灵活,起到水平翼或升降舵的作用,有助于鱼在水中上下运动;也可以起方向舵的作用,使鱼能够急转弯;还可以作为制动器使鱼能够急停。有了奇鳍和偶鳍的配合,鱼类就能够完善地适应在水中的活跃的生活方式。在标志着高等鱼类兴起的诸多事物中,有一项解剖结构上的革新是非常重要的。在鱼类进化的初期,颌骨后面的第一对鳃弓特化为舌弓,上面的骨头特化为起支柱或连接作用的舌凳骨,将颌骨与颅骨连接起来。舌颌骨在鱼类的进化和由鱼类发展为陆生动物的过程中都发挥了重要作用。由于舌颌骨一端与头骨后部相连接而另一端与颌骨相连接,原来位于头骨与舌弓之间的鳃裂就大为缩小;在较原始的鱼类中,这种缩小了的鳃裂保留下来转变成喷水孔,它是位于第一对完全鳃裂前方的一对小孔;在高度进步的鱼类中喷水孔也完全消失了。高等鱼类包括软骨鱼类和硬骨鱼类。软骨鱼类即一般所说的鲨类,几乎全部是海洋动物。它们在整个生活史中始终是软骨质的,骨骼中的坚硬部分通常仅仅包括牙齿和各种棘,大多数的化石软骨鱼类就是从这些东西得知的,偶尔也会有充分钙化了的颅骨和脊椎等被保存为化石。已知最早的鲨类是裂口鲨属,化石发现于美国伊利湖南岸晚泥盆纪克利夫兰页岩中。身长约1米,体型似鱼雷;有一条大歪尾,不能活动的成对的胸鳍和腹鳍凭借宽阔的基部附着在身体上;另外在尾的基部还有一对小的水平鳍。裂口鲨的上颌骨由两个关节连接在颅骨上,一个是眶后关节,紧挨在眼睛后边;另一个在头骨后部,舌颌骨在这里形成颅骨与上颌背部的连接杆。这种上颌与颅骨的连接形式称为双接型,是相当原始的连接方式。裂口鲨的上颌仅由一块腰方骨组成,下颌也仅有一块骨头,称为下颌骨。牙齿中间有一个高齿尖,其两侧各有一个低齿尖,许多古老软骨鱼类的牙齿都是这种原始结构。颌之后有六对鳃弓(或称鳃条)。裂口鲨的结构在许多方面都是鲨类中原始的模式,可以认为它接近鲨类进化系统中央主干的基点,后期的鲨类可能是从这里出发沿着各个方向进化出来的,它们包括:1.肋刺鲨类:双接型的颌。背鳍长,尾鳍与身体成一直线向后直伸形成尖尾(称为圆尾型)。头后具长刺。牙齿由三个齿叶组成,两侧齿尖高。中央齿尖低;从石炭纪和二叠纪发展起来,生活在古生代晚期淡水的湖泊与河流中,是鲨类进化的侧枝。2.弓鲛类:是现代鲨类(真鲨类)最早和最原始的类型。后面的牙齿不像前边的牙齿那样尖锐,呈低而宽阔的齿冠,具有压碎软体动物介壳的功能。最初出现于泥盆纪晚期,演化史经过了中生代达到新生代的开始时期。3.异齿鲨类:较原始的真鲨类,是弓鲛类稍有变异的后代。出现于中生代,种类较少。牙齿具有压碎的功能。4.六鳃鲨类:一个较小的肉食性类群,出现于中生代,也被认为是弓鲛类与真鲨类之间的连续环节。5.鼠鲨类:现代鲨类。颌的连接方式改变为舌接型,即依靠舌颌骨与头骨的后部相连接,使颌的活动性得以增强。兴起于中生代,尤其是侏罗纪。6.鳐类:扁平,适于底栖生活,为高度特化了的现代鲨类。以上各目组成了软骨鱼纲中最为繁盛的一大类群一板鳃亚纲。另外一个种类不多、生活在深海中的软骨鱼类群,因其独特的自接型颌骨连接方式而被分为一个单独的亚纲一全头亚纲。银鲛类是这一亚纲的代表,其进化历史可以追溯到侏罗纪早期。在古生代晚期的地层中还发现了数量极多的适于研磨的齿板,统称为缓齿鲨类,其亲缘关系尚不能确定。软骨鱼类一直是很成功的脊椎动物,虽然它们的种属从来不很多,但是所发展出来的类型,对其环境总是能够异常完善地适应。从泥盆纪到现代,它们一直生活在世界的各个海洋中(极少数在淡水水域),成功地控制着它们的对抗者,甚至压制着与它们生活在同一生态环境中的更高级的动物类群。硬骨鱼侵入到了地球上所有的水域之中。它们种类繁多,形态、大小千差万别,适应性更是“八仙过海,各显神通”。它们的进化史波澜壮阔,各个时代的各群“名星”纷法登场,将一部进化史诗表演得像涨潮的大海,一浪高过一浪。在此我们只能粗线条地介绍一些最基本的背景和最简略的框架。硬骨鱼类具有高度进步的骨化了的骨骼。头骨在外层由数量很多的骨片御接拼成一整幅复杂的图式,覆盖着头的顶部和侧面,并向后覆盖在鳃上。鳃弓由一系列以关节相连的骨链组成;整个鳃部又被一单块的骨片——鳃盖骨所覆盖,因此硬骨鱼在鳃盖骨的后部活动的边缘形成鳃的单个的水流出口。硬骨鱼的喷水孔大为缩小,有的甚至消失了。大多数硬骨鱼由舌颌骨将颌骨与颅骨以舌接型的连接方式相关连。脊椎骨有一个线轴形的中心骨体,称为椎体;椎体互相关连成一条支持身体的能动的主干。椎体向上伸出棘刺,称为髓棘,尾部的椎体还向下伸出棘刺,称为脉棘;在胸部则由椎体的两侧与肋骨相关连。有一个复合的肩带,通常与头骨相连接,胸鳍也与肩带相关节。所有的鳍内部均有硬骨质的鳍条支持。体外覆盖的鳞片完全骨化。原始硬骨鱼类的鳞厚重,通常呈菱形,可分为2种类型:一种是以早期的肺鱼和总鳍鱼为代表的齿鳞;另一种是以早期的辐鳍鱼类为代表的硬鳞。随着硬骨鱼类的进化发展,鳞片的厚度逐渐减薄,最后,进步的硬骨鱼仅有一薄层骨质鳞片。原始的硬骨鱼类有具机能性的肺,但大多数硬骨鱼的肺已经转化成有助于控制浮力的鳔。硬骨鱼类的眼睛通常较大,在其生活中起着重要作用;嗅觉的作用退为次要。硬骨鱼类最早出现于泥盆纪中期的淡水沉积物中。之后,它们分化为走向不同进化道路的两大类;辐鳍鱼类(亚纲)和肉鳍鱼类(亚纲)。肉鳍亚纲包括肺鱼类和总鳍鱼类,它们在鱼类适应于水中生活的进化史上是一个旁支,但是在整个脊椎动物的进化史上却起着承上启下的关键性作用,这将在后面详述。在此我们仅概述一下作为硬骨鱼类构成主体的辐鳍亚纲。泥盆纪的古鳕鱼目中的鳕鳞鱼属可以说是早期硬骨鱼类最好的代表。从鳍鳞鱼型的祖先类型发展出了各种类型的辐鳍鱼类,其进化历程可分为三个阶段,分别以三个次亚纲所代表,这三个次亚纲各自在总体上的形态特点,正反映了辐鳍鱼类进化的趋向。向陆地前进肉鳍鱼类现在让我们来看一看硬骨鱼类中走上了另一条进化道路的亚纲——肉鳍亚纲。最早的肉鳍鱼类出现在泥盆纪,其早期种类的形态与早期的辐鳍鱼类有多方面的相似,但是一些重大的差别使二者早在泥盆纪中期就有了基本的分歧。早期的肉鳍鱼类也有歪尾,但是尾上有一个位于体轴之上的小的索上叶,这一特征在原始的辐鳍鱼类是不存在的;原始辐鳍鱼类的鳍是由平行的鳍条所支持,但是早期的肉鳍鱼类的鳍却有中轴骨头和在中轴骨两侧向远端辐射排列的较小的骨头——这种类型的鳍被称为原鳍;原始的辐鳍鱼类只有一个背鳍,早期的肉鳍鱼类却有两个背鳍;早期的肉鳍鱼类在头骨顶上两块顶骨之间有一个具感光作用的松果孔,而早期的辐鳍鱼类通常没有松果孔;早期的肉鳍鱼类眼睛不像早期辐鳍鱼类的那么大;原始的肉鳍鱼类的鳞片是齿鳞型,在鳞片基部骨层之上有厚层的齿鳞质,原始辐鳍鱼类的鳞片的齿鳞质很有限,却有厚层的釉质层覆盖在表面。肉鳍亚纲包括总鳍鱼目和肺鱼目。总鳍鱼类包括扇鳍亚目和空棘鱼亚目。前者是大的肉食性鱼类,见于泥盆纪至早二叠纪,多生活于淡水中,现已绝灭,如骨鳞鱼,过去认为它们是四足动物的祖先。空棘鱼类是特化类群,头骨骨片数量和牙齿数目均减少,中生代较多,如大盖鱼。矛尾鱼是其唯一的现生代表。我国发现的空棘鱼类化石有长兴鱼等。总鳍鱼类具两个背鳍。偶鳍支持骨双列式,其基部具肉质叶。尾歪形或圆形,并具特殊的上、下叶。眼孔小。具迷齿型牙齿。身披整列质鳞。其脑颅的前部筛蝶区与后部的耳枕区之间有一条关节缝把二者分开。具一对外鼻孔。扇鳍鱼类具内鼻孔;空棘鱼类无内鼻孔。肺鱼类繁盛于晚泥盆纪至石炭纪,至今只有少数极特化的代表生活于非洲、澳洲和南美的赤道地区。肺鱼类内骨骼退化,骨化程度差,头骨骨片极为特殊,几乎无法与其他鱼类进行对比研究;牙齿多为齿板;脑颅中部无关节缝;偶鳍具肉质基,但支持骨为单列式;其内鼻孔经研究为移入口腔的后外鼻孔;具自接型颌。自其早期代表如双鳍鱼等,直到现代在漫长的地质历史中它们几乎没有什么重大的改变。角齿鱼是中生代较为常见的肺鱼类化石,化石多为其齿板。肉鳍类与四足动物的祖先长期以来人们一直认为总鳍鱼类是四足动物的祖先,甚至矛尾鱼不具内鼻孔的事实,也曾被推测为次生性的退化消失。但近年来,在这一方面却有着相当惊人的新发现。云南早泥盆纪地层发现的杨氏鱼无内鼻孔亦不具鼻泪管等现象引起人们的关注。经检查前人研究描述过的标本,真掌鳍鱼、孔鳞鱼、雕鳞鱼、威尔士王子鱼等均与杨氏鱼有类似的情况。通过观察研究证明,过去认为总鳍鱼类具有卵圆窗的证据不足,过去推测为耳柱骨足板的成分也只是脑颅侧壁的一部分。这些发现对于总鳍类是四足动物祖先的推论的基础提出了挑战。近年关于突变论的研究,间断平衡论、分支系统学、板块学说等一系列理论的出现,已经在一定程度上对渐变论提出了修正。在四足动物起源上也有不少问题须待解决,如有人重提肺鱼类可能是有尾两栖类的祖先的论点就与原先认为的孔鳞鱼类是有尾两栖类祖先和骨鳞鱼类与无尾两栖类有关的说法完全不同。不过四足动物的祖先是谁的问题还将深入下去。如果有人仍然认为总鳍类是四足动物的祖先,那就需要重新寻找证据,因为旧有的证据已被证明是不存在了。两栖类尝试陆地生活在泥盆纪的末期,当时某种肉鳍鱼类的后裔,冒险从水中出来,爬上了陆地,成为最早的两栖动物,从此,脊椎动物进入了一个与它们曾经居住了好几百万年的环境非常不同的环境。地质记录中最早的两栖类,即鱼石螈类,它们与较高级的肉鳍鱼类有许多共同的特征,同时,在这两个脊椎动物类群之间,也存在着巨大的差别。呼吸问题是早期的两栖类必须克服的重大问题之一,不过这已经由它们的鱼类祖先解决了。肉鳍鱼类的肺是发育完善的,而且可能经常在使用。因此两栖类在空气中呼吸实际上不算什么问题,只不过是继续使用它们从肉鳍鱼类祖先继承下来的肺。鱼类和两栖类在这个方面的主要区别之点,是大多数有肺的鱼用鳃呼吸仍然是呼吸的主要方式,而肺通常只是一个辅助的呼吸器官,但最早的陆生脊椎动物基本上是用肺呼吸空气,只是在它们的青年或幼体阶段里用鳃呼吸。最早的陆生脊椎动物所碰到的另一个问题是干燥问题。鱼类总是浸泡在水体之中,但当最早的两栖类不再浸泡在水中生活时,它们就面临着保持它们的体液的需要。因此,正如现代的两栖类所表现的那样,像鱼石螈类这样的最早期的两栖类,决不会冒险离开水很远,并且要不断地回到溪流和湖泊里。尽管这样的习性会限制古老的两栖类离开水作深入陆地的活动,但是这类动物在其历史的早期阶段,已经发展了能够抵抗空气干燥作用的体被或者身体的覆盖物。有证据表明,某些最早的两栖类,还保留着它们鱼类祖先覆盖身体的鳞片。还有证据表明,随着两栖类的发展,尤其是在二叠纪时,它们发育出了强韧的皮肤,这类皮肤通常是贴衬在小骨片或骨板的下面。当两栖类的皮肤防止体液蒸发效力逐渐增大,并且足以作为防御外界侵害的一件坚韧的外衣时,两栖类对水的依赖性也就随之减少,也就能在陆地上更长时间。这是两栖类进化历史中的一个重要因素,而对从两栖类发生出来的那些更高级的脊椎动物,如爬行类则更为重要。地心吸引力对鱼类的影响较小,因为鱼类是被致密的水所支持着的。对于一个生活在陆地上的动物说来,地心吸引力是一个强大的因素,对个体的结构和生活都有很大的影响。最初的两栖类在离水以后,曾经与增大了的地心吸引力的影响作过斗争,因此,在它们进化到早期的一个阶段中,发育了强壮的脊椎骨与强有力的肢体。构成肉鳍鱼类的脊椎骨的椎体的那些比较简单的“盘”或“环”,已经成为互相连锁着的结构,共同形成了支持身体的强有力的水平的脊柱。脊柱在两个点上分别由肢带所支持,即前边的肩带与后边的腰带,腰带和肩带又由肢体和脚所支持。早期的陆生脊椎动物还形成了一种新的运动方式,在这种运动中,四肢和脚都起最重要的作用。它们不仅克服了地心引力的作用,使身体从地面上抬起来,而且推动身体在地面上行进。在这方面,我们从鱼类和两栖类之间看到了运动功能的颠倒现象。鱼的运动主要是由身体和尾完成,偶鳍的功能是起平衡的作用,早期的陆生脊椎动物则正相反,尾是由前到后逐渐变细的,在一定程度上变成了一个平衡器官,而成对的附肢变成为主要的运动器官。由早期的两栖类所开始的这种运动方式,在陆生脊椎动物的进化中,伴随着多种多样的变异继续下去。最初的陆生脊椎动物还碰到生殖的问题。鱼类通常是把它们没有保护的卵产进水中,并在水中孵化。陆生脊椎动物或是回到水中去生殖,或是必须发展出在陆上保护卵的方法。两栖类在它们对于陆上生活的适应中,取得了好几项巨大的进展,但是它们从来没有解决离开水去繁殖后代的问题。因此,这类动物在它们的整个历史中,始终被迫回到水中,或者像某些特化了的类型那样,到潮湿的地方去产卵。羊膜卵出现脊椎动物的进化在石炭纪向前跃进了一大步,这就是羊膜卵的出现。这是脊椎动物史上一次重大的革新,其意义可与颌的出现以及脊椎动物从水生向陆上生活的转变相媲美。羊膜卵的完善化像过去发生的几次进化上的重大事件一样,为脊椎动物的发展开创了新的纪元。它使陆上生活的脊椎动物的个体生活史完全摆脱了对水的依赖。以羊膜卵进行繁殖的动物,卵在母体内受精,然后产在地上或其他适宜的场所,或是在母体输卵管内停留到幼体孵化时为止。卵内含有一个大的卵黄,为成长中的胚胎供应营养,此外,还有两个囊,即羊膜和尿囊。羊膜中充满着液体,并包裹着胚胎,尿囊收容动物胚体在卵内停留期间排出的废物。最后,在整个结构的外面,包上一层卵壳;卵壳坚韧,足以保护卵体,同时又具有多孔性,可以吸进氧气和排出二氧化碳。这样的卵为胚胎的发育提供了一个保护环境,在效果上,一方面由羊膜提供了一个单独占用的小“水塘”,胚胎可以在其中生长,另一方面坚韧的卵壳庇护着卵不受外界的损伤。动物有了这样的卵才能自由地生活在陆地上,而不必像两栖类那样回到水中繁殖。爬行类就是最早有羊膜卵的动物。爬行类是由两栖类进化来的,确切地说是从某种迷齿两栖类进化形成的。由两栖类过渡到爬行类发生在地质史中的石炭纪,所跨过的最后关口肯定是以具有羊膜卵为标志的,遗憾的是并没有这方面的化石证据。已知最早的羊膜卵发现于北美洲二叠纪早期的沉积物中,而这一时代比爬行动物完善的适应于陆生生活的时代晚很多。不过从化石上我们还是可以看到两栖类向爬行类发展的情形,例如有一些中间类型兼有进步的迷齿类与原始的爬行类的特征。爬行类动物蜥螈表现的两栖类和爬行类特征的混合,是脊椎动物进化过程中发生于两个纲之间的逐渐过渡的标志。这种变化是逐渐的而不是突然的,因此当我们将所有的化石材料通盘加以考虑时,也就很难在两栖类与爬行类之间划分一条清晰的界线。但是我们可以把爬行类的一些典型特征和一般特征略述如下。爬行类在个体发育的过程里直接由羊膜卵发育,而不像两栖类那样中间要经过变态。爬行类头骨比较高,不同于迷齿两栖类那种通常呈扁平化。爬行动物原始的耳鼓凹已经消失;有些爬行动物虽然有耳鼓凹,但大都是次生性的。爬行类的头骨,顶骨以后的骨头有的变小了,有的由头骨的顶盖部位移到了枕部,有的甚至完全消失。迷齿类的非常典型的松果孔,在早期的爬行动物中仍然还有,在许多进步的类型中则消失。爬行类腭上的翼骨显著,原始的爬行类的这些骨头上有发育完好的牙齿。爬行类嘴前边的腭骨上也可能有小的牙齿,但是没有像许多迷齿类的那种大的、獠牙状的腭齿。大多数的爬行动物只有一个枕踝。爬行类的椎骨由一个大的椎侧体和一个缩小成小楔状的椎间体组成,比较进步的类型的椎间体消失。原始的爬行类有两块荐椎骨,不同于两栖类只有一块荐椎;而在许多进步的爬行类中,荐骨由好几块椎骨组成,有的类型增加到八块之多。肠骨也随着荐骨的扩大而扩大。爬行类的肩带中,肩胛骨和喙状骨均扩大加强了,而匙骨缩小或者消失了。通常有锁骨和锁间骨,但是与迷齿类的这些骨头比较起来大为缩小。原始的爬行动物肋骨从头部到骨盆之间是连续的,而且大致相似,但是比较进步的爬行类的肋骨通常有颈部、胸部和腹部几部分的分化。爬行类的肢体和足骨都比迷齿两栖类更为进步。即使是原始的爬行类,肢骨一般都比迷齿类的肢骨更为细长。腕部的中央骨块不超过2块,不同于迷齿类的由4块骨头组成。踝部近端的骨头减少到2块,不同于两栖类的3块。这种减少是由于内侧的胫侧跗骨与中间跗骨两块骨头与中央的1块骨头合并到一块所形成的。这几个骨头愈合到一起,与高等脊椎动物的距骨的愈合情况相当。外侧的腓跗骨相当于哺乳类的跟骨。爬行类的基本趾式是:2—3—4—5—3(4),但是许多特化了的爬行类,趾式有所改变。许多爬行类都有角质的表皮,通常呈折迭重覆的鳞片状。最早的和最原始的爬行类属于杯龙目,发现于新墨西哥州二叠纪早期的沉积物中的湖龙属是其较典型的代表。湖龙体长约150厘米。头骨的顶盖坚实,稍长,比较高。眼睛长在头骨的侧面。头骨顶部有一个发育完好的松果孔(位于顶骨之间的结合处),这是由两栖类祖先继承下来的特征。顶后骨和顶骨均相当小,由头骨的顶部向后推移到了枕部。在上、下颌的边缘上有锋利的牙齿,在腭的翼骨上有些细小的牙齿。身体细长,肢体强壮,多少有些呈爬卧状。椎间体缩小,具大的肩胛——喙状骨复合体,有一个长的锁间骨;肠骨扩大,荐椎骨两块;踝部有两块近端的骨头(距骨和跟骨),趾式是原始爬行动物式的。湖龙并不是杯龙类中最早的成员。从诺瓦斯科夏的石炭纪早期的沉积物中发现的林蜥是杯龙类中已知最早的种类。这是一种相当小的杯龙类(身体大小只有湖龙的四分之一),但是除了比例较细长以外,它与湖龙的一般特征实质上是相同的。这两类原始的杯龙类,属于最原始的爬行动物中的一个大的亚目,称为大鼻龙形亚目。虽然湖龙是一种相当大的动物,但大鼻龙形类中一般是较小的爬行动物。例如大鼻龙,二叠纪的一个属,体长仅超过30厘米,它们上、下颌很长,其上有许多锋利、尖锐牙齿。显然它们同这一进化系统上的所有成员一样是食肉动物,捕食小型的两栖类和爬行类甚至大的昆虫。大鼻龙类在古生代晚期和中生代早期沿着好几个方向发展。从原始的杯龙类的基干上分出去一个早期分支——二叠纪晚期和三迭纪的前棱蜥类,杯龙类中唯一残存到二叠纪末期以后者。前棱蜥类是与现代许多蜥蜴类习性相似的小型爬行动物。很可能前棱蜥类在三叠纪动物群中所占据的生态角色位置在后来的地质时代中被蜥蜴类所代替。前棱蜥的祖先类型发现于前苏联二纪纪晚期的沉积物中,在南非卡鲁系的三叠纪阶段,这个类群已经完全形成了。前棱蜥属是典型属,是一类小型的爬行动物,头骨大致呈三角形,扁平,眼眶大,有一个大的松果孔,具少数钉状的牙齿。在三叠纪,前棱蜥分布遍及中欧,北至苏格兰北部,并分布于北美洲和南美洲。这类爬行动物的身体始终没有显著的增大,三叠纪后期的前棱蜥眼孔变得很大,头骨的侧面或后面长出棘突,牙齿的数目大为减少,形状特化强烈。锯齿龙类主要发现于南非和前苏联二叠纪晚期的沉积物中,是大型、笨重的爬行动物,属当时的巨物之列。这类爬行动物中有不少的个体,体长可达3米以上。尾相当短,肢体粗壮,以便支持身体的巨大重量,脚短而宽阔。体腔的容积极为宽大,说明锯龙类大概是吃大量的植物,牙齿的形状支持这种推测——小,呈锯齿形,显然适合于切割植物。腭上有大批的牙齿。头骨虽是大鼻龙式的,但宽阔而笨重,头骨的顶盖和颞部常有许多装饰性的皱纹和棘刺。背脊骨上有骨质鳞片,说明有甲胄护体。除了上述的几个类群之外,杯龙类中还有阔齿龙类。由杯龙类的基于上进化出来的其他各类爬行动物,在相当早期的地层中就已有化石记录,这似乎表明,爬行类在分化成为一个纲后不久就发生了进化上的爆发,结果使爬行动物迅速地向各个进化方向分化开来,并从石炭纪开始直到白坚纪几乎占据厂地球向动物提供的所有生态环境。根据头骨颞部的发育情况,即颞孔的变化关系,可以将如此众多的形形色色的爬行动物分为四个亚纲:缺弓亚纲、单弓亚纲、阔弓亚纲和双弓亚纲。那么什么是颞孔呢?前边谈到,杯龙类的头骨与其迷齿类祖先的头骨相似,顶盖均为坚实的结构,其上只有鼻孔、眼眶和松果孔。其后,随着爬行类的发展,眼后的颅顶通常有附加的孔出现,这就是颞孔,它可以容纳强大的颌肌。有些爬行动物,其眼眶之后的颅顶部分的上部只有一个颞孔;另一些种类,在头骨的侧面有一个孔。还有一些爬行动物有两个颞孔,一个在颅盖的顶部,一个在侧面。上边的孔,即上颞孔,以眶后骨及鳞骨为其腹界。而侧颞孔是以眶后骨及鳞骨为其背界。两个侧颞孔并存时,则由眶后骨及鳞骨将其分隔开来。爬行动物的四个亚纲就是根据颞孔的有无和变化关系划分出来的。在此基础上,再依据其他的特征,爬行类就可以被分为更细的目一级分类。目一级的分类简介如下:缺弓亚纲,又称无孔亚纲:头骨的眼后无颞孔杯龙目:原始爬行类。龟鳖目:龟鳖类及正南龟。中龙目:中龙,可能分于此处,也可能不是。单弓亚纲,又称下孔亚纲:有一个侧颞孔,由眶后骨及鳞骨构成其上界。盘龙目:盘龙类爬行动物。兽孔目:似哺乳爬行类。阔弓亚纲,又称调孔亚纲:有一个上颞孔,由眶后骨及鳞骨构成其下界。原龙目:原龙类。蜥鳍目:幻龙类与蛇颈龙类齿龙目:齿龙类。鱼龙目:鱼龙或似鱼爬行类。双弓亚纲,又称双孔亚纲:有两个颞孔,由眶后骨及鳞骨将其分隔开来。始鳄目:原始的双弓类。喙头目:喙头类,喙头蜥是这一类的残存者。有鳞目:蜥蜴类和蛇类。槽齿目:三迭纪的初龙类,中生代占统治地位的双弓类祖先。鳄目:鳄类和短吻鳄类。翼龙目:飞行的爬行动物。蜥臀目:蜥臀类恐龙。鸟臀目:鸟臀类恐龙。蓬勃发展脊椎动物进化这部史诗的第一幕——古生代的历史,以征服陆地这一辉煌的终曲落下了帏幕,一个更加辉煌的第二幕——中生代来临了。中生代的第一个分期三叠纪是一个重要的时代,这是从古生代的古老生命类型演化到中生代的高度多样化的新生命类型的过渡时期。三叠纪的动物群中有一些成分是从古生代持续下来的孑遗,包括迷齿两栖类,一部分杯龙类,始鳄类、兽孔类和原龙类。迷齿类在其完全绝灭以前,在三叠纪时又以全椎类为代表呈现出最后的繁荣。进步的兽孔类,特别是其中与哺乳类非常相似的兽齿类,在三叠纪将近结束时,在构造上达到了高度发展的阶段以后,也全部趋于绝灭。三叠纪的杯龙类中的前棱蜥科是一支在进化上并不重要的残存者。始鳄类和三叠纪的原龙类则是一些始终不十分繁盛的从二叠纪祖先继续下来的比较稀少的爬行类。另一方面,一大群新的陆栖脊椎动物出现了,其中有许多是后来一些非常繁荣的支系的祖先,它们将经历整个中生代,有些甚至持续了此后的全部地质时期一直生活到现代。蛙类的祖先出现于三迭纪,这是一类始终都很成功的脊椎动物。另一类异常成功的脊椎动物龟鳖类最早的代表也在三叠纪出现。三叠纪也是各种高度特化的海生爬行类漫长历史的开端,最早的鱼龙类化石是在三叠纪出现的;齿龙类和幻龙类也都生存于三迭纪,而且在三迭纪的中期,从后者之中发生了鳍龙类。喙头类在三叠纪时曾广泛地分布在地球上的陆地区域,虽然它们好像从未十分昌盛过,但却非常持久,一直生存到现代。在三叠纪新出现的所有爬行类中,最重要的要算槽齿类和鼬龙类。槽齿类是非常成功地生存了一亿余年的初龙类的奠基者,是后来在中生代占显要地位的许多爬行类的直接祖先。在这些爬行类中包括鳄类,翼龙类,特别是式样众多的恐龙。鼬龙类是哺乳类的直接祖先。哺乳类虽然在中生代恐龙类处于极盛的时候并不在进化上占重要的地位,可是到新生代来到时就代之而兴起了。飞上蓝天侏罗纪时,脊椎动物进化史上发生了一次重大事件,那就是它们当中的两类——飞行爬行类和鸟类——飞上了蓝天。脊椎动物适于飞行的条件是十分严苛的。首先,必须克服地心引力的作用,体重必须相当轻。由于肌肉强度、骨骼强度、体重与翅膀面积间的比例等物理性质方面的限制,它们的大小有一定限度。为了达到轻巧的目的,它们的骨头一般是中空的,外壁很薄。它们必须有翅膀,一般由前肢转变而成;必须有支持“飞行机器”的坚强的大梁——脊柱;必须有上下运动翅膀的强大的肌肉;适应于这些肌肉的加强,其附着区——胸骨就必须异常地扩大,还必须有某种类型的着陆器,一般由后肢转变而成。最后,飞行要求有高效的新陈代谢活动。翼龙类是在侏罗纪开始时适应于飞行的初龙类。它们在保罗纪的发展异常多样化,有一部分继续到白垩纪,在白垩纪末期最后趋于绝灭。侏罗纪的喙嘴龙,可以作为翼龙类的初期代表。体长约60厘米,头骨为典型的初龙式。有两个颞孔,位于大的眼孔后方,此外尚有一个大的眶前孔。头骨和颌骨的前部引长,生有齿尖向前的长的尖齿,可能是对捕食鱼类的一种适应。头骨长在一个很长的能够弯曲的颈上。颈部以后的背脊部分很短并且坚实,肩带和腰带之间有一系列相连续的肋骨。有一条很长的尾巴,约为荐部以前脊柱长度的两倍,保存在岩石上的印痕表示其末端有一舵状的皮膜。前肢的肱骨很粗壮,桡骨和尺骨相当长,第四指极度地拉长,形成翼膜的主要支架,这可由岩石的印痕上清楚地看出,第四指以前的各指退化成小钩状,可能是翼龙类借以在树枝或岩壁上栖息的悬挂器。第五指消失。从腕部向前伸出一钩状的突起——翼骨,帮助支持翼膜之用。肩肿骨和鸟喙骨强大,后者在腹侧连接扩大的胸骨,是振动翅膀用的强大的胸肌的支点,在进步的翼龙类中(在喙嘴龙并非如此)肩肿骨上端通过一块特殊的骨头——背骨与脊柱接触,使肩带的强度更为增强。后肢比较小,脆弱(所有的翼龙类可能都一样),为翼膜所连接。这种爬行类显然能作连续飞行,可能是一种飞行的食肉类,能俯冲捕食在水面游泳的鱼类。它们与现代的编幅相似,落在地上时就会异常笨拙。佛罗纪晚期的另外一类翼龙——翼手龙类,尾巴退化到几乎完全消失。牙齿也大大的退化,其中最特化的种类牙齿已完全消失,颌部变成了似鸟类的喙状。翼手龙类持续生存在整个的白垩纪中,在进化上以美国肯萨斯州尼奥勃拉勒组中发现的无齿翼龙最为进步。它是同类中的庞然大物,两翼伸展达6米以上,尽管如此,躯体仍然较小,大小与火鸡相近。颌骨具无齿的长喙,头骨后部向后方伸出呈冠状突起,其功用尚未弄清。这是最后的一种翼龙类。爬行类的新陈代谢活动率是比较低的,那末,翼龙如何能维持较长时间的飞行呢?也许它们的飞行大部分是采取滑翔方式的,这样就不需要消费大量的能量。尽管如此,仍很难想象翼龙类如果没有超过其他爬行类所有的能源如何满足支持其飞行所需的能量。是否可能它们是一些单独具有温血的爬行类?或许是否它们发展了一种有保温性的身体披盖物,多少能帮助维持固定的体温?有人曾经记述过一些与翼龙化石在一起发现的毛状的构造,可是这些证据还是十分不肯定的。翼龙类的绝灭可能是因为鸟类的竞争。鸟类从白垩纪后期起趋于现代化,它们是温血和灵活的动物,显然比翼龙类更进步。鸟类常常被称为“美化了的爬行类”。实际上,我们应更适当地把鸟类称为“美化了的初龙类”,因为它们起源于初龙类。鸟类对飞行问题的解决和飞行爬行类不同。它的羽毛不仅作为飞行的翼面,并且是身体和环境之间的绝缘物。多数鸟类的后腿都很强壮,使其能够在地面上奔跑和行走,鸭和鹅等水禽甚至同时具有能在水中、陆上和空中有效地活动的能力,达到了任何其他脊椎动物所没有的程度。鸟类具有高机能的组织、固定的体温和很高的新陈代谢率。还独特地发展了一些异常复杂的行为,如筑巢、鸣啼。许多鸟类有从一个大陆到另一个大陆作长途的迁移及每年往返的习性。最早的鸟类出现于侏罗纪。第一次发现为德国巴伐利亚省索伦霍芬石灰岩中的两副很好的骨骼和一些不完整标本。这就是始祖鸟,不仅骨骼得以保存,而且还有羽毛的印痕。始祖鸟如乌鸦大小,有初龙类型的头骨,长的颈部,坚实的身体,坚壮的后肢,一条很长的尾巴使身体平衡。前肢变大,显然已有翅膀的作用。头骨有两个后颞孔,但由于脑部四周骨片的扩大而被挤缩。眼孔很大,周围有一圈膜骨片,眼眶前方有一大的眶前孔。头骨及下颌前端部分加长并变窄成像状,有发育完好的牙齿。背部较为短壮,这对于飞行动物是必须的。荐部长,成为骨盆的肠骨和背脊间的牢固的连接部分。耻骨和坐骨棒状,耻骨已移到后面和坐骨平行的位置,显示出和鸟臀类恐龙相似的排列方式。后肢强壮,而且和鸟类的相像,脚上有3个向前伸的带爪的趾,1个向后伸的短趾。这种后趾的型式也是典型兽脚类恐龙的模式。显然,始祖鸟行走和奔跑的姿态大致和鸡相似。骨质的尾巴为典型的爬行类样式,长度和脊柱的其余部分相等。肩肿骨细长,臂骨也很长,手部大大引长,由前面3个手指组成。骨骼系统的全部骨头的结构都很精巧。手部和下臂部生长羽毛,躯体部分也有羽毛,尾部很特殊,在两旁各有一排羽毛。始祖鸟是爬行类和鸟类的中间类型。从骨骼方面说,它基本上是爬行类,但具有一些非常倾向于鸟类的特征。羽毛是典型的鸟类羽毛,主要因为这一点,始祖鸟才被确定为一种鸟类——鸟纲中最早和最原始的成员。羽毛不仅指出这种动物能够飞行,并且也说明它是温血的。扩大的脑腔表示出已经发展了相当复杂的中枢神经系统,这一点对于飞行动物是异常重要的。关于飞行在鸟类中起源的学说有两种。一种认为最早的鸟类是一些快跑者,在奔跑时拍动带有羽毛的前肢帮助前进,这种情形在一些现代鸟类奔跑时可以看到。翅膀通过突变和选择后作用变大,最后从奔跑时的辅佐器官变成飞行的器官。另一种主张,则认为最早的鸟类能爬上树去,又像现代的鼠一样从树上向地面或其他树上滑翔。最初,由于带羽毛的前肢很小,所以只能滑翔,后来增大,最后达到能支持动物飞行的程度,因此,飞行能力是一种攀缘和滑翔的自然结果。侏罗纪鸟类还处在适应的初期阶段,它们的飞行能力还较差,并受到当时飞行爬行类的强烈竞争,后者在侏罗纪有限的时期内,可能比那些早期的鸟类更能适应于飞行。鸟类骨骼很不容易被保存为化石,这主要是由它们飞行生活的习性决定的。它们死亡以后,有机体由于不能迅速地被埋藏下来,绝大多数都腐烂消失了。早期的鸟类由于数量和种类都十分贫乏,能够侥幸成为化石的机会就更少。始祖鸟化石自1861年到现在100多年来总共只发现6具骨架和1件羽毛标本。本世纪80年代以前,早白垩世的鸟类化石曾一度是古生物学家最感到遗憾的生物进化空白之一。晚白垩世的鸟类在通向现代鸟类的道路上已经有了很大的进展——头骨的各块骨头已有如现代鸟类一样的愈合现象,颞孔进一步退化。骨头的气孔性已高度发展。骨盆和荐椎牢固地愈合成为一个构造,作为后腿与躯体的连接部。手部骨头也像在现代鸟类中一样愈合,不再像侏罗纪鸟类那样互相游离。骨质的长尾杆已经退缩。某几种白垩纪鸟类胸骨已大大扩张,成为强有力的胸肌的支点。然而白垩纪的鸟类,仍然还保留着有牙齿的这一原始性质。美国肯萨斯尼奥勃拉勒白垩纪地层中发现的黄昏鸟,是这一属最著名的白垩纪鸟类。这是一种游泳和潜水的特化了的鸟类,情形和现代的潜鸟相像,躯体部稍伸长,颌部也较长,足适于游泳,翅膀退化。80年代初,我国甘肃发现了一块不完全的早白垩世的鸟类后肢化石,它被命名为甘肃鸟并被认为是所有后期滨岸鸟类和水栖鸟类的祖先。1987年,辽宁省朝阳县发现了一块保存相当完整的鸟类化石。化石产于早白垩世地层中,被命名为中国鸟,并被认为是世界上已知的最早的会飞鸟类。1990年9月,一位年轻的古生物学家在距离中国鸟发现地点不到20公里的一道干涸的小河沟里又获得了两块保存相当完整的鸟类化石。这两件标本经鉴定被认为是两种不同类型的鸟。其中一块特别完好,保存了完全的头骨,它成为早白垩世地层中已知的世界上最完整的鸟类标本。在随后的两年内,同一地点又有近20件标本被发现,这些化石至少包括了3种以上的不同类型。最完整的那块化石鸟类被命名为华夏鸟,其他共存的标本中包含有中国鸟。华夏鸟和中国鸟是世界上除始祖鸟以外最早的鸟。这些发现填补了长期以来早白垩世鸟类研究的空白,具有非常重要的意义。目前对这些鸟类的深人研究还在继续之中。新生代开始时,鸟类已经全面地现代化了。鸟类的骨骼结构已发展到现代的阶段。鸟类在其最近的5000万年到7000万年的历史中,结构上的进化是不大的。不过在新生代时,鸟类历史中也发生过一些不重要的事件,其中最引人注目的一件事实,可能是大型的陆栖鸟类的加速辐射。有人认为在大型的陆栖鸟类(“走禽”)和早期哺乳类之间,曾经有过一段剧烈竞争的时期。这仅仅是很短的一幕,哺乳类很快就成为陆地上的统治者,从此以后,鸟类就主要成为飞行的脊椎动物,虽然少数几种大型的,无翼的,称之为平胸类的鸟类在多数大陆地区一直生存到现代。非洲鸵鸟曾在新生代晚期广泛分布于欧亚大陆,并且一直栖居在非洲,在南美洲有南美舵鸟、澳洲地区则有鸸鹋和食火鸡,直到较近数千年前,还有栖息在马达加斯加岛的所谓“象鸟”和新西兰的恐鸟。所有这些鸟类的共同特征是有庞大的身体,翅膀次生性地退化,以及与此相联系的胸骨变平和腿的强健化。大多数的现代鸟类在构造上表现出非常的相似。由于向许多不同生活方式的适应引起了它们在其他方面异常的多样性,产生了身体比例、色彩和不同类型的习性上的变异。鸟类无疑是现代十分成功的一类脊椎动物,它们和真骨鱼类及有胎盘哺乳类分享着进化的果实,从它们种类繁多,适应范围广大,大量的个体数目,以及在全世界广泛的分布都可以作为证明。根据较为保守的估计,现代世界上生活的鸟类数目约有1000亿只。蜥蜴大王三叠纪晚期出现的由腔骨龙和板龙等属为代表的初期的恐龙,属于恐龙类中的蜥臀目,骨盆从侧面看去成三叉形,耻骨在肠骨下方向前延伸,骨则向下后伸。牙齿或是围生在上下颌骨的边缘,或是限于颌骨前方。大多数食肉的蜥臀类还保留着其槽齿类祖先的一般性质和姿态,如用两足行走,身体以臀部为中心枢纽,以强大的与鸟类相像的后腿支持身体。以植物为食的蜥臀类则再度恢复到四足姿态。蜥臀类的脚趾上通常有强大的爪。恐龙类的另一个目,鸟臀目也是在三叠纪晚期出现的。在非洲南部发现的畸齿龙证明在晚三叠纪时,鸟臀类的非常典型的一些基本特征已经形成了。鸟臀类恐龙的骨盆耻骨由于向后方旋转而和坐骨相平行,与鸟类骨盆中的情形相同,由此得到了鸟臀类或“鸟类式骨盆”的名称。在许多鸟臀类中,肠骨前后都大大扩张,耻骨则有一大的前突起,伸出在肠骨的下方。因此,骨盆从侧面观呈四射式的结构,四个突出部分或叉枝,是由肠骨的前部、后部、前耻骨和紧挤在一起的坐骨以及耻骨构成的。上颌、下颌和嘴的前部的牙齿,在鸟臀类中已消失,这一部分的骨及颌骨通常呈喙状,而且大多数这类恐龙的下颌骨前面增加了一个新的骨头成分——前齿骨,作为切割用的喙嘴的下面部分。牙齿只限生于颌骨的边缘,常常有很大的改变以适应于切割及嚼碎植物,鸟臀类全部都是植食性的。一般地说,鸟臀类并没有像许多蜥臀类那样完全两足式的,大多数的鸟臀类在它们历史的早期就次生地回复到四足的姿态。足趾末端常有扁平的指甲或蹄而没有爪。在恐龙类中,鸟臀类比蜥臀类有更多样的变化和范围更广泛的适应。白垩纪晚期,分属于十个目的各种各样的爬行类动物,占据着大陆上几乎所有的陆上环境,并且扩张到海洋。第三纪开始时,大绝灭后残存下来的爬行类动物包括在5个目中,其中始鳄类在新的世纪开始不久后即消失了,剩下的4个爬行动物目从新生代早期一直延续到现代。残存爬行类的起源,可以回溯到很早的地质历史时期,龟鳖类出现于三叠纪,和喙头类同时,后者在当时的分布几乎遍及全世界。鳄类出现于三叠纪末,占领了植龙留出的生态位。有鳞目的祖先在三叠纪出现,蜥蜴类在侏罗纪时就从这些祖先中产生并确立下来,到白垩纪时蛇类发展了它们高度特化的适应。哺乳动物出现哺乳动物的起源与特征最初的哺乳动物出现在三叠纪,它们很可能是多系起源的。似哺乳爬行类中的某些类群,很可能是犬颌兽类、包氏兽类和鼬龙类,产生了早期哺乳动物的祖先。这些三叠纪晚期以及侏罗纪中最早的哺乳动物都很小,在侏罗纪和白垩纪中也始终是很小而且数量又少的成员,它们完全被爬行动物所压制着。但是这些渺小的哺乳动物已经具备了一系列进步的特征,终将使它们有朝一日取代爬行动物在地球上的统治地位。哺乳动物的特征是多种多样的。主要的是:哺乳动物是灵活的四足动物,体温是比较恒定的,基本的代谢作用高,由于这个原因,它们通常被称为“温血”动物。有一种特有的起保护和绝缘作用的毛发覆盖。幼体通常是胎生的(单孔类产卵),在生命的早期阶段以母亲的乳汁为营养。哺乳动物有一对枕髁,使头骨和第一颈椎形成关节;有次生的骨质硬腭,使鼻道与口腔隔离;外鼻孔只有一个开孔,位于头的前方;头骨和下颌间的关节由鳞骨和齿骨组成。爬行动物连接头骨与下颌的方骨及关节骨在哺乳动物中退入中耳,分别变成了三块耳骨中的两块:砧骨和骨,这两块耳骨和镫骨(从爬行动物的镫骨遗留下来)一起组成连锁,传导从耳膜到内耳的震波。这是在脊椎动物进化史上解剖结构从一种机能转变到另一种机能的最好例证之一。尤其重要的是:所有哺乳动物,除了非常原始的以外,都有比较大的脑颅,它反映了这些动物脑子的增大和智力的大大提高。哺乳动物有分化为门齿、犬齿和颊齿的齿式,颊齿通常有一个包括几个齿尖的齿冠,以两个或更多的齿根固着在颌骨上。哺乳动物颈部的肋骨总是愈合在颈椎上,成为颈椎的组成部分,腰椎则具有游离的肋骨。肩胛骨中部有一条强大的脊突起(肩峰)。骨盆部分的骨头:肠骨、坐骨和耻骨愈合形成单一的骨质结构。趾骨数目退化,除第一趾只有两个趾骨外,其余趾只有三个。这些典型的哺乳动物与那些进步的似哺乳动物的爬行动物相比,同异如下:似哺乳动物的爬行动物两个枕髁(犬齿类、鼬龙类、三瘤兽类)次生腭(除原始类型外)分开的外鼻孔(除三列齿兽类和鼬龙类外)扩大的齿骨方骨—关节骨连接(加上鼬龙类中的鳞骨—齿骨连接)退化的方骨—关节骨(特别是在鼬龙类中)小的脑颅牙齿分化颈肋分开腰肋肩肿骨前端突出(犬齿类)骨盆各部分分开趾式:2—3—3—3—3(在有些兽头类中)哺乳动物两个枕髁次生腭单个的外鼻孔开口齿骨单独形成下颌鳞骨—齿骨连接砧骨—骨扩大的脑颅牙齿分化颈肋愈合腰椎活动肩峰骨盆各部分愈合趾式:2—3—3—3从晚三叠纪和侏罗纪地层中发现的原始哺乳动物,包括始兽、异兽两个亚纲的代表,还包括兽亚纲中较低等的无胎盘类的祖兽次亚纲、后兽次亚纲和阴兽次亚纲。胎盘类新生代通常被称为哺乳动物的时代,更应称之为有胎盘类哺乳动物的时代,因为从白垩纪过渡到新生代以后,这些动物几乎是地球上最占优势的动物。在新生代的历史中,单孔类有3个现生属作为代表,归属于一个目;多瘤齿兽类这个目有17个第三纪早期的属;有袋类127个属,化石的和现生的,都包括在单一的目里;而有胎盘类有2648个属,分别归属于29个目。新生代的有胎盘类占95%,无胎盘类仅占5%。有胎盘哺乳动物又称真兽类,它们的幼仔在母体内生长一个相当长的时期,发育到一个比较成熟的阶段出生。它们从古老的爬行动物的卵那儿继承的尿膜与子宫相接触,通过这个接触区域——胎盘,食物和氧气从母体输入到正在发育的胚胎。因此,有胎盘类哺乳动物在出生的时候,比起有袋类新生的幼仔来,无可比拟地成熟得多。有胎盘类脑颅的扩大也许是最重要的特征,它反映出大部分有胎盘类与有袋类比较起来具有更高的智力。和有袋类通常穿透了的口盖相比,有胎盘类头骨具有结实的骨质口盖;下颌上向内弯曲的角经常缺失。具有7个颈椎,颈椎后面是一系列带有肋骨的胸椎,再后面是一系列没有肋骨的腰椎。肢带和四肢基本上与有袋类的相似,骨盆上没有上耻骨或袋骨。牙齿在研究有胎盘类哺乳动物上具有特别的重要性。如果所有有胎盘哺乳动物(除了人以外)都绝灭了,而仅以牙齿化石来分类,结果也和根据哺乳动物整体解剖知识所得出的分类基本相同。有胎盘哺乳动物的基本齿式是上下颌每边有3个门齿、1个犬齿、4个前臼齿和3个臼齿。这个齿式可以用数字表示为:3—1—4—3,它在白垩纪最早的有胎盘类中就已经出现,而且还保留在许多现生哺乳动物中。当然,有许多有胎盘类中,牙齿已经极端特化,但都是从原始齿式分化出去的。大多数有胎盘哺乳动物的门齿都比较简单,为单一齿根的钉或片,适于夹住食物。有些哺乳动物的门齿增大,而另一些的则退化或者消失。在几种哺乳动物中,它们变得复杂了,带有梳状的齿冠。但尽管它们有着各种各样的特化,门齿总是保持单一的齿根,使牙齿固定在颌骨上。原始哺乳动物的犬齿增大成刺状,起刺戮或穿透作用。犬齿在许多分化适应中总是保持单一的齿根,但是在齿冠上可以出现各种特化,特别是在形状和大小上。有胎盘类的前臼齿常常有复杂的结构,而且通常从前向后愈来愈复杂。例如,第一前臼齿可以是具有2个齿根的狭冠齿,而最后一个前臼齿可以是齿冠由几个尖组成的宽冠齿,具有3个或更多齿根。很多特化了的哺乳动物后面的前臼齿显得与臼齿很相似。在早期有袋类和有胎盘类中,上牙由三角形组成,并与下牙的三角座相剪切。除了上下臼齿的这种剪切动作以外,还有由上三角座的内尖咬人下臼齿三角座后部后齿座的压碎作用。这种类型的臼齿常常被称为三尖式、尖切式或者三楔式。三楔式臼齿组成了高等哺乳动物各种各样臼齿演化的基础。三楔式上下臼齿是方向相反的三角形,上臼齿上的三个尖叫做原尖、前尖和后尖,前者位于牙齿的内侧,后两个位于外侧。此外,在上臼齿主要的尖之间还有两个中间的尖,即原小尖和后小尖。在下臼齿上,外侧的尖叫做下原尖,两个内侧的尖称为下前尖和下后尖。在下臼齿的跟座上通常也有三个尖,外面的称为下次尖,内方的称为下内尖,后面一个,也就是在盆形后部的一个,称为下次小尖。组成上下三楔式臼齿的主要的尖可以认为有共同的起源,这样在所有有袋类和有胎盘类中它们都是同源的。在许多比较进步的哺乳动物中,位于上臼齿后内角的还有个第四主尖——次尖。这个尖的出现是在各目哺乳动物进化历史上新增添上去的;但是始终还不能确定在具有这个尖的那些哺乳动物中,次尖是不是都是同源的。在很多哺乳动物的臼齿中,还有各种不同的脊或棱,在上臼齿上的叫做脊,在下臼齿上的叫做下脊;在牙齿的边缘还有某些小的附加的尖,在上下臼齿上,分别叫做附尖和下附尖。在有胎盘哺乳动物中,上下臼齿之间颌的动作有4种类型,其中3种在原始哺乳动物的三楔式臼齿中已经有了。第一种,尖的交错,上下臼齿上这些尖互相咀咬,以擒住和撕碎食物。例如下原尖与上齿外侧的前尖和后尖交咬,而原尖与下齿内侧的下前尖和下后尖交咬。第二种,齿边缘或棱脊彼此剪切,以切碎食物。在三楔式臼齿中,上臼齿三角座的前后缘切过下三角座的前后缘。第三种,牙齿一定部分互相对压,以压碎食物。原尖咬入下后齿座的盆中便是这样的作用。第四种,相对齿面像磨粉机一样互相研磨,以磨碎食物。在许多特化的哺乳动物扩展的臼齿齿冠上可以看到这种作用。在新生代演化出来的有胎盘哺乳动物或真兽类共约有29个目,其中约16个目现在仍然生存着。它们是:食虫目:食虫类。鼠和刺猬。翼手目:蝙蝠。皮翼目:飞狐猴。这目或者作为翼手目中的一个亚目。纽齿目:纽齿兽。已绝大的类群。裂齿目:裂齿兽。已绝灭的类群。贫齿目:贫齿类,食蚁兽,树懒、地懒、犹狳和雕齿兽鳞甲目:穿山甲。灵长目:灵长类。狐猴、眼镜猴、猴、猿和人。啮齿目:啮齿类。松鼠、海狸、鼠、豪猪、豚鼠和南美栗鼠。兔形目:家兔和野兔。兽目:强棱齿兽、兽、假古猬、

相关资料推荐

  • 名称/格式
  • 下载次数
  • 资料大小

用户评论

0/200
暂无评论

资料阅读排行

该用户的其它资料

关闭

请选择举报的类型

关闭

提示

提交成功!

感谢您对爱问共享资料的支持,我们将尽快核实并处理您的举报信息。

关闭

提示

提交失败!

您的举报信息提交失败,请重试!

关闭

提示

重复举报!

亲爱的用户!感觉您对爱问共享资料的支持,请勿重复举报噢!

收藏
资料评价:

所需积分:0 立即下载
返回
顶部
举报
资料
关闭

温馨提示

感谢您对爱问共享资料的支持,精彩活动将尽快为您呈现,敬请期待!