首页 05 第五章 导数及其运用

05 第五章 导数及其运用

举报
开通vip

05 第五章 导数及其运用 第五章 导数及其运用 知识网络 第1讲 导数的概念及运算 ★ 知 识 梳理 ★ 1.用定义求函数的导数的步骤. (1)求函数的改变量Δy;(2)求平均变化率 .(3)取极限,得导数 (x0)= EMBED Equation.3 . 2.导数的几何意义和物理意义 几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的 物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处 的 ...

05 第五章 导数及其运用
第五章 导数及其运用 知识网络 第1讲 导数的概念及运算 ★ 知 识 梳理 ★ 1.用定义求函数的导数的步骤. (1)求函数的改变量Δy;(2)求平均变化率 .(3)取极限,得导数 (x0)= EMBED Equation.3 . 2.导数的几何意义和物理意义 几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的 物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处 的 解析:斜率.;瞬时速度. 3. 几种常见函数的导数 ( 为常数); ( ); ; ; ; ; ; . 解析: 4.运算法则 ①求导数的四则运算法则: ; ; . 解析: ; ②复合函数的求导法则: 或 ★ 重 难 点 突 破 ★ 1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法 2.难点:切线方程的求法及复合函数求导 3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 . (1)平均变化率的实际含义是改变量与自变量的改变量的比。 问题1.比较函数 与 ,当 时,平均增长率的大小. 点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是 (1)计算自变量的改变量 (2)计算对应函数值的改变量 (3)计算平均增长率: 对于 , 又对于 , 故当 时, 的平均增长率大于 的平均增长率. (2)求复合函数的导数要坚持“将求导进行到底”的原则, 问题2. 已知 ,则 . 点拨:复合函数求导数计算不熟练,其 与 系数不一样也是一个复合的过程,有的同学忽视了,导致错解为: . 设 , ,则 EMBED Equation.3 EMBED Equation.3 . (3)求切线方程时已知点是否切点至关重要。 问题3. 求 在点 和 处的切线方程。 点拨:点 在函数的曲线上,因此过点 的切线的斜率就是 在 处的函数值; 点 不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线.切忌直接将 , 看作曲线上的点用导数求解。 即过点 的切线的斜率为4,故切线为: . 设过点 的切线的切点为 ,则切线的斜率为 ,又 , 故 , 。 即切线 的斜率为4或12,从而过点 的切线为: ★ 热 点 考 点 题 型 探 析★ 考点1: 导数概念 题型1.求函数在某一点的导函数值 [例1] 设函数 在 处可导,则 等于   A. B. C. D. 【解题思路】由定义直接计算 [解析] .故选 【名师指引】求解本题的关键是变换出定义式 考点2.求曲线的切线方程 [例2](高明一中2009届高三上学期第四次月考)如图,函数 的图象在点P处的切线方程是 ,则 = . 【解题思路】区分过曲线 处的切线与过 点的切线的不同,后者的 点不一定在曲线上. 解析:观察图形,设 ,过P点的切线方程为 即 它与 重合,比较系数知: 故 =2 【名师指引】求切线方程时要注意所给的点是否是切点.若是,可以直接采用求导数的方法求;不是则需设出切点坐标. 题型3.求计算连续函数 在点 处的瞬时变化率 [例3]一球沿一斜面从停止开始自由滚下,10 s内其运动方程是s=s(t)=t2(位移单位:m,时间单位:s),求小球在t=5时的加速度. 【解题思路】计算连续函数 在点 处的瞬时变化率实际上就是 在点 处的导数. 解析:加速度v= (10+Δt)=10 m/s. ∴加速度v=2t=2×5=10 m/s. 【名师指引】计算连续函数 在点 处的瞬时变化率的基本步骤是 1. 计算 2. 计算 【新题导练】. 1. 曲线 和 在它们交点处的两条切线与 轴所围成的三角形面积是 . 解析:曲线 和 在它们的交点坐标是(1,1),两条切线方程分别是y=-x+2和y=2x-1,它们与 轴所围成的三角形的面积是 . 点拨::与切线有关的问题,应有运用导数的意识,求两曲线的交点坐标只要联立解方程组即可. 2. 某质点的运动方程是 ,则在t=1s时的瞬时速度为 ( ) A.-1 B.-3 C.7 D.13 解:B 点拨:计算 即可 3. 已知曲线C1:y=x2与C2:y=-(x-2)2,直线l与C1、C2都相切,求直线l的方程. 解:设l与C1相切于点P(x1,x12),与C2相切于Q(x2,-(x2-2)2) 对于C1:y′=2x,则与C1相切于点P的切线方程为 y-x12=2x1(x-x1),即y=2x1x-x12 ① 对于C2:y′=-2(x-2),与C2相切于点Q的切线方程为y+(x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4 ② ∵两切线重合,∴2x1=-2(x2-2)且-x12=x22-4,解得x1=0,x2=2或x1=2,x2=0 ∴直线l方程为y=0或y=4x-4 点拨:利用解方程组求交点,利用直线间的位置和待定系数法求斜率. 考点2 导数的运算 题型1:求导运算 [例1] 求下列函数的导数: (1)   (2)    (3) 【解题思路】按运算法则进行 [解析] (1) (2) (3) 【名师指引】 注意复合函数的求导方法(分解 求导 回代);注意问题的变通:如 的导数容易求错,但 的导数不易求错. 题型2:求导运算后求切线方程 例2. (广州市2008届二月月考)已知函数 (1)若 ,点P为曲线 上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数 上为单调增函数,试求满足条件的最大整数a. 【解题思路】先按运算法则求导,再按几何意义求切线方程. 解析:(1)设切线的斜率为k,则 又 ,所以所求切线的方程为: 即 【名师指引】求三次函数图象的切线在高考中经常出现. 与曲线 相切于P 处的切线方程是( D ) A. B. C. D. 题型3:求导运算后的小应用题 例3. 某市在一次降雨过程中,降雨量 与时间 的函数关系可近似地表示为 ,则在时刻 的降雨强度为( ) A. B. C. D. 【解题思路】先对 的求导,再代 的数值. 解析: 选D 【名师指引】求某一时刻的降雨量相当于求瞬时变化率,即那一时刻的导数值. 【新题导练】. 4. 设函数 ,且 ,则 A.0 B.-1 C.3 D.-6 思路分析: 按导数乘积运算法则先求导,然后由已知条件构造关于 的方程求解. 解 : + + + 故 又 ,故 5. 设函数 ,( 、 、 是两两不等的常数), 则 . 解析: 代入即得0.. 6. 质量为 的物体按 的规律作直线运动,动能 ,则物体在运动 后的动能是 解析:先求瞬时速度后,再代入公式求解提3125J ★ 抢 分 频 道 ★ 基础巩固训练 1. (广东省六校2009届高三第二次联考试卷) 是 的导函数,则 的值是 . 解析: 故 =3 2. (广东省2008届六校第二次联考) 在 处的导数值是___________. 解析: 故填 3. 已知直线x+2y-4=0与抛物线y2=4x相交于A、B两点,O是坐标原点,P是抛物线的弧 上求一点P,当△PAB面积最大时,P点坐标为 . 解析:|AB|为定值,△PAB面积最大,只要P到AB的距离最大,只要点P是抛物线的平行于AB的切线的切点,设P(x,y).由图可知,点P在x轴下方的图象上 ∴y=-2 ,∴y′=- ,∵kAB=- ,∴- ∴x=4,代入y2=4x(y<0)得y=-4. ∴P(4,-4) 4.(广东省深圳市2008年高三年级第一次调研考试)已知 , ( ),直线 与函数 、 的图像都相切,且与函数 的图像的切点的横坐标为1.求直线 的方程及 的值; 解:依题意知:直线 是函数 在点 处的切线,故其斜率 , 所以直线 的方程为 . 又因为直线 与 的图像相切,所以由 , 得 ( 不合题意,舍去); 5.(湛江市实验中学2009届高三第四次月考) 已知函数 的图象都相切,且l与函数 图象的切点的横坐标为1,求直线l的方程及a的值; 解由 ,故直线l的斜率为1,切点为 即(1,0) ∴ ① 又∵ ∴ 即 ② 比较①和②的系数得 综合拔高训练 6. 对于三次函数 ,定义:设 是函数 的导函数 的导数,若 有实数解 ,则称点 为函数 的“拐点”。现已知 ,请解答下列问题: (1)求函数 的“拐点”A的坐标; (2)求证 的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明). [解析](1) , .令 得 , . 拐点 (2)设 是 图象上任意一点,则 ,因为 关于 的对称点为 ,把 代入 得 左边 EMBED Equation.DSMT4 , 右边 EMBED Equation.DSMT4 右边=右边 在 图象上 EMBED Equation.DSMT4 关于A对称 7.已知定义在正实数集上的函数 ,其中 。设两曲线 有公共点,且在公共点处的切线相同。 (1)若 ,求 的值; (2)用 表示 ,并求 的最大值。 解:(1)设 与 在公共点 处的切线相同 由题意知 ,∴ 由 得, ,或 (舍去) 即有 (2)设 与 在公共点 处的切线相同 由题意知 ,∴ 由 得,,或 (舍去) 即有 令 ,则 ,于是 当 ,即 时, ; 当 ,即 时, 故 在的最大值为 ,故 的最大值为 8. 设三次函数 在 处取得极值,其图象在 处的切线的斜率为 。求证: ; 解:(Ⅰ)方法一、 .由题设,得 ① ② ∵ ,∴ ,∴ 。 由①代入②得 ,∴ , 得 ∴ 或 ③ 将 代入 中,得 ④ 由③、④得 ; 方法二、同上可得: 将(1)变为: 代入(2)可得: ,所以 ,则 方法三:同上可得: 将(1)变为: 代入(2)可得: ,显然 ,所以 因为 图象的开口向下,且有一根为x1=1 由韦达定理得 , ,所以 ,即 ,则 ,由 得: 所以: 第2讲 导数在研究函数中的应用 ★ 知 识 梳理 ★ 1. 函数的单调性与导数的关系 一般地,函数的单调性与其导函数的正负有如下关系: 在某个区间 内,如果 ,那么函数 在这个区间内 ;如果 ,那么函数 在这个区间内 . 解析:单调递增;单调递减 2. 判别f(x0)是极大、极小值的方法 若 满足 ,且在 的两侧 的导数异号,则 是 的极值点, 是极值,并且如果 在 两侧满足“左正右负”,则 是 的 , 是极大值;如果 在 两侧满足“左负右正”,则 是 的极小值点, 是 解析:极大值点;极小值. 3.解题规律技巧妙法总结: 求函数的极值的步骤: (1)确定函数的定义区间,求导数f′(x) . (2)求方程f′(x)=0的根. (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查 f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值. 4.求函数最值的步骤:(1)求出 在 上的极值.(2)求出端点函数值 . (3)比较极值和端点值,确定最大值或最小值. ★ 重 难 点 突 破 ★ 1.重点:熟悉利用导数处理单调性、极值与最值的一般思路,熟练掌握求常见函数的单调区间和极值与最值的方法 2.难点:与参数相关单调性和极值最值问题 3.重难点:借助导数研究函数与不等式的综合问题 (1)在求可导函数的极值时,应注意可导函数的驻点可能是它的极值点,也可能不是极值点。 问题1. 设 , .令 ,讨论 在 内的单调性并求极值; 点拨:根据求导法则有 , 故 ,于是 , 2 减 极小值 增 列表如下: 故知 在 内是减函数,在 内是增函数,所以,在 处取得极小值 . (2)借助导数处理函数的单调性,进而研究不等关系关键在于构造函数. 问题2.已知函数 是 上的可导函数,若 在 时恒成立. (1)求证:函数 在 上是增函数; (2)求证:当 时,有 . 点拨:由 转化为 为增函数是解答本题关键.类似由 转化为 为增函数等思考问题的方法是我们必须学会的. (1)由 得 因为 , 所以 在 时恒成立,所以函数 在 上是增函数. (2)由(1)知函数 在 上是增函数,所以当 时, 有 成立, 从而 两式相加得 ★ 热 点 考 点 题 型 探 析★ 考点1: 导数与函数的单调性 题型1.讨论函数的单调性 例1(08广东高考)设 ,函数 , , ,试讨论函数 的单调性. 【解题思路】先求导再解 和 【解析】 对于 , 当 时,函数 在 上是增函数; 当 时,函数 在 上是减函数,在 上是增函数; 对于 , 当 时,函数 在 上是减函数; 当 时,函数 在 上是减函数,在 上是增函数。 【名师指引】解题规律技巧妙法总结: 求函数单调区间的一般步骤. (1) 求函数 的导数 (2)令 解不等式,得 的范围就是单调增区间;令 解不等式,得 的范围就是单调减区间(3)对照定义域得出结论. [误区警示]求函数单调区间时,容易忽视定义域,如求函数 的单调增区间,错误率高,请你一试,该题正确 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 为 . 题型2.由单调性求参数的值或取值范围 例2: 若 在区间[-1,1]上单调递增,求 的取值范围. 【解题思路】解这类题时,通常令 (函数 在区间 上递增)或 (函数 在区间 上递减),得出恒成立的条件,再利用处理不等式恒成立的方法获解. 解析: 又 在区间[-1,1]上单调递增 在[-1,1]上恒成立 即 在 [-1,1]的最大值为 故 的取值范围为 【名师指引】:本题主要考查函数的单调性与导数正负值的关系,要特别注意导数值等于零的用法. 题型3.借助单调性处理不等关系 例3. 当 ,求证 【解题思路】先移项,再证左边恒大于0 解析:设函数 EMBED Equation.DSMT4 当 时, , 故 在 递增, 当 时, ,又 , ,即 ,故 【名师指引】若要证的不等式两边是两类不同的基本函数,往往构造函数,借助于函数的单调性来证明 【新题导练】. 1. 若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a的取值范围是 A.a≥3 B.a=2 C.a≤3 D.00恒成立,∴y=x3+x在(-∞,+∞)上为增函数,没有减区间. 答案:A 3. 已知函数 , ,设 . (Ⅰ)求函数 的单调区间; (Ⅱ)若以函数 图像上任意一点 为切点的切线的斜率 恒成立,求实数 的最小值; 解析:(I) , ∵ ,由 ,∴ 在 上单调递增。 由 ,∴ 在 上单调递减。 ∴ 的单调递减区间为 ,单调递增区间为 。 (II) , 恒成立 EMBED Equation.DSMT4 当 时, 取得最大值 。 ∴ ,∴ 考点2: 导数与函数的极值和最大(小)值. 题型1.利用导数求函数的极值和最大(小)值 例1. 若函数 在 处取得极值,则 . 【解题思路】若在 附近的左侧 ,右侧 ,且 ,那么 是 的极大值;若在 附近的左侧 ,右侧 ,且 ,那么 是 的极小值. [解析]因为 可导,且 ,所以 ,解得 .经验证当 时, 函数 在 处取得极大值. 【名师指引】 若 是可导函数,注意 是 为函数 极值点的必要条件.要确定极值点还需在 左右判断单调性. 例2.(2008·深圳南中)设函数 ( ),其中 ,求函数 的极大值和极小值. 【解题思路】先求驻点,再列表判断极值求出极值。 解析:. , . 令 ,解得 或 . 由于 ,当 变化时, 的正负如下表: 因此,函数 在 处取得极小值 ,且 ; 函数 在 处取得极大值 ,且 . 【名师指引】求极值问题严格按解题步骤进行。 例3. (广东省深圳外国语学校2009届高三上学期第二次统测)已知函数 . (Ⅰ)求 的最小值; (Ⅱ)若对所有 都有 ,求实数 的取值范围. 【解题思路】先求极值再求端点值,比较求出最大(小)值.当区间只有一个极大(小)值时,该值就是最大(小)值 解析: 的定义域为 , …………1分 的导数 . ………………3分 令 ,解得 ;令 ,解得 . 从而 在 单调递减,在 单调递增. ………………5分 所以,当 时, 取得最小值 . ………………………… 6分 (Ⅱ)解法一:令 ,则 , ……………………8分 ① 若 ,当 时, , 故 在 上为增函数, 所以, 时, ,即 .…………………… 10分 ② 若 ,方程 的根为 , 此时,若 ,则 ,故 在该区间为减函数. 所以 时, , 即 ,与题设 相矛盾. ……………………13分 综上,满足条件的 的取值范围是 . ……………………………………14分 解法二:依题意,得 在 上恒成立, 即不等式 对于 恒成立 . ……………………8分 令 , 则 . ……………………10分 当 时,因为 , 故 是 上的增函数, 所以 的最小值是 , ……………… 13分 所以 的取值范围是 . …………………………………………14分 【名师指引】求函数 在闭区间 上的最大值(或最小值)的步骤:①求 在 内的极大(小)值,②将极大(小)值与端点处的函数值进行比较,其中较大者的一个是最大者,较小的一个是最小者. 题型2.已知函数的极值和最大(小)值,求参数的值或取值范围。 例3.(广东省六校2009届高三第二次联考) 已知函数 图像上的点 处的切线方程为 . (1)若函数 在 时有极值,求 的表达式 (2)函数 在区间 上单调递增,求实数 的取值范围 【解题思路】求函数的解析式一般用待定系法法,求参数的取值范围一般需建立关于参数的不等式(组) 解析: , -----------------2分 因为函数 在 处的切线斜率为-3, 所以 ,即 ,------------------------3分 又 得 。------------------------4分 (1)函数 在 时有极值,所以 ,-------5分 解得 ,------------------------------------------7分 所以 .------------------------------------8分 (2)因为函数 在区间 上单调递增,所以导函数 在区间 上的值恒大于或等于零,--------------------------------10分 则 得 ,所以实数 的取值范围为 ----14分 【名师指引】已知 在 处有极值,等价于 。 【新题导练】 4. 在区间 上的最大值为 ,则 =( ) A. B. C. D. 或 解析:选B 在 上的最大值为 , 且在 时, ,解之 或 (舍去), EMBED Equation.DSMT4 选B. 5. 在区间 上的最大值是 A. B.0 C.2 D.4 [解析] ,令 可得 或 (2舍去),当 时, (0,当 时, (0,所以当 时,f(x)取得最大值为2.选C 6.已知函数 是 上的奇函数,当 时 取得极值 . (1)求 的单调区间和极大值; (2)证明对任意 EMBED Equation.DSMT4 不等式 恒成立. [解析](1)由奇函数定义,有 . 即 因此, 由条件 为 的极值,必有 故 ,解得 因此 EMBED Equation.DSMT4 当 时, ,故 在单调区间 上是增函数. 当 时, ,故 在单调区间 上是减函数. 当 时, ,故 在单调区间 上是增函数. 所以, 在 处取得极大值,极大值为 (2)由(1)知, 是减函数,且 在 上的最大值为 最小值为 所以,对任意 恒有 [方法技巧]善于用函数思想不等式问题,如本题 . ★ 抢 分 频 道 ★ 基础巩固训练 1.(广东省六校2009届高三第二次联考试卷) 函数 的定义域为开区间 ,导函数 在 内的图象如图所示,则函数 在 内有极小值 点共有( ) A.1个 B.2个 C.3个 D. 4个 解析:观察图象可知,只有一处是先减后增的,选A 2.、函数 有( ) A. 极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-2,极大值2 D. 极小值-1,极大值3 解析: ,令 得 当 时, ;当 时, ;当 , 时, ,当 EMBED Equation.DSMT4 ,故选D. 3.函数y=f(x)=lnx-x,在区间(0,e]上的最大值为 A.1-e B.-1 C.-e D.0 解析:y′= -1,令y′=0,即x=1,在(0,e]上列表如下: x (0,1) 1 (1,e) e y′ + 0 - y 增函数 极大值-1 减函数 1-e 由于f(e)=1-e,而-1>1-e,从而y最大=f(1)=-1. 答案:B 4.(广东深圳外国语学校2008—2009学年高三第二次月考)若 ,求函数 的单调区间. [解析] (当a.>1时,对x∈(0,+∞)恒有 >0, ∴当a.>1时,f(x)在(0,+∞)上为增函数; 5.(汕头市金山中学2009届高三上学期11月月考)已知函数f(x)=ax3+3x2-x+1,问是否存在实数a,使得f(x)在(0,4)上单调递减?若存在,求出a的范围;若不存在,说明理由。 解: (x)=3ax2+6x-1. 要使f(x)在[0,4]递减,则当x∈(0,4)时, (x)<0。 ∴ 或 ,解得a≤-3. 综合拔高训练 6.(东莞高级中学2009届高三上学期11月教学监控测试)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值. (Ⅰ)求函数f(x)的解析式;   (Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4; (Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围. 解:(I)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0, 即 …………………………………………2分 解得a=1,b=0. ∴f(x)=x3-3x.……………………………………………………4分 (II)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1), 当-10,f(x)在 上递增 ②当 时,令 得 解得: ,因 (舍去),故在 上 <0,f(x)递减;在 上, >0,f(x)递增. (2)由(1)知 在 内递减,在 内递增. 故 ,又因 故 ,得 第3讲 导数的实际应用 ★ 知 识 梳理 ★ 利用导数解决生活、生产优化问题,其解题思路是: ★ 重 难 点 突 破 ★ 1.重点:利用于数学知识建立函数模型,借助于导数解决最优化问题。 2.难点:建模的过程 3.重难点:认真审题,建立数学模型,解决与函数有关的最优化问题. (1)关注由导数的定义和物理意义处理实际应用问题 问题1:路灯距地平面为 ,一个身高为 的人以 的速率在地面上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率v. 点拨:利用导数的物理意义解决 设路灯距地平面的距离为 ,人的身高为 .设人从 点运动到 处路程为 米,时间为 (单位:秒),AB为人影长度,设为 ,则 ∵ , ∴ ∴ ,又 ,∴ ∵ ,∴人影长度的变化速率为 . (2)利用导数处理最大(小)值问题是高考常见题型. 问题2. (2006·江苏)请您 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心 的距离为多少时,帐篷的体积最大? [剖析]设 为 ,则由题设可得正六棱锥底面边长为 (单位: ) 于是底面正六边形的面积为(单位: ) 帐篷的体积为(单位: ) 求导数,得 令 解得 (不合题意,舍去), . 当 时, , 为增函数;当 时, , 为减函数。 所以当 时, 最大.答当 为 时,帐篷的体积最大. ★ 热 点 考 点 题 型 探 析★ 考点: 最优化问题 题型1.函数模型中的最优化问题 例1. 设工厂到铁路线的垂直距离为20km,垂足为B.铁路线上距离B为100km处有一原料供应站C,现要在铁路BC之间某处D修建一个原料中转车站,再由车站D向工厂修一条公路.如果已知每千米的铁路运费与公路运费之比为3:5,那么,D应选在何处,才能使原料供应站C运货到工厂A所需运费最省? 【解题思路】由勾股定理建模. 解析 : 设BD之间的距离为 km,则|AD|= ,|CD|= .如果公路运费为 元/km,那么铁路运费为 元/km.故从原料供应站C途经中转站D到工厂A所需总运费 为: EMBED Equation.3 + EMBED Equation.3 ,( ).对该式求导,得 = + = ,令 ,即得25 =9( EMBED Equation.3 ),解之得 =15, =-15(不符合实际意义,舍去).且 =15是函数 在定义域内的唯一驻点,所以 =15是函数 的极小值点,而且也是函数 的最小值点.由此可知,车站D建于B,C之间并且与B相距15km处时,运费最省. 【名师指引】 这是一道实际生活中的优化问题,建立的目标函数是一个复合函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧.而运用导数知识,求复合函数的最值就变得非常简单. 例2. 某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但在相同的时间内产量减少3件.在相同的时间内,最低档的产品可生产60件.问在相同的时间内,生产第几档次的产品的总利润最大?有多少元? 思路分析:在一定条件下,“利润最大”“用料最省”“面积最大”“效率最高”“强度最大”等问题,在生产、生活中经常用到,在数学上这类问题往往归结为求函数的最值问题.除了常见的求最值的方法外,还可用求导法求函数的最值.但无论采取何种方法都必须在函数的定义域内进行. 解法一:设相同的时间内,生产第x(x∈N*,1≤x≤10)档次的产品利润y最大. 2分 依题意,得y=[8+2(x-1)][60-3(x-1)] 4分 =-6x2+108x+378=-6(x-9)2+864(1≤x≤10), 8分 显然,当x=9时,ymax=864(元), 即在相同的时间内,生产第9档次的产品的总利润最大,最大利润为864元. 10分 解法二:由上面解法得到y=-6x2+108x+378. 求导数,得y′=-12x+108,令y′=-12x+108=0, 解得x=9.因x=9∈[1,10],y只有一个极值点,所以它是最值点,即在相同的时间内,生产第9档次的产品利润最大,最大利润为864元. 【名师指引】一般情况下,对于实际生活中的优化问题,如果其目标函数为高次多项式函数、简单的分式函数简单的无理函数、简单的指数、对数函数,或它们的复合函数,均可用导数法求其最值.由此也可见,导数的引入,大大拓宽了中学数学知识在实际优化问题中的应用空间. 题型2:几何模型的最优化问题 【名师指引】与最值有关的问题应合理解模,使问题获解. 例3. (07上海春季高考)某人定制了一批地砖. 每块地砖 (如图1所示)是边长为 米的正方形 ,点E、F分别在边BC和CD上, △ 、△ 和四边形 均由单一材料制成,制成△ 、△ 和四边形 的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形 . (1) 求证:四边形 是正方形; (2) 在什么位置时,定制这批地砖所需的材料费用最省? 【解题思路】图2是由四块图1所示地砖绕点 按顺时针旋转 后得到,△ 为等腰直角三角形, 四边形 是正方形. [解析] (2) 设 ,则 ,每块地砖的费用 为 ,制成△ 、△ 和四边形 三种材料的每平方米价格依次为3a、2a、a (元), . 由 ,当 时, 有最小值,即总费用为最省. 答:当 米时,总费用最省. 【名师指引】 处理较复杂的应用题审题时要逐字逐句地去啄磨. 题型3:三角模型的最优化问题 例4. 若电灯B可在桌面上一点O的垂线上移动,桌面上有与点O距离为 的另一点A,问电灯与点0的距离怎样,可使点A处有最大的照度?( 照度与 成正比,与 成反比) 【解题思路】如图,由光学知识,照度 与 成正比,与 成反比, 即 ( 是与灯光强度有关的常数)要想点 处有最 大的照度,只需求 的极值就可以了. 解析:设 到 的距离为 ,则 , 于是 , . 当 时,即方程 的根为 (舍)与 ,在我们讨论的半闭区间 内,所以函数 在点 取极大值,也是最大值。即当电灯与 点距离为 时,点 的照度 为最大. (0, ) + - ↗ ↘ 点评:在有关极值应用的问题中,绝大多数在所讨论的区间上函数只有一点使得 =0且在该点两侧, 的符号各异,一般称为单峰问题,此时,该点就是极值点,也是最大(小)值点. 【名师指引】多参数的数学应用题要注意分清哪些是主元,哪些是参数;函数最值有关的问题通常利用导数求解比较方便. 【新题导练】. 1.在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 解析:设箱底边长为 EMBED Equation.DSMT4 ,则无盖的方底箱子的高为 EMBED Equation.DSMT4 ,其体积为 , 则 EMBED Equation.DSMT4 ,令 ,得 , 解得 ( 已舍去)且仅当 时, ;当 时, .所以函 数 在 时取得极大值,结合实际情况,这个极大值就是函数 的最大值. ,故当箱底边长为 时,箱子容积最大,最大容积是 . 2. .一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小? 设船速度为 时,燃料费用为 元,则 ,由 可得 ,∴ ,∴总费用 , ,令 得 ,当 时, ,此时函数单调递减,当 时, ,此时函数单调递增,∴当 时, 取得最小值,∴此轮船以20公里/小时的速度使行驶每公里的费用总和最小. ★ 抢 分 频 道 ★ 基础巩固训练 1. 我国儿童4岁前身高增长的速度最快的是在哪一个年龄段?答: 据有关统计资料, 我国儿童4岁前身高情况有一组统计数据 年龄/岁 0.5 1 1.5 2 2.5 3 3.5 4 … 身高/米 0.52 0.63 0.73 0.85 0.93 1.01 1.06 1.12 … 思路分析:: 要判断这一个问题.必须要计算每半年这个群体长高的平均增长率,再加以比较即可,通过计算每半年长高的平均增长率分别是2.2, 2, 2.4, 1.6, 1.6, 1, 1.2可知我国儿童在1.5岁至2岁这一时段身高增长的速度最快 2.(2008·深圳6校)某日中午 时整,甲船自 处以 的速度向正东行驶,乙船自 的正北 处以 的速度向正南行驶,则当日 时 分时两船之间距离对时间的变化率是_____________. 解析:距离对时间的变化率即瞬时速度。即此时距离函数对时间变量的导数。将物理学概念与数学中的导数概念迁移到实际应用题中来。易求得从 点开始, 小时时甲乙两船的距离 , 当 时, 3.要建造一个长方体形状的仓库,其内部的高为3m,长和宽的和为20m,则仓库容积的最大值为 1800m3 . 解:设长为 ,则宽为 ,仓库的容积为V 则 ,令 得 当 时, ;当 时, EMBED Equation.DSMT4 时, 4. 要做一个圆锥形漏斗,其母线长为20cm,要使体积为最大,则其高应为____________. 解:设圆锥底面半径为r,高为 ,则 , , 圆锥体积一天 ,令 得 ,当 时, ; 时, EMBED Equation.DSMT4 时,V最大,当应填 5. 质量为5 kg的物体运动的速度为v=(18t-3t2) m/s,在时间t=2 s时所受外力为______N. 分析:本题主要考查导数的物理意义即速度v(t)对时间的导数是该时刻的加速度. 解:∵v′=18-6t,∴v′|t=2=18-6×2=6.∴t=2时物体所受外力F为6×5=30. 综合拔高训练 6.在长为100千米的铁路线AB旁的C处有一个工厂,工厂与铁路的距离CA为20千米.由铁路上的B处向工厂提供原料,公路与铁路每吨千米的货物运价比为5∶3,为节约运费,在铁路的D处修一货物转运站,设AD距离为x千米,沿CD直线修一条公路(如图). (1)将每吨货物运费y(元)表示成x的函数. (2)当x为何值时运费最省? 解:(1)设公路与铁路每吨千米的货物运价分别为5k、3k(元)(k为常数)AD=x,则DB=100-x. ∴每吨货物运费y=(100-x)·3k+ ·5k(元) (2)令y′=-3k+5k· ·k=0 ∴5x-3 =0 ∵x>0,∴解得x=15 当015时,y′>0 ∴当x=15时,y有最小值. 答:当x为15千米时运费最省 . 7. (广东省2008届六校第二次联考)设某物体一天中的温度T是时间t的函数,已知 ,其中温度的单位是℃,时间的单位是小时.中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(如早上8:00相应的t=-4,下午16:00相应的t=4).若测得该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃,且已知该物体的温度早上8:00与下午16:00有相同的变化率. (1)求该物体的温度T关于时间t的函数关系式; (2)该物体在上午10:00到下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少? 解:(1) 因为 , ………………………2分 而 , 故 , ………………………3分 . …………………6分 ∴ . …………………………………7分 (2) , 由 ……………………9分 当 在 上变化时, 的变化情况如下表: -2 (-2,-1) -1 (-1,1) 1 (1,2) 2 + 0 - 0 + 58 增函数 极大值62 减函数 极小值58 增函数 62 …………………………………12分 由上表知当 ,说明在上午11:00与下午14:00,该物体温度最高,最高温度是62℃. 8.今有一块边长 的正三角形的厚纸,从这块厚纸的三个角,按右图那样切下三个全等的四边形后,做成一个无盖的盒子,要使这个盒子容积最大, 值应为多少? 解:折成盒子后底面正三角形的边长为 ,高为 设:容积为V,则 令 得 (舍去) 当 时, ;当 时, 时, 答: 为 时,盒子的容积最大为 第4讲 定积分与微积分的基本定理 ★ 知 识 梳理 ★ 1、定积分概念 定积分定义:如果函数 在区间 上连续,用分点 ,将区间 等分成几个小区间,在每一个小区间 上任取一点 ,作和 ,当 时,上述和无限接近某个常数,这个常数叫做函数 在区间 上的定积分,记作 EMBED Equation.DSMT4 ,即 ,这里 、 分别叫做积分的下限与上限,区间 叫做积分区间,函数 叫做被积函数, 叫做积分变量, 叫做被积式. 2、定积分性质 (1) ; (2) (3) 3、微积分基本定理 一般地,如果 是在 上有定义的连续函数, 是在 上可微,并且 ,则 ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式,为了方便,常常把 ,记作 ,即 . 4.、常见求定积分的公式 (1) (2) (C为常数) (3) (4) (5) (6) (7) ★ 重 难 点 突 破 ★ 1.重点:定积分的计算和简单应用。 2.难点:利用定积分求平面区域围成的面积 3.重难点:掌握定积分的计算,了解定积分的物理意义,会利用定积分求平面区域围成的面积. (1)弄清定积分与导数之间的关系 问题1.一物体按规律 做直线运动,式中 为时间t内通过的距离,媒质的阻力与速度的平方成正比(比例常数为 ),试求物体由 运动到 时,阻力所做的功. 解析:要求变力所做的功,必须先求出变力对位称 的变化函数 ,这里的变力即媒质阻力 ,然后根据定积分可求阻力所做之功. 解因为物体的速度 所以媒质阻力 当 时, ,当 时, , 阻力 所做功                 (2)掌握定积分在求曲边梯形面积的方法. 问题2. 求由抛物线 与直线 及 所围成图形的面积. 解析:作出 及 的图形如右: 解方程组 得 解方程组 得 所求图形的面积 ★ 热 点 考 点 题 型 探 析★ 考点1: 定积分的计算 题型1.计算常见函数的定积分 例1. 求下列定积分 (1) (2) (3) 【解题思路】根据微积分基本定理,只须由求导公式找出导数为 , , 的函数就可,这就要求基本求导公式非常熟悉. 解:(1) (2) (3) 【名师指引】简单的定积分计算只需熟记公式即可. 题型2:换元法求定积分 例2.计算: 【解题思路】:我们要直接求 的原函数比较困难,但我们可以将 先变式化为 ,再求积分,利用上述公式就较容易求得结果,方法简便易行. 解析: 【名师指引】较复杂函数的积分,往往难以直接找到原函数,常常需先化简、变式、换元变成基本初等函数的四则运算后,再求定积分. 题型3:计算分段函数定积分 例3. 求 【解题思路】: 首先是通过绝对值表示的分段函数,同时又是函数复合函数 与 的运算式,所以我们在计算时必须先把积分区间 分段,再换元积分或奏变量完成. 解析: 【名师指引】若被积函数含绝对值,往往化成分段函数分段积分,注意本题中 ,这实际是一种奏变量的思想,复合函数的积分通常可以奏变量完成,也可以换元完成. 题型4:定积分的逆运算 例4. 已知 求函数 的最小值. 【解题思路】:这里函数 、 都是以积分形式给出的,我们可以先用牛顿莱布尼兹公式求出 与 ,再用导数求法求出 的最小值. 解析: 当 时, 最小=1 当 时, 最小=1 【名师指引】这是一道把积分上限函数、二次函数最值,参数 混合在一起综合题,重点是要分清各变量关系. 积分、导数、函数单调些,最值、解析式交汇出题是近几年高考命题热点,把它们之间的相互关系弄清是我们解此类问题的关键。 【新题导练】. 1.(广东省揭阳二中2009届高三上学期期中考试)计算: 解析:8 2. .设 则 =( ) A. B. C. D.不存在 解析 选C 考点2: 定积分的应用 题型1.求平面区域的面积 例1 求在 上,由 轴及正弦曲线 围成的图形的面积. 【解题思路】:因为在 上, ,其图象在 轴上方;在 上, 其图象在 轴下方,此时定积分为图形面积的相反数,应加绝对值才表示面积. 解析:作出 在 上的图象如右 与 轴交于0、 、 ,所 求积 【名师指引】利用定积分求平面图形的面积的步骤如下: 第一步:画出图形,确定图形范围 第二步:解方程组求出图形交点坐标,确定积分上、下限 第三步:确定被积函数,注意分清函数图形的上、下位置 第四步:计算定积分,求出平面图形面积 题型2.物理方面的应用 例2. 汽车每小时54公里的速度行驶,到某处需要减速停车,设汽车以等减速度3米/秒刹车,问从开始刹车到停车,汽车走了多少公里? 【解题思路】汽车刹车过程是一个减速运动过程,我们可以利用定积分算出汽车在这个过程中所走过的路程,计算之前应先算出这一过程所耗费的时间和减速运动变化式. 解析:由题意, 千米/时米/秒 ,令 得15-3t=0,t=5,即5秒时,汽车停车. 所以汽车由刹车到停车所行驶的路程为 公里 答:汽车走了0.0373公里. 【名师指引】若作变速直线运动的物体的速度关于时间的函数为 ,由定积分的物理意义可知,作变速运动物体在 时间 内的路程s是曲边梯形(阴影部分)的面积, 即路程 ;如果 时,则路程 . ★ 抢 分 频 道 ★ 基础巩固训练 1. (2007年广东北江中学高三第二次月考) = 2. (2008学年广东北江中学高三高三年级第一次统测试题)
本文档为【05 第五章 导数及其运用】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_984453
暂无简介~
格式:doc
大小:4MB
软件:Word
页数:48
分类:
上传时间:2009-12-07
浏览量:28