关闭

关闭

封号提示

内容

首页 linear algebra demystified(David McMahon).pdf

linear algebra demystified(David McMahon).pdf

linear algebra demystified(Davi…

上传者: tiger 2014-04-10 评分 4.5 0 92 12 416 暂无简介 简介 举报

简介:本文档为《linear algebra demystified(David McMahon)pdf》,可适用于高等教育领域,主题内容包含LinearAlgebraDemystifiediDemystifiedSeriesAdvancedStatisticsDemystifiedMathPr符等。

LinearAlgebraDemystifiediDemystifiedSeriesAdvancedStatisticsDemystifiedMathProofsDemystifiedAlgebraDemystifiedMathWordProblemsDemystifiedAnatomyDemystifiedMedicalTerminologyDemystifiedaspnetDemystifiedMeteorologyDemystifiedAstronomyDemystifiedMicrobiologyDemystifiedBiologyDemystifiedOOPDemystifiedBusinessCalculusDemystifiedOptionsDemystifiedBusinessStatisticsDemystifiedOrganicChemistryDemystifiedCDemystifiedPersonalComputingDemystifiedCalculusDemystifiedPharmacologyDemystifiedChemistryDemystifiedPhysicsDemystifiedCollegeAlgebraDemystifiedPhysiologyDemystifiedDatabasesDemystifiedPreAlgebraDemystifiedDataStructuresDemystifiedPrecalculusDemystifiedDifferentialEquationsDemystifiedProbabilityDemystifiedDigitalElectronicsDemystifiedProjectManagementDemystifiedEarthScienceDemystifiedQualityManagementDemystifiedElectricityDemystifiedQuantumMechanicsDemystifiedElectronicsDemystifiedRelativityDemystifiedEnvironmentalScienceDemystifiedRoboticsDemystifiedEverydayMathDemystifiedSixSigmaDemystifiedGeneticsDemystifiedsqlDemystifiedGeometryDemystifiedStatisticsDemystifiedHomeNetworkingDemystifiedTrigonometryDemystifiedInvestingDemystifiedumlDemystifiedJavaDemystifiedVisualBasicDemystifiedJavaScriptDemystifiedVisualC#DemystifiedLinearAlgebraDemystifiedxmlDemystifiedMacroeconomicsDemystifiediiLinearAlgebraDemystifiedDAVIDMcMAHONMcGRAWHILLNewYorkChicagoSanFranciscoLisbonLondonMadridMexicoCityMilanNewDelhiSanJuanSeoulSingaporeSydneyTorontoiiiCopyrightbyTheMcGrawHillCompanies,IncAllrightsreservedManufacturedintheUnitedStatesofAmericaExceptaspermittedundertheUnitedStatesCopyrightActof,nopartofthispublicationmaybereproducedordistributedinanyformorbyanymeans,orstoredinadatabaseorretrievalsystem,withoutthepriorwrittenpermissionofthepublisherThematerialinthiseBookalsoappearsintheprintversionofthistitle:AlltrademarksaretrademarksoftheirrespectiveownersRatherthanputatrademarksymbolaftereveryoccurrenceofatrademarkedname,weusenamesinaneditorialfashiononly,andtothebenefitofthetrademarkowner,withnointentionofinfringementofthetrademarkWheresuchdesignationsappearinthisbook,theyhavebeenprintedwithinitialcapsMcGrawHilleBooksareavailableatspecialquantitydiscountstouseaspremiumsandsalespromotions,orforuseincorporatetrainingprogramsFormoreinformation,pleasecontactGeorgeHoare,SpecialSales,atgeorgehoaremcgrawhillcomor()TERMSOFUSEThisisacopyrightedworkandTheMcGrawHillCompanies,Inc(“McGrawHill”)anditslicensorsreserveallrightsinandtotheworkUseofthisworkissubjecttothesetermsExceptaspermittedundertheCopyrightActofandtherighttostoreandretrieveonecopyofthework,youmaynotdecompile,disassemble,reverseengineer,reproduce,modify,createderivativeworksbasedupon,transmit,distribute,disseminate,sell,publishorsublicensetheworkoranypartofitwithoutMcGrawHill’spriorconsentYoumayusetheworkforyourownnoncommercialandpersonaluseanyotheruseoftheworkisstrictlyprohibitedYourrighttousetheworkmaybeterminatedifyoufailtocomplywiththesetermsTHEWORKISPROVIDED“ASIS”McGRAWHILLANDITSLICENSORSMAKENOGUARANTEESORWARRANTIESASTOTHEACCURACY,ADEQUACYORCOMPLETENESSOFORRESULTSTOBEOBTAINEDFROMUSINGTHEWORK,INCLUDINGANYINFORMATIONTHATCANBEACCESSEDTHROUGHTHEWORKVIAHYPERLINKOROTHERWISE,ANDEXPRESSLYDISCLAIMANYWARRANTY,EXPRESSORIMPLIED,INCLUDINGBUTNOTLIMITEDTOIMPLIEDWARRANTIESOFMERCHANTABILITYORFITNESSFORAPARTICULARPURPOSEMcGrawHillanditslicensorsdonotwarrantorguaranteethatthefunctionscontainedintheworkwillmeetyourrequirementsorthatitsoperationwillbeuninterruptedorerrorfreeNeitherMcGrawHillnoritslicensorsshallbeliabletoyouoranyoneelseforanyinaccuracy,errororomission,regardlessofcause,intheworkorforanydamagesresultingtherefromMcGrawHillhasnoresponsibilityforthecontentofanyinformationaccessedthroughtheworkUndernocircumstancesshallMcGrawHillandoritslicensorsbeliableforanyindirect,incidental,special,punitive,consequentialorsimilardamagesthatresultfromtheuseoforinabilitytousethework,evenifanyofthemhasbeenadvisedofthepossibilityofsuchdamagesThislimitationofliabilityshallapplytoanyclaimorcausewhatsoeverwhethersuchclaimorcausearisesincontract,tortorotherwiseDOI:CONTENTSPrefaceixCHAPTERSystemsofLinearEquationsConsistentandInconsistentSystemsMatrixRepresentationofaSystemofEquationsSolvingaSystemUsingElementaryOperationsTriangularMatricesElementaryMatricesImplementingRowOperationswithElementaryMatricesHomogeneousSystemsGaussJordanEliminationQuizCHAPTERMatrixAlgebraMatrixAdditionScalarMultiplicationMatrixMultiplicationSquareMatricesTheIdentityMatrixTheTransposeOperationTheHermitianConjugatevFormoreinformationaboutthistitle,clickhereviCONTENTSTraceTheInverseMatrixQuizCHAPTERDeterminantsTheDeterminantofaThirdOrderMatrixTheoremsaboutDeterminantsCramer’sRulePropertiesofDeterminantsFindingtheInverseofaMatrixQuizCHAPTERVectorsVectorsinRnVectorAdditionScalarMultiplicationTheZeroVectorTheTransposeofaVectorTheDotorInnerProductTheNormofaVectorUnitVectorsTheAnglebetweenTwoVectorsTwoTheoremsInvolvingVectorsDistancebetweenTwoVectorsQuizCHAPTERVectorSpacesBasisVectorsLinearIndependenceBasisVectorsCompletenessSubspacesRowSpaceofaMatrixSpaceofaMatrixQuizCONTENTSviiCHAPTERInnerProductSpacesTheVectorSpaceRnInnerProductsonFunctionSpacesPropertiesoftheNormAnInnerProductforMatrixSpacesTheGramSchmidtProcedureQuizCHAPTERLinearTransformationsMatrixRepresentationsLinearTransformationsintheSameVectorSpaceMorePropertiesofLinearTransformationsQuizCHAPTERTheEigenvalueProblemTheCharacteristicPolynomialTheCayleyHamiltonTheoremFindingEigenvectorsNormalizationTheEigenspaceofanOperatorASimilarMatricesDiagonalRepresentationsofanOperatorTheTraceandDeterminantandEigenvaluesQuizCHAPTERSpecialMatricesSymmetricandSkewSymmetricMatricesHermitianMatricesOrthogonalMatricesUnitaryMatricesQuizCHAPTERMatrixDecompositionLUDecompositionviiiCONTENTSSolvingaLinearSystemwithanLUFactorizationSVDDecompositionQRDecompositionQuizFinalExamHintsandSolutionsReferencesIndexPREFACEThisbookisforpeoplewhowanttogetaheadstartandlearnthebasicconceptsoflinearalgebraSuitableforselfstudyorasareferencethatputssolvingproblemswithineasyreach,thisbookcanbeusedbystudentsorprofessionalslookingforaquickrefresherIfyou’relookingforasimplifiedpresentationwithexplicitlysolvedproblemsforselfstudy,thisbookwillhelpyouIfyou’reastudenttakinglinearalgebraandneedaninformativeaidtokeepyouaheadofthegame,thisbookistheperfectsupplementtotheclassroomThetopicscoveredfitthoseusuallytaughtinaonesemesterundergraduatecourse,butthebookisalsousefultograduatestudentsasaquickrefresherThebookcanserveasagoodjumpingoffpointforstudentstoreadbeforetakingacourseThepresentationisinformalandtheemphasisisonshowingstudentshowtosolveproblemsthataresimilartothosetheyarelikelytoencounterinhomeworkandexaminationsEnhanceddetailisusedtouncovertechniquesusedtosolveproblemsratherthanleavingthehowandwhyofhomeworksolutionsasecretWhilelinearalgebrabeginswiththesolutionofsystemsoflinearequations,itquicklyjumpsoffintoabstracttopicslikevectorspaces,lineartransformations,determinants,andsolvingeigenvectorproblemsManystudentshaveahardtimestrugglingthroughthesetopicsIfyouarehavingahardtimegettingthroughyourcoursesbecauseyoudon’tknowhowtosolveproblems,thisbookshouldhelpyoumakeprogressAspartofaselfstudycourse,thisbookisagoodplacetogetafirstexposuretothesubjectoritisagoodrefresherifyou’vebeenoutofschoolforalongtimeAfterreadinganddoingtheexercisesinthisbookitwillbemucheasierforyoutotacklestandardlinearalgebratextbooksortomoveontoamoreadvancedtreatmentTheorganizationofthebookisasfollowsWebeginwithadiscussionofsolutiontechniquesforsolvinglinearsystemsofequationsAfterintroducingtheixCopyrightbyTheMcGrawHillCompanies,IncClickherefortermsofusexPREFACEnotionofmatrices,weillustratebasicmatrixalgebraoperationsandtechniquessuchasfindingthetransposeofamatrixorcomputingthetraceNextwestudydeterminants,vectors,andvectorspacesThisisfollowedbythestudyoflineartransformationsWethendevotesometimeshowinghowtofindtheeigenvaluesandeigenvectorsofamatrixThisisfollowedbyachapterthatdiscussesseveralspecialtypesofmatricesthatareimportantThisincludessymmetric,Hermitian,orthogonal,andunitarymatricesWefinishthebookwithareviewofmatrixdecompositions,specificallyLU,SVD,andQRdecompositionsEachchapterhasseveralexamplesthataresolvedindetailTheideaistoremovethemysteryandshowthestudenthowtosolveproblemsExercisesattheendofeachchapterhavebeendesignedtocorrespondtothesolvedproblemsinthetextsothatthestudentcanreinforceideaslearnedwhilereadingthechapterAfinalexam,withsimilarquestions,attheendofthebookgivesthestudentachancetoreinforcethesenotionsaftercompletingthetextDavidMcMahonCHAPTERSystemsofLinearEquationsAlinearequationwithnunknownsisanequationofthetypeaxaxanxn=bInmanysituations,wearepresentedwithmlinearequationsinnunknownsSuchasetisknownasasystemoflinearequationsandtakestheformaxaxanxn=baxaxanxn=bamxamxamnxn=bmCopyrightbyTheMcGrawHillCompanies,IncClickherefortermsofuseCHAPTERSystemsofLinearEquationsThetermsx,x,,xnaretheunknownsorvariablesofthesystem,whiletheaijarecalledcoefficientsThebiontherighthandsidearefixednumbersorscalarsThegoalistofindthevaluesofthex,x,,xnsuchthattheequationsaresatisfiedEXAMPLEConsiderthesystemxyz=xy=xyz=Does(x,y,z)=(,,)solvethesystemWhatabout(,,)SOLUTIONWesubstitutethevaluesof(x,y,z)intoeachequationTrying(x,y,z)=(,,)inthefirstequation,weobtain()()==andsothefirstequationissatisfiedUsingthesubstitutioninthesecondequation,wefind()()===Thesecondequationisnotsatisfiedtherefore,(x,y,z)=(,,)cannotbeasolutiontothissystemofequationsNowwetrythesecondsetofnumbers(,,)Substitutioninthefirstequationgives()()====Again,thefirstequationissatisfiedTryingthesecondequationgives()()==CHAPTERSystemsofLinearEquationsConsistentSystemAuniquesolutionoraninfinitenumberofsolutionsInconsistentSystemSystemhasnosolutionFigDescriptionofsolutionpossibilitiesThistimethesecondequationisalsosatisfiedFinally,thethirdequationworksouttobe()()==()===ThisshowsthatthethirdequationissatisfiedaswellThereforeweconcludethat(x,y,z)=(,,)isasolutiontothesystemConsistentandInconsistentSystemsWhenatleastonesolutionexistsforagivensystemoflinearequations,wecallthatsystemconsistentIfnosolutionexists,thesystemiscalledinconsistentThesolutiontoasystemisnotnecessarilyuniqueAconsistentsystemeitherhasauniquesolutionoritcanhaveaninfinitenumberofsolutionsWesummarizetheseideasinFigIfaconsistentsystemhasaninfinitenumberofsolutions,ifwecandefineasolutionintermsofsomeextraparametert,wecallthisaparametricsolutionMatrixRepresentationofaSystemofEquationsItisconvenienttowritedownthecoefficientsandscalarsinalinearsystemofequationsasarectangulararrayofnumberscalledamatrixEachrowinCHAPTERSystemsofLinearEquationsthearraycorrespondstooneequationForasystemwithmequationsinnunknowns,therewillbemrowsinthematrixThearraywillhavencolumnsEachofthefirstncolumnsisusedtowritethecoefficientsthatmultiplyeachoftheunknownvariablesThelastcolumnisusedtowritethenumbersfoundontherighthandsideoftheequationsConsiderthesetofequationsusedinthelastexample:xyz=xy=xyz=ThematrixusedtorepresentthissystemisWerepresentthissetofequationsxy=xy=bythematrixOnewaywecancharacterizeamatrixisbythenumberofrowsandcolumnsithasAmatrixwithmrowsandncolumnsisreferredtoasanmnmatrixSometimesmatricesaresquare,meaningthatthenumberofrowsequalsthenumberofcolumnsWerefertoagivenelementfoundinamatrixbyidentifyingitsrowandcolumnpositionThiscanbedoneusingthenotation(i,j)torefertotheelementlocatedatrowiandcolumnjRowsarenumberedstartingwithatthetopofthematrix,increasingaswemovedownthematrixColumnsarenumberedstartingwithonthelefthandsideAnalternativemethodofidentifyingelementsinamatrixistouseasubscriptnotationMatricesareoftenidentifiedwithitalicizedorboldcapitallettersSoA,B,CorA,B,CcanbeusedaslabelstoidentifymatricesThecorrespondingCHAPTERSystemsofLinearEquationssmallletteristhenusedtoidentifyindividualelementsofthematrix,withsubscriptsindicatingtherowandcolumnwherethetermislocatedForamatrixA,wecanuseaijtoidentifytheelementlocatedattherowandcolumnposition(i,j)Asanexample,considerthematrixB=Theelementlocatedatrowandcolumnofthismatrixcanbeindicatedbywriting(,)orbThisnumberisb=Theelementlocatedatrowandcolumnisb=ThesubscriptnotationisshowninFigAmatrixthatincludestheentirelinearsystemiscalledanaugmentedmatrixWecanalsomakeamatrixthatismadeuponlyofthecoefficientsthatmultiplytheunknownvariablesThisisknownasthecoefficientmatrixForthesystemxyz=xyz=xyz=thecoefficientmatrixisaijElementatrowiColumnjFigTheindexingofanelementfoundatrowiandcolumnjofamatrixCHAPTERSystemsofLinearEquationsA=WecanfindasolutiontoalinearsystemofequationsbyapplyingasetofelementaryoperationstotheaugmentedmatrixSolvingaSystemUsingElementaryOperationsThereexistthreeelementaryoperationsthatcanbeappliedtoasystemoflinearequationswithoutfundamentallychangingthatsystemTheseare•Exchangetworowsofthematrix•Replacearowbyascalarmultipleofitself,aslongasthescalarisnonzero•ReplaceonerowbyaddingthescalarmultipleofanotherrowLet’sintroducesomeshorthandnotationtodescribetheseoperationsanddemonstrateusingthematrixM=Toindicatetheexchangeofrowsand,wewriteRRThistransformsthematrixasfollows:Nowlet’sconsidertheoperationwherewereplacearowbyascalarmultipleofitselfLet’ssaywewantedtoreplacethefirstrowinthefollowingway:RRCHAPTERSystemsofLinearEquationsThematrixwouldbetransformedasInthethirdtypeofoperation,wereplaceaselectedrowbyaddingascalarmultipleofadifferentrowConsiderRRRThematrixbecomesThesolutiontothesystemisobtainedwhenthissetofoperationsbringsthematrixintotriangularformThistypeofeliminationissometimesknownasGaussianeliminationTriangularMatricesGenerally,thegoalofperformingtheelementaryoperationsonasystemistogetitinatriangularformAsystemthatisinanuppertriangularformisB=Thisaugmentedmatrixrepresentstheequationsxyz=yz=z=AsolutionforthelastvariablecanbefoundbyinspectionInthisexample,weseethatz=Tofindthevaluesoftheothervariables,weusebacksubstitutionWesubstitutethevaluewehavefoundintotheequationimmediatelyaboveitInthisCHAPTERSystemsofLinearEquationscase,insertthevaluefoundforzintothesecondequationThisallowsustosolvefory:yz=,z=y=y=(Notethatthesymbolisshorthandfortherefore)Eachtimeyouapplybacksubstitution,youobtainanequationthathasonlyoneunknownvariableNowwecansubstitutethevaluesy=andz=intothefirstequationtosolveforthefinalunknown,whichisx:x=x=x=AsystemthatistriangularissaidtobeinechelonformLet’sillustratethecompletesolutionofasystemoflinearequationsusingtheelementaryrowoperations(seeFig)PIVOTSOnceasystemhasbeenreduced,wecallthecoefficientofthefirstunknownineachrowapivotForexample,inthereducedsystemxyz=yz=z=sbelowdiagonalNonzeroitemscanbehereUppertriangularmatrixsabovediagonalNonzeroentriescanbehereLowertriangularmatrixFigAnillustrationofanuppertriangularmatrix,whichhassbelowthediagonal,andalowertriangularmatrix,whichhassabovethediagonalCHAPTERSystemsofLinearEquationsthepivotsareforthefirstrow,forthesecondrow,andforthelastrowThisisalsotruewhenrepresentingthesystemwithamatrixForinstance,ifthematrixA=isacoefficientmatrixforsomesystemoflinearequations,thenthepivotsare,,,andMOREONROWECHELONFORMAnechelonsystemhastwocharacteristics:•Anyrowsthatcontainallzerosarefoundatthebottomofthematrix•ThefirstnonzeroentryoneachrowisfoundtotherightofthefirstnonzeroentryintheprecedingrowAnechelonsystemgenerallyhastheformaxaxaxanxn=bajxj

类似资料

该用户的其他资料

四元数在刚体定位问题中的应用.pdf

同济大学高等数学第六版.pdf

线性代数 (清华 居余马).pdf

线性代数教材(同济第五版).pdf

线性代数与空间解析几何--黄廷祝 2008.pdf

职业精品

精彩专题

上传我的资料

精选资料

热门资料排行换一换

  • 世界の杰作机031_McDonn…

  • 03SG435-1预应力溷凝土圆…

  • 基于NET的健康调查问卷系统(A…

  • 诡案追踪.doc

  • THE KITE RUNNER.…

  • 福建省志·卫生志.pdf

  • 混凝土结构设计计算算例-王依群.…

  • ICEM tutorial fi…

  • 世界の杰作机097_Lockhe…

  • 资料评价:

    / 268
    所需积分:0 立即下载

    意见
    反馈

    返回
    顶部