关闭

关闭

封号提示

内容

首页 Linear Algebra and Its Applications(David C.Lay…

Linear Algebra and Its Applications(David C.Lay)(EN)Study_Guide.pdf

Linear Algebra and Its Applicat…

上传者: tiger 2014-04-10 评分 4.5 0 94 13 427 暂无简介 简介 举报

简介:本文档为《Linear Algebra and Its Applications(David C.Lay)(EN)Study_Guidepdf》,可适用于高等教育领域,主题内容包含LINEARALGEBRAANDITSAPPLICATIONSTHIRDEDITIONUPDATEDavidCLayUniversityofMary符等。

LINEARALGEBRAANDITSAPPLICATIONSTHIRDEDITIONUPDATEDavidCLayUniversityofMaryland–CollegeParkSTUDYGUIDElayTTLqxd:PMPageCopyrightPearsonAddisonWesleyAllrightsreservedReproducedbyPearsonAddisonWesleyfromelectronicfilessuppliedbytheauthorCopyrightPearsonEducation,IncPublishingasPearsonAddisonWesley,ArlingtonStreet,Boston,MAAllrightsreservedNopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recording,orotherwise,withoutthepriorwrittenpermissionofthepublisherPrintedintheUnitedStatesofAmericaISBNBBlayTTLqxd:PMPageCopyrightPearsonAddisonWesleyAllrightsreservedBriefContentsINTRODUCTIONHOWTOSTUDYLINEARALGEBRACHAPTERLINEAREQUATIONSINLINEARALGEBRACHAPTERMATRIXALGEBRACHAPTERDETERMINANTSCHAPTERVECTORSPACESCHAPTEREIGENVALUESANDEIGENVECTORSCHAPTERORTHOGONALITYANDLEASTSQUARESCHAPTERSYMMETRICMATRICESAPPENDICESTECHNOLOGYINDEXOFPROCEDURESANDTERMSINTRODUCTIONTOMATLABNOTESFORTHEMAPLECOMPUTERALGEBRASYSTEMNOTESFORTHEMATHEMATICACOMPUTERALGEBRASYSTEMNOTESFORTHETIGRAPHICCALCULATORSNOTESFORTHEHPGGRAPHICCALCULATORCopyrightPearsonAddisonWesleyAllrightsreservedContentsINTRODUCTIONviiTechnologySupportviiReviewMaterialsontheWebviiiHOWTOSTUDYLINEARALGEBRAixStrategiesforSuccessinLinearAlgebraixCHAPTERLINEAREQUATIONSINLINEARALGEBRASystemsofLinearSystemsRowReductionandEchelonFormsVectorEquationsTheMatrixEquationAx=bMasteringLinearAlgebraConcepts:SpanSolutionSetsofLinearSystemsApplicationsofLinearSystemsLinearIndependenceMasteringLinearAlgebraConcepts:LinearIndependenceIntroductiontoLinearTransformationsMasteringLinearAlgebraConcepts:LinearTransformationMatrixofaLinearTransformationMasteringLinearAlgebraConcepts:ExistenceandUniquenessLinearModelsinBusiness,Science,andEngineeringSupplementaryExercisesGlossaryChecklistCopyrightPearsonAddisonWesleyAllrightsreservedCHAPTERMATRIXALGEBRAMatrixOperationsTheInverseofaMatrixCharacterizationsofInvertibleMatricesExpandedTablefortheIMTMasteringLinearAlgebraConcepts:ReviewingandReflectingPartitionedMatricesThePrinciplesofInductionMatrixFactorizationsPermutedLUFactorizationsTheLeontiefInputOutputModelApplicationstoComputerGraphicsSubspacesofRnMasteringLinearAlgebraConcepts:Subspace,ColumnSpace,Space,BasisDimensionandRankExpandedTablefortheIMTMasteringLinearAlgebraConcepts:DimensionandRankSupplementaryExercisesGlossaryChecklistCHAPTERDETERMINANTSIntroductiontoDeterminantsPropertiesofDeterminantsCramer’sRule,VolumeandLinearTransformationsAGeometricProofGlossaryChecklistCHAPTERVECTORSPACESVectorSpacesandSubspacesSpaces,ColumnSpaces,andLinearTransformationsCopyrightPearsonAddisonWesleyAllrightsreservedMasteringLinearAlgebraConcepts:VectorSpace,Subspace,ColAandNulALinearlyIndependentSetsBasesMasteringLinearAlgebraConcepts:BasisCoordinateSystemsIsomorphicVectorSpacesTheDimensionofaVectorSpaceRankExpandedTablefortheIMTMasteringLinearAlgebraConcepts:MajorReviewofKeyConceptsChangeofBasisApplicationstoDifferenceEquationsTheCasoratiTestApplicationstoMarkovChainsGlossaryChecklistCHAPTEREIGENVALUESANDEIGENVECTORSEigenvectorsandEigenvaluesTheCharacteristicEquationFactoringaPolynomialDiagonalizationMasteringLinearAlgebraConcepts:Eigenvalue,Eigenvector,EigenspaceEigenvaluesandLinearTransformationsComplexEigenvaluesDiscreteDynamicalSystemsApplicationstoDifferentialEquationsIterativeEstimatesforEigenvaluesGlossaryChecklistCHAPTERORTHOGONALITYANDLEASTSQUARESInnerProduct,Length,andOrthogonalityOrthogonalSetsMasteringLinearAlgebraConcepts:OrthogonalBasisCopyrightPearsonAddisonWesleyAllrightsreservedOrthogonalProjectionsTheGramSchmidtProcessLeastSquaresProblemsApplicationstoLinearModelsTheGeometreyofaLinearModelInnerProductSpacesApplicationsofInnerProductSpacesTheLinearityofanOrthoganalProjectionGlossaryChecklistCHAPTERSYMMETRICMATRICESDiagonalizationofSymmetricMatricesQuadraticFormsMasteringLinearAlgebraConcepts:DiagonalizationandQuadraticFormsConstrainedOptimizationTheSingularValueDecompositionComputinganSVDApplicationstoImageProcessingandStatisticsSupplementaryExercisesGlossaryChecklistAPPENDICESTECHNOLOGYINDEXOFPROCEDURESANDTERMSTechnologyIndexofProceduresandTermsTECHINTRODUCTIONTOMATLABGettingStartedwithMatlabMLScriptMFilesMLIndexofMatlabCommandsMLCopyrightPearsonAddisonWesleyAllrightsreservedNOTESFORTHEMAPLECOMPUTERALGEBRASYSTEMGettingStartedwithMapleMPStudyGuideNotesMPIndexofMapleCommandsMPNOTESFORTHEMATHEMATICACOMPUTERALGEBRASYSTEMGettingStartedwithMathematicaMMStudyGuideNotesMMIndexofMathematicaCommandsMMNOTESFORTHETIGRAPHICCALCULATORSGettingStartedwithaTICalculatorTIGettingStartedwithaTICalculatorTIGettingStartedwithaTICalculatorTIStudyGuideNotesTIIndexofTICalculatorCommandsTINOTESFORTHEHPGGRAPHICCALCULATORGettingStartedwithanHPGCalculatorHPStudyGuideNotesHPIndexofHPCalculatorCommandsHPCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddisonWesleyAllrightsreservedCopyrightPearsonAddi

类似资料

该用户的其他资料

四元数在刚体定位问题中的应用.pdf

同济大学高等数学第六版.pdf

线性代数 (清华 居余马).pdf

线性代数教材(同济第五版).pdf

线性代数与空间解析几何--黄廷祝 2008.pdf

职业精品

精彩专题

上传我的资料

精选资料

热门资料排行换一换

  • 《高中数学奥林匹克竞赛解题方法大…

  • [软力量:世界政坛成功之道].(…

  • 制药设备与工程设计(朱宏吉 ,张…

  • GB 24505-2009-T …

  • 数控回转工作台.pdf

  • 大地雅歌.pdf

  • GB 24492-2009-T …

  • 《中国佛教逻辑史》沉剑英主编20…

  • 悲悯大地.pdf

  • 资料评价:

    / 349
    所需积分:0 立即下载

    意见
    反馈

    返回
    顶部