首页 Excitation研发培训,设计培训

Excitation研发培训,设计培训

举报
开通vip

Excitation研发培训,设计培训19十月2020Excitation研发培训,设计培训StatorRevolvingMagneticFieldMagneticPolePairsrotateatSynchronousSpeedThreePhaseACVoltageSynchronousRotorDCinputtotherotorcreateselectromagneticpolespairsPolesofdifferentpolarityarecreatedbywindingaroundthepoleindifferentdirectionsSyn...

Excitation研发培训,设计培训
19十月2020Excitation研发 培训 焊锡培训资料ppt免费下载焊接培训教程 ppt 下载特设培训下载班长管理培训下载培训时间表下载 ,设计培训StatorRevolvingMagneticFieldMagneticPolePairsrotateatSynchronousSpeedThreePhaseACVoltageSynchronousRotorDCinputtotherotorcreateselectromagneticpolespairsPolesofdifferentpolarityarecreatedbywindingaroundthepoleindifferentdirectionsSynchronousMotorRotor“Locked”intopowersupply,rovlovesatsynchronousspeedPhasorsandPhasorDiagramsTheconceptofPhasorsisrelatedtosinusoidalwaveformsthataredistributedinspaceandvarywithtime.Phasorsarecomplex(asincomplexnumbers)quantitiesusedforsimplifiedcalculationoftimevaryingandtravelingwaveforms.Themagnitudeandphaserelationshipbetweenthevectorsandcanbeshownsimplyinphasordiagrams.PhasorDiagramExampleConsiderthesimpleRL(resistiveinductive)circuitV=Vmsin(ωt)Voltagefunctionoftime.CurrentfunctionoftimeanddisplacedbyangleLMagneticFluxinInductor90°outofphasewithvoltagewaveformi90°PhasorDiagramCont.VIFLФLRecall:B:MagneticFluxDensitydenoteФH:MagneticFluxIntensityormmfdenoteFo:Constantofpermeabilityoffreespacer:ConstantofpermeabilityofelectricalsteelCylindricalRotorSynchronousMachine:Duetotheevenairgap,theformulationsforbasicmachinequantitiesissimplified.Wewillconsiderthecylindricalmachinetheoryfirstandthenextendtheanalysistothesalientpolecase.StatorI.D.RotorO.D.IaVtEaΦar-ΦarfΦf-ararErCylindricalRotorPhasorDiagramForSynchronousGeneratorVt:TerminalVoltageIa:StatorCurrentLagsterminalVoltagebyAngleEa:AirGapVoltage,thevoltageinducedintothearmaturebythefieldvoltageactingalone,the“opencircuit”voltageEr:ReactivevoltageproducedbyarmaturefluxEint:ResultantVoltageintheAirGapar:FluxfromArmaturecurrent(ArmatureReaction)f:Fluxduetofieldcurrentr:Resultantfluxar+fFf:mmfofFieldAar:mmfofArmatureCurrent(ArmatureReaction)FR:Resultantmmf,thesumofF+AIara:VoltagedropofarmatureresistanceIaxl:ReactivevoltagedropofArmatureleakagereactanceIaxA:ReactivevoltagedropofreactanceofArmaturereactionFromthediagramitisevidentthatEr,thevoltageinducedinthestatorbytheeffectofthearmaturereactionflux,isinphasewithIaXl.ThesummationofErandIaXlgivesthetotalreactivevoltageproducedinthearmaturecircuitbythearmatureflux.TheratioofthistotalvoltagetoarmaturecurrentisdefinedasXsorthesynchronousreactance.SalientPoleSynchronousMachinesSalientPoleSynchronousMachineTwoReactionTheoryOneoftheconceptsusedincylindricalrotortheorywasthesummationofbothfluxandmmfwaveforms.r=f+arandFr=Ff+FarThisisallowedsinceB=orHandthemagneticpermeabilityoftheairgapisconstantaroundtherotorHoweverforsalientpolemachines,thepermeabilityofthefluxpathvariessignificantlyastheratioofairgaptosteelchanges.Thereforerf+arSalientPoleSynchronousMachineWithasalientpolemachine,asinusoidaldistributionoffluxcannotbeassumedintheairgapduetothevariationinmagneticpermeancealongtheairgap.However,owingtothesymmetryofasalientpolemachinealongthedirectandquadratureaxis,asinusoidaldistributionofmmfcanbeassumedalongeachaxis.BreakthemmfofthearmaturecurrentAarintotwocomponents,AdandAq.AdisthecomponentofAarthatworksalongthedirectaxisandAqisthecomponentofAarcenteredonthequadratureaxis.TwoReactionTheory:IntroductionIfyouacceptthatAarcanbebrokenintotwocomponentsAdandAq,itfollowsthatforeachmmfwaveform,aemfwaveformexists90degreesoutofphasewithit.SoAdhasanassociatedEd,andAqhasanassociatedEq.ThesevoltagedropscanbethoughofhasbeingcreatedbyafictitiousreactancedropEd=XadIdandEq=XaqIq,whereId:DirectaxiscomponentofarmaturecurrentIq:QuadratureaxiscomponentofarmaturecurrentXad:DirectaxisarmaturereactionreactanceXaq:QuadratureaxisarmaturereactionreactanceIaVtIaraEintEaΦarθjIaxAAjIax1ForCylindricalRotor:Ia2=Id2+Iq2Xld=XlqXAd=XAqTwoReactionDiagramSinceforaCylindricalRotor:Ia2=Id2+Iq2and(IaXs)2=(IdXd)2+(IqXq)2Xld=XlqXAd=XAqXs=Xd=XqItisnotnecessarytousetworeactiontheorytodescribethequantitiesofacylindricalrotormachine.EaIaΦfPhasorDiagramofaSalientPoleSynchronousGeneratorIaIa:StatorcurrentVt:StatorterminalVoltageIra:VoltageofstatorresistanceIxl:VoltageofstatorleakagereactanceEint:InternalairgapvoltageK1Eint:Extrammfrequiredtoovercomestatorsaturation,K1issaturationfactorIdxad:reactivevoltagedropdirectaxisIdxaq:ReactivevoltagedropquadratureaxisEa:Totalsumofdirectaxisvoltage,airgapvoltage,opencircuitvoltageId=Iasin(+δ)Iq=Iasin(+δ)PoleFaceDesign-MagneticFieldsThemmfwaveofarmaturereactionandthemmfwaveofthepolearecreatedontwodifferentsidesoftheairgapbutmustbecombinedtodeterminearesultantmmf.Todothiswemustdetermineconversionfactorstoconvertanstatorsidemmftoandequivalentrotorsidemmf.lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSPoleFaceDesign–MagneticFieldsC1:Ifpeakofthefundamentalisunity,thenC1ispeakofacutalwaveform.NotethatWiesemancallsthisA1No-Load:motorisexcitedbythefieldwindingonlyPoleFaceDesign–MagneticFieldCd1:Ifpeakofthefundamentalisunity,thenCd1ispeakofacutalwaveform.NotethatWiesemancallsthisAd1ArmaturemmfSinewavewhoseaxiscoincideswiththepolecenterPoleFaceDesign–MagneticFieldCq1:Ifpeakofthefundamentalisunity,thenCq1ispeakofacutalwaveform.NotethatWiesemancallsthisAq1ArmaturemmfSinewavewhoseaxiscoincideswiththegapbetweenpolesListofPoleConstantsCd1–RatioofthefundamentaloftheairgapfluxproducedbythedirectaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterCq1–RatioofthefundamentaloftheairgapfluxproducedbythequadratureaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterC1–Theratioofthefundamentaltotheactualmaximumvalueofthefieldformwhenexcitedbythefieldonly(no-load)Cm–Ratiooffundamentalairgapfluxproducedbythefundamentalofarmaturemmftothatproducedbythefieldforthesamemaximummmf.Thisisthearmaturereactionconversionfactorforthedirectaxis.Cm=Cd1/C1K–Fluxdistributioncoefficient;theratiooftheareaoftheactualnoloadfluxwavetotheareaofitsfundamentalPoleConstantsWhatfollowsaregraphsthatrelatethephysicalgeometryofthepoletothepoleconstants.ThesegraphscanbefoundintheappendixofEngineeringNote106.Thegraphsintheengineeringnoteareidenticaltographsthatfirstappearedina1927AIEEpapertitledGraphicalDeterminationofMagneticFieldsbyRobertWieseman.PoleConstantsWiesemanusedhandplottingtechniquestoplotthefluxfieldsofseveralhundredsofpoleshapestocomeupwiththegraphs.Duetotheintensivenatureofthework,thegraphsareplottedforalimitedrangeofpolegeometry:Polearc/Polepitch=0.5to.75Gmax/Gmin=1.0to3.0Minimumgap/polepitch=.005to.05SincethesecurvesareusedbySMDStocalculatemotorperformance,SMDSwillnotrunwithanyoneofthesethreevariablesoutsideofthegivenrange.Thereisnoreason,besidesthelimitationsoftheoriginalcurves,whyvariablesoutsidetherangeslistedabovecouldn’tbeused.PoleFaceDesign–MagneticFieldsDeterminationofKPoleFaceDesign–MagneticFieldsDeterminationofC1PoleFaceDesign–MagneticFieldsDeterminationofCq1PoleFaceDesign–MagneticFieldsDeterminationofCd1PoleFaceDesign–MagneticFieldsPolefacedesignscomeintwoflavors,singleradiusanddoubleradius.Thereasonforthisistheshapeofthepoleheadrelativetothestatorboreradiushasalargeinfluenceoftheshapeofthefieldfluxwaveform.ReactanceCalculationsXad=ReactanceofarmaturereactiondirectedalongthedirectaxisXaq=ReactanceofarmaturereactiondirectedalongthequadratureaxisT=CommonReactanceFactora=PermeanceFactorCd1=PoleConstantCq1=PoleConstantT=CommonReactanceFactorm=#phasesL=StatorCoreLengthf=frequencyZ=SeriesConductorsperPhaseKw=WindingfactorStatorP=#PolesReactanceCalculationsa=PermeanceFactorD=DiameterofStatorBoreP=#PolesKg=Carter’sGapCoefficeintgmin=MinimumairgapatcenterofpoleReactanceCalculationsArmatureLeakageReactanceisdeterminedusingamethodologyidenticaltotheinductionmachine.SynchronousReactancesXd=Xl+XadXq=Xl+XaqExcitationCalculations1.CalculatetotalMagneticFlux2.ConvertarmaturemagneticFluxtoFieldEquivalent3.CalculateEintbyaddingarmatureresistanceandleakagereactancedropstoterminalvoltage.4.Usingstep2,calculatetheamphereturnsrequiredtomagnitizetheairgap.5.UsingstepEintfromstep3andelectricalsteelmagnitizationcurvescalculatetheampereturnsrequiredtomagnitzethestatorcoreandairgap.6.Usingtheresultsof4and5calculatethesaturationfactor.7.Usingtheresultsof3and5calculatethedirectaxiscomponentofmmf.8.Calculatethedirectaxiscomponentofarmaturereaction9.Usingtheresultsof6and7calculatethemmfrequirementsatthepoleface10.Calculatethepolesaturationmmf11.Totaldirectaxisexcitationisthesumof8and9ExcitationCalculationsStepOne:TotalfundamentalfluxperpoleEph:PhasevoltageatstatorterminalsKp:PitchFactorKd:DistributionFactorFreq:FrequencyNSPC:ArmatureseriesturnsperphasepercircuitExcitationCalculationStep2:CalculatetotalfluxperpoleonopencircuitKrelatesfundamentalfluxperpoletototalfluxperpoleusingfactors.ExcitationCalculationCont.Step3:Calculatetotalairgapfluxperpoleatthespecificvoltageandloadofinterest.ThisvoltagewasshownonthepreviousphasordiagramasEint.Step3a:CalculatethestatorleakagereactanceusingsameformulasderivedfortheInductionmotorstator.FieldExcitationCont.PortionofthepreviousphasordiagramisredrawnFromdiagramitisevidentthat:IaαεδK1Eintsin(α)FieldExcitationCont.Step4:Calculatetheampereturnsneededtomagnetizetheairgapatratedvoltage:Fg.Samegapfactorusedfrominductionmotortheory(i.e.Carter’scoefficient)FieldExcitationCont.Step5:Calculatethestatorcore+statorteethampereturnsatthevalueoffluxcorrespondingtoEint.Ac:AreaofstatorcoreAt:AreaofstatorteethBCmax:maximumvalueoffluxdensityinstatorcoreBTmax:maximumvalueoffluxdensityinstatorteethFieldExcitationCont.UsingB-Hcurvesformagneticsteelusedforstatorlaminations,readoffavalueofmmfinamphereturnsforthevalueofBCmaxandBTmaxcalculatedinprevioussteps.Makesureunitsmatch.FieldExcitationCont.Step6:CalculatethecomponentmmfinthedirectaxiscorrespondingtoK1eintStep6a:CalculatesaturationfactorK1fromB-Hcurveforelectricalsteel.Statormmf:ActualvalueofampereturnscorrespondingtoEintvalueoffluxfromstep5.FgEint:ValueofmmfthatwouldresultbyextendingthestraitportionofB-Hcurve.Fgwascalculatedinstep4.mmfeintFieldExcitationCont.Step7:K1eld=K1EintcosßK1eld:ComponentofmmfinthedirectaxiscorrespondingtoK1EintK1:SaturationFactorfromstep6Eint:Voltageintheairgapfromstep4ß:AnglebetweenFieldExcitationVoltageandEint.:ß=-FieldExcitationCont.Step8:Calculatethedirectaxiscomponentofarmaturereaction:IdxadXadcalculatedinreactancesectionId=Iasin(ε)FieldExcitationCont.Step9:Addingtheresultsfromstep7andstep6,yougetthemmfrequirementsatthepolefaceFPF.FPF=K1Eintcos(ß)+IdxadTheunitsofFPFareampereturns.FieldExcitationCont.Step10:Calculatethepolesaturationmmf.Usingtheresultsofthenextlecture,calculatethepoleleakagefactorKLTherotorfluxperpoleisthenKLxEintxFReadthevalueofmmfperpolefromthepolesteelB-HCurve.FieldExcitationFinishThetotalexcitationrequiredalongthedirectaxisisthesumofsteps9and10.Theresultisinunitsofampere-turns.Dividetheampere-turnsbythenumberofturnsperpoletoarriveatFullLoadFieldAmps.
本文档为【Excitation研发培训,设计培训】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_808969
暂无简介~
格式:ppt
大小:4MB
软件:PowerPoint
页数:0
分类:
上传时间:2019-09-18
浏览量:1