首页 球坐标系下的向量运算(英文)

球坐标系下的向量运算(英文)

举报
开通vip

球坐标系下的向量运算(英文) Spherical Coordinates Transforms The forward and reverse coordinate transformations are r = x 2 + y 2 + z 2 ! = arctan x2 + y2 , z" # $ % & = arctan y,x( ) x = rsin! cos" y = r sin! sin" z = rcos! where we formally take advantage of t...

球坐标系下的向量运算(英文)
Spherical Coordinates Transforms The forward and reverse coordinate transformations are r = x 2 + y 2 + z 2 ! = arctan x2 + y2 , z" # $ % & = arctan y,x( ) x = rsin! cos" y = r sin! sin" z = rcos! where we formally take advantage of the two argument arctan function to eliminate quadrant confusion. Unit Vectors The unit vectors in the spherical coordinate system are functions of position. It is convenient to express them in terms of the spherical coordinates and the unit vectors of the rectangular coordinate system which are not themselves functions of position. ˆ r = ! r r = xˆ x + yˆ y + z ˆ z r = ˆ x sin! cos" + ˆ y sin! sin" + ˆ z cos! ˆ " = ˆ z # ˆ r sin! = $ ˆ x sin" + ˆ y cos" ˆ ! = ˆ " # ˆ r = ˆ x cos! cos" + ˆ y cos! sin" $ ˆ z sin! Variations of unit vectors with the coordinates Using the expressions obtained above it is easy to derive the following handy relationships: ! ˆ r !r = 0 ! ˆ r !" = ˆ x cos" cos# + ˆ y cos" sin# $ ˆ z sin" = ˆ " ! ˆ r !# = $ ˆ x sin" sin# + ˆ y sin" cos# = $ ˆ x sin# + ˆ y cos #( )sin" = ˆ # sin" ! ˆ " !r = 0 ! ˆ " !# = 0 ! ˆ " !" = $ ˆ x cos" $ ˆ y sin" = $ ˆ r sin# + ˆ # cos#( ) ! ˆ " !r = 0 ! ˆ " !" = # ˆ x sin" cos$ # ˆ y sin" sin$ # ˆ z cos" = # ˆ r ! ˆ " !$ = # ˆ x cos" sin$ + ˆ y cos" cos$ = ˆ $ cos" x y z r ^ ! ^ " ^ ! " r r Path increment We will have many uses for the path increment d ! r expressed in spherical coordinates: d ! r = d r ˆ r ( ) = ˆ r dr + rd ˆ r = ˆ r dr + r ! ˆ r !r dr + ! ˆ r !" d" + ! ˆ r !# d# $ % & ' ( ) = ˆ r dr + ˆ " rd" + ˆ # rsin"d# Time derivatives of the unit vectors We will also have many uses for the time derivatives of the unit vectors expressed in spherical coordinates: ˆ ˙ r = ! ˆ r !r ˙ r + !ˆ r !" ˙ " + ! ˆ r !# ˙ # = ˆ " ˙ " + ˆ # ˙ # sin" ˆ ˙ " = ! ˆ " !r ˙ r + ! ˆ " !" ˙ " + ! ˆ " !# ˙ # = $ ˆ r ˙ " + ˆ # ˙ # cos" ˆ ˙ # = ! ˆ # !r ˙ r + ! ˆ # !" ˙ " + ! ˆ # !# ˙ # = $ ˆ r sin" + ˆ " cos"( )˙ # Velocity and Acceleration The velocity and acceleration of a particle may be expressed in spherical coordinates by taking into account the associated rates of change in the unit vectors: ! v = ! ˙ r = ˆ ˙ r r + ˆ r ˙ r ! v = ˆ r ˙ r + ˆ ! r ˙ ! + ˆ " r ˙ " sin! ! a = ! ˙ v = ˆ ˙ r ˙ r + ˆ r ˙ ˙ r + ˆ ˙ ! r ˙ ! + ˆ ! ˙ r ˙ ! + ˆ ! r ˙ ˙ ! + ˆ ˙ " r ˙ " sin! + ˆ " ˙ r ˙ " sin! + ˆ " r ˙ ˙ " sin! + ˆ " r ˙ " ˙ ! cos! = ˆ ! ˙ ! + ˆ " ˙ " sin!( ) ˙ r + ˆ r ˙ ˙ r + # ˆ r ˙ ! + ˆ " ˙ " cos!( )r ˙ ! + ˆ ! ˙ r ˙ ! + ˆ ! r ˙ ˙ ! + # ˆ r sin! + ˆ ! cos!( ) ˙ " [ ]r ˙ " sin! + ˆ " ˙ r ˙ " sin! + ˆ " r ˙ ˙ " sin! + ˆ " r ˙ " ˙ ! cos ! ! a = ˆ r ˙ ˙ r ! r ˙ " 2 ! r ˙ # 2 sin"( ) + ˆ " r ˙ ˙ " + 2 ˙ r ˙ " ! r ˙ # 2 sin" cos"( ) + ˆ # r ˙ ˙ # sin" + 2r ˙ " ˙ # cos" + 2˙ r ˙ # sin"( ) The del operator from the definition of the gradient Any (static) scalar field u may be considered to be a function of the spherical coordinates r, θ, and φ. The value of u changes by an infinitesimal amount du when the point of observation is changed by d ! r . That change may be determined from the partial derivatives as du = !u !r dr + !u !" d" + !u !# d# . But we also define the gradient in such a way as to obtain the result du = ! ! u " d ! r Therefore, !u !r dr + !u !" d" + !u !# d# = ! $ u %d ! r or, in spherical coordinates, !u !r dr + !u !" d" + !u !# d# = ! $ u( ) r dr + ! $ u( ) " rd" + ! $ u( ) # r sin"d# and we demand that this hold for any choice of dr, dθ, and dφ. Thus, ! !u( ) r = "u "r , ! !u( ) # = 1 r "u "# , ! !u( ) $ = 1 r sin# "u "$ , from which we find ! ! = ˆ r " "r + ˆ # r " "# + ˆ $ rsin# " "$ Divergence The divergence ! ! " ! A is carried out taking into account, once again, that the unit vectors themselves are functions of the coordinates. Thus, we have ! ! " ! A = ˆ r # #r + ˆ $ r # #$ + ˆ % rsin$ # #% & ' ( ) * + " Ar ˆ r + A$ ˆ $ + A% ˆ % ( ) where the derivatives must be taken before the dot product so that ! ! " ! A = ˆ r # #r + ˆ $ r # #$ + ˆ % rsin$ # #% & ' ( ) * + " ! A = ˆ r " # ! A #r + ˆ $ r " # ! A #$ + ˆ % rsin$ " # ! A #% = ˆ r " #A r #r ˆ r + #A$ #r ˆ $ + #A% #r ˆ % + Ar # ˆ r #r + A$ # ˆ $ #r + A% # ˆ % #r & ' ( ) * + + ˆ $ r " #Ar #$ ˆ r + #A$ #$ ˆ $ + #A% #$ ˆ % + A r # ˆ r #$ + A$ # ˆ $ #$ + A% # ˆ % #$ & ' ( ) * + + ˆ % r sin$ " #A r #% ˆ r + #A$ #% ˆ $ + #A% #% ˆ % + Ar #ˆ r #% + A$ # ˆ $ #% + A% # ˆ % #% & ' ( ) * + With the help of the partial derivatives previously obtained, we find ! ! " ! A = ˆ r " #Ar #r ˆ r + #A$ #r ˆ $ + #A% #r ˆ % + 0 + 0 + 0 & ' ( ) * + + ˆ $ r " #Ar #$ ˆ r + #A$ #$ ˆ $ + #A% #$ ˆ % + Ar ˆ $ + A$ , ˆ r ( ) + 0 & ' ( ) * + + ˆ % r sin$ " #A r #% ˆ r + #A$ #% ˆ $ + #A% #% ˆ % + Ar sin$ ˆ % + A$ cos$ ˆ % + A% , ˆ r sin$ + ˆ $ cos$( )[ ] & ' ( ) * + = #Ar #r & ' ( ) * + + 1 r #A$ #$ + Ar r & ' ( ) * + + 1 r sin$ #A% #% + Ar r + A$ cos$ rsin$ & ' ( ) * + = #A r #r + 2A r r & ' ( ) * + + 1 r #A$ #$ + A$ cos$ r sin$ & ' ( ) * + + 1 rsin$ #A% #% ! ! " ! A = 1 r 2 # #r r 2 Ar( ) + 1 rsin$ # #$ A$ sin$( ) + 1 r sin$ #A% #% Curl The curl ! ! " ! A is also carried out taking into account that the unit vectors themselves are functions of the coordinates. Thus, we have ! ! " ! A = ˆ r # #r + ˆ $ r # #$ + ˆ % rsin$ # #% & ' ( ) * + " Ar ˆ r + A$ ˆ $ + A% ˆ % ( ) where the derivatives must be taken before the cross product so that ! ! " ! A = ˆ r # #r + ˆ $ r # #$ + ˆ % rsin$ # #% & ' ( ) * + " ! A = ˆ r " # ! A #r + ˆ $ r " # ! A #$ + ˆ % rsin$ " # ! A #% = ˆ r " #A r #r ˆ r + #A$ #r ˆ $ + #A% #r ˆ % + Ar #ˆ r #r + A$ # ˆ $ #r + A% # ˆ % #r & ' ( ) * + + ˆ $ r " #Ar #$ ˆ r + #A$ #$ ˆ $ + #A% #$ ˆ % + A r # ˆ r #$ + A$ # ˆ $ #$ + A% # ˆ % #$ & ' ( ) * + + ˆ % r sin$ " #A r #% ˆ r + #A$ #% ˆ $ + #A% #% ˆ % + Ar # ˆ r #% + A$ # ˆ $ #% + A% # ˆ % #% & ' ( ) * + With the help of the partial derivatives previously obtained, we find ! ! " ! A = ˆ r " #A r #r ˆ r + #A$ #r ˆ $ + #A% #r ˆ % + 0 + 0 + 0 & ' ( ) * + + ˆ $ r " #Ar #$ ˆ r + #A$ #$ ˆ $ + #A% #$ ˆ % + A r ˆ $ + A$ ,ˆ r ( ) + 0 & ' ( ) * + + ˆ % r sin$ " #Ar #% ˆ r + #A$ #% ˆ $ + #A% #% ˆ % + Ar sin$ ˆ % + A$ cos$ ˆ % + A% , ˆ r sin$ + ˆ $ cos$( )[ ] & ' ( ) * + = #A$ #r ˆ % , #A% #r ˆ $ & ' ( ) * + + , 1 r #A r #$ ˆ % + 1 r #A% #$ ˆ r + A$ r ˆ % & ' ( ) * + + 1 r sin$ #A r #% ˆ $ , 1 r sin$ #A$ #% ˆ r , A% r ˆ $ + A% cos$ r sin$ ˆ r & ' ( ) * + = ˆ r 1 r #A% #$ , 1 r sin$ #A$ #% + A% cos$ rsin$ & ' ( ) * + + ˆ $ , #A% #r + 1 rsin$ #A r #% , A% r & ' ( ) * + + ˆ % #A$ #r , 1 r #A r #$ + A$ r & ' ( ) * + ! ! " ! A = ˆ r r sin# $ $# A% sin#( ) & $A# $% ' ( ) * + , + ˆ # rsin# $A r $% & sin# $ $r rA%( ) ' ( ) * + , + ˆ % r $ $r rA#( ) & $A r $# ' ( ) * + , Laplacian The Laplacian is a scalar operator that can be determined from its definition as !2u = ! ! " ! ! u( ) = ˆ r ##r + ˆ $ r # #$ + ˆ % rsin$ # #% & ' ( ) * + " ˆ r #u #r + ˆ $ r #u #$ + ˆ % r sin$ #u #% & ' ( ) * + = ˆ r " # #r ˆ r #u #r + ˆ $ r #u #$ + ˆ % rsin$ #u #% & ' ( ) * + + ˆ $ r " # #$ ˆ r #u #r + ˆ $ r #u #$ + ˆ % rsin$ #u #% & ' ( ) * + + ˆ % rsin$ " # #% ˆ r #u #r + ˆ $ r #u #$ + ˆ % r sin$ #u #% & ' ( ) * + With the help of the partial derivatives previously obtained, we find !2u = ˆ r " ˆ r # 2 u #r 2 $ ˆ % r 2 #u #% + ˆ % r # 2u #%#r $ ˆ & r 2 sin% #u #& + ˆ & r sin% # 2u #&#r ' ( ) * + , + ˆ % r " ˆ % #u #r + ˆ r # 2u #r#% $ ˆ r r #u #% + ˆ % r # 2u #% 2 $ ˆ & cos% r sin 2% #u #& + ˆ & rsin% # 2u #&#% ' ( ) * + , + ˆ & rsin% " ˆ & sin% #u #r + ˆ r # 2u #r#& + ˆ & cos% r #u #% + ˆ % r # 2u #%#& $ ˆ r sin% + ˆ % cos% rsin% #u #& + ˆ & rsin% # 2u #&2 ' ( ) * + , = # 2u #r 2 ' ( ) * + , + 1 r #u #r + 1 r 2 # 2u #% 2 ' ( ) * + , + 1 r #u #r + cos% r 2 sin% #u #% + 1 r 2 sin 2 % # 2u #&2 ' ( ) * + , = # 2u #r 2 + 2 r #u #r ' ( ) * + , + 1 r 2 # 2u #%2 + cos% r 2 sin% #u #% ' ( ) * + , + 1 r 2 sin 2% # 2u #&2 ' ( ) * + , = 1 r 2 # #r r 2 #u #r ' ( ) * + , + 1 r 2 sin% # #% sin% #u #% ' ( ) * + , + 1 r 2 sin 2% # 2u #&2 Thus, the Laplacian operator can be written as !2 = 1 r 2 " "r r 2 " "r # $ % & ' ( + 1 r 2 sin) " ") sin) " ") # $ % & ' ( + 1 r 2 sin 2 ) " 2 "*2
本文档为【球坐标系下的向量运算(英文)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_791113
暂无简介~
格式:pdf
大小:383KB
软件:PDF阅读器
页数:5
分类:理学
上传时间:2013-10-30
浏览量:79