关闭

关闭

封号提示

内容

首页 The.Way.of.Analysis.Revised.Edition_Robert.S.St…

The.Way.of.Analysis.Revised.Edition_Robert.S.Strichartz.pdf

The.Way.of.Analysis.Revised.Edi…

上传者: lp9052 2013-09-15 评分 4.5 0 57 8 258 暂无简介 简介 举报

简介:本文档为《The.Way.of.Analysis.Revised.Edition_Robert.S.Strichartzpdf》,可适用于高等教育领域,主题内容包含TheWayRobertSStrichartzOfAnalysisTheWayofAnalysisRevisedEditionRobertSStri符等。

TheWayRobertSStrichartzOfAnalysisTheWayofAnalysisRevisedEditionRobertSStrichartzCornellUniversitynJONESANDBARTLETTPUBLISHERSSudbury,MassachusettsBOSTONTORONTOLONDONSINGAPOREWorldHeadquartersJonesandBartlettPublishersTallPineDriveSudbury,MAinfojbpubcomwwwjbpubcomJonesandBartlettPublishersCANADAWESTBloorStSuiteToronto,ONMACANADAJonesandBartlettPublishersInternationalBarbHouse,BarbMewsLondonWPAUKCopyrightbyJonesandBartlettPublishers,IncAllrightsreservedNopartofthematerialprotectedbythiscopyrightnoticemaybereproducedorutilizedinanyform,electronicormechanical,includingphotocopying,recording,orbyanyinformationstorageandretrievalsystem,withoutwrittenpermissionfromthecopyrightownerISBN:Thequotationsinprobleminproblemset(page)areofproverbialorbiblicalorigin,exceptforafrom"HomeontheRange,"byBrewsterMHigley,andgfromMacbeth,byWilliamShakespearePrintedintheUnitedStatesofAmericaContentsPrefacePreliminariesTheLogicofQuantifiersRulesofQuantifiersExamplesExercisesInfiniteSetsCountableSetsUncountableSetsExercisesProofsHowtoDiscoverProofsHowtoUnderstandProofsTheRationalNumberSystemTheAxiomofChoice*ConstructionoftheRealNumberSystemCauchySequencesMotivationTheDefinitionExercisesTheRealsasanOrderedFieldDefiningArithmeticTheFieldAxiomsOrderExercisesvxiiiviLimitsandCompletenessProofofCompletenessSquareRootsExercisesOtherVersionsandVisionsInfiniteDecimalExpansionsDedekindCuts*NonStandardAnalysis*ConstructiveAnalysis*ExercisesSummaryContentsTopologyoftheRealLineTheTheoryofLimitsLimits,Sups,andInfsLimitPointsExercisesOpenSetsandClosedSetsOpenSetsClosedSetsExercisesCompactSetsExercisesSummaryContinuousFunctionsConceptsofContinuityDefinitionsLimitsofFunctionsandLimitsofSequencesInverseImagesofOpenSetsRelatedDefinitionsExercisesPropertiesofContinuousFunctionsBasicPropertiesContinuousFunctionsonCompactDomainsMonotoneFunctionsExercisesSummaryContentsDifferentialCalculusConceptsoftheDerivativeEquivalentDefinitionsContinuityandContinuousDifferentiabilityExercisesPropertiesoftheDerivativeLocalPropertiesIntermediateValueandMeanValueTheoremsGlobalPropertiesExercisesTheCalculusofDerivativesProductandQuotientRulesTheChainRuleInverseFunctionTheoremExercisesHigherDerivativesandTaylor'sTheoremInterpretationsoftheSecondDerivativeTaylor'sTheoremL'Hopital'sRule*LagrangeRemainderFormula*OrdersofZeros*ExercisesSummaryIntegralCalculusIntegralsofContinuousFunctionsExistenceoftheIntegralFundamentalTheoremsofCalculusviiUsefulIntegrationFormulasNumericalIntegrationExercisesTheRiemannIntegralDefinitionoftheIntegralElementaryPropertiesoftheIntegralFunctionswithaCountableNumberofDiscontinuities*ExercisesImproperIntegrals*viiiDefinitionsandExamplesExercisesSummaryContentsSequencesandSeriesofFunctionsComplexNumbersBasicPropertiesofCComplexValuedFunctionsExercisesNumericalSeriesandSequencesConvergenceandAbsoluteConvergenceRearrangementsSummationbyParts*ExercisesUniformConvergenceUniformLimitsandContinuityIntegrationandDifferentiationofLimitsUnrestrictedConvergence*ExercisesPowerSeriesTheRadiusofConvergenceAnalyticContinuationAnalyticFunctionsonComplexDomains*ClosurePropertiesofAnalyticFunctions*ExercisesApproximationbyPolynomialsLagrangeInterpolationConvolutionsandApproximateIdentitiesTheWeierstrassApproximationTheoremApproximatingDerivativesExercisesEquicontinuityTheDefinitionofEquicontinuityTheArzelaAscoliTheoremExercisesSummaryTranscendentalFunctionsTheExponentialandLogarithmFiveEquivalentDefinitionsExponentialGlueandBlipFunctionsFunctionswithPrescribedTaylorExpansions*ExercisesTrigonometricFunctionsDefinitionofSineandCosineRelationshipBetweenSines,Cosines,andComplexExponentialsExercisesSummaryEuclideanSpaceandMetricSpacesStructuresonEuclideanSpaceVectorSpaceandMetricSpaceNormandInnerProductTheComplexCaseExercisesTopologyofMetricSpacesOpenSetsLimitsandClosedSetsCompletenessCompactnessExercisesContinuousFunctionsonMetricSpacesThreeEquivalentDefinitionsContinuousFunctionsonCompactDomainsConnectednessTheContractiveMappingPrincipleTheStoneWeierstrassTheorem*NowhereDifferentiableFunctions,andWorse*ExercisesSummaryDifferentialCalculusinEuclideanSpaceTheDifferential:DefinitionofDifferentiabilityXPartialDerivativesTheChainRuleDifferentiationofIntegralsExercisesHigherDerivativesEqualityofMixedPartialsLocalExtremaTaylorExpansionsExercisesSummaryOrdinaryDifferentialEquationsExistenceandUniquenessMotivationPicardIterationLinearEquationsLocalExistenceandUniqueness*HigherOrderEquations*ExercisesOtherMethodsofSolution*DifferenceEquationApproximationPeanoExistenceTheoremPowerSeriesSolutionsExercisesVectorFieldsandFlows*IntegralCurvesHamiltonianMechanicsFirstOrderLinearPDE'sExercisesSummaryFourierSeriesOriginsofFourierSeriesFourierSeriesSolutionsofPDE'sSpectralTheoryHarmonicAnalysisExercisesConvergenceofFourierSeriesContentsIIIIIContentsUniformConvergenceforCFunctionsSummabilityofFourierSeriesConvergenceintheMeanDivergenceandGibb'sPhenomenon*SolutionoftheHeatEquation*ExercisesSummaryImplicitFunctions,Curves,andSurfacesTheImplicitFunctionTheoremStatementoftheTheoremTheProof*ExercisesCurvesandSurfacesMotivationandExamplesImmersionsandEmbeddingsParametricDescriptionofSurfacesImplicitDescriptionofSurfacesExercisesMaximaandMinimaonSurfacesLagrangeMultipliersASecondDerivativeTest*ExercisesArcLengthRectifiableCurvesTheIntegralFormulaforArcLengthArcLengthParameterization*ExercisesSummaryTheLebesgueIntegralTheConceptofMeasureMotivationPropertiesofLengthMeasurableSetsBasicPropertiesofMeasuresAFormulaforLebesgueMeasureOtherExamplesofMeasuresxixiiExercisesProofofExistenceofMeasures*OuterMeasuresMetricOuterMeasureHausdorffMeasures*ExercisesTheIntegralNonnegativeMeasurableFunctionsTheMonotoneConvergenceTheoremIntegrableFunctionsAlmostEverywhereExercisesTheLebesgueSpacesLandLLasaBanachSpaceLasaHilbertSpaceFourierSeriesforLFunctionsExercisesSummaryContentsMultipleIntegralsInterchangeofIntegralsIntegralsofContinuousFunctionsFubini'sTheoremTheMonotoneClassLemma*ExercisesoChangeofVariableinMultipleIntegralsDeterminantsandVolumeoTheJacobianFactor*ooPolarCoordinatesooooChangeofVariableforLebesgueIntegrals*ooExercisesoSummaryooooooooooooooooooIndexPrefaceDonotaskpermissiontounderstandDonotwaitforthewordofauthoritySeizereasoninyourownhandWithyourownteethsavorthefruitMathematicsismorethanacollectionoftheorems,definitions,problemsandtechniquesitisawayofthoughtThesamecanbesaidaboutanindividualbranchofmathematics,suchasanalysisAnalysishasitsrootsintheworkofArchimedesandotherancientGreekgeometers,whodevelopedtechniquestofindareas,volumes,centersofgravity,arclengths,andtangentstocurvesIntheseventeenthcenturythesetechniqueswerefurtherdeveloped,culminatingintheinventionofthecalculusofNewtonandLeibnizDuringtheeighteenthcenturythecalculuswasfashionedintoatoolofboldcomputationalpowerandappliedtodiverseproblemsofpracticalandtheoreticalinterestAtthesametimethefoundationofanalysisthelogicaljustificationforthesuccessofthemethodswasleftinlimboThishadpracticalconsequences:forexample,EulertheleadingmathematicianoftheeighteenthcenturydevelopedallthetechniquesneededforthestudyofFourierseries,buthenevercarriedouttheprojectOnthecontrary,hearguedinprintagainstthepossibilityofrepresentingfunctionsasFourierseries,whenthisproposalwasputforthbyDanielBernoulli,andhisargumentwasbasedonfundamentalmisconceptionsconcerningthenatureoffunctionsandinfiniteseriesInthenineteenthcentury,theproblemofthefoundationofanalysiswasfacedsquarelyandresolvedThetheorythatwasdevelopedformsmostofthecontentofthisbookWewilldescribeitinitslogicalxiiixivPrefaceorder,startingfromthemostbasicconceptssuchassetsandnumbersandbuildinguptothemoreinvolvedconceptsoflimits,continuity,derivative,andintegralTheactualhistoricalorderofdiscoverywasalmostthereversemuchlikepeelingacabbage,mathematiciansbeganwiththeoutermostlayersandworkedtheirwayinwardCauchyandBolzanobegantheprocessinthesbydevelopingthetheoryoffunctionswithoutdefiningtherealnumbersThefirstrigorousdefinitionoftherealnumbersystemcameintheworkofDedekind,Weierstrass,andHeineinthesSettheorycamelaterintheworkofCantor,Peano,andFregeTheconsequencesofthenineteenthcenturyfoundationalworkwereenormousandarestillbeingfelttodayPerhapstheleastimportantconsequencewastheestablishmentofalogicallyvalidexplanationofthecalculusNioreimportant,withtheclearingawayoftheconceptualmurk,newproblemsemergedwithclarityandweredevelopedintoimportanttheoriesWewillgivesomeillustrationsofthesenewnineteenthcenturydiscoveriesinourdiscussionsofdifferentialequations,Fourierseries,higherdimensionalcalculus,andmanifoldsMostimportantofall,however,thenineteenthcenturyfoundationalworkpavedthewayfortheworkofthetwentiethcenturyAnalysistodayisasubjectofvastscopeandbeauty,rangingfromtheabstracttotheconcrete,characterizedbothbytheboldcomputationalpoweroftheeighteenthcenturyandthelogicalsubtletyofthenineteenthcenturyMostofthesedevelopmentsarebeyondthescopeofthisbookoratbestmerelyhintedatStill,itismyhopethatthereader,afterhavingenteredsodeeplyalongthewayofanalysis,willbeencouragedtocontinuethestudyMygoalinwritingthisbookistocommunicatethemathematicalideasofthesubjecttothereaderIhavetriedtobegenerouswithexplanationsPerhapstherewillbeplaceswhereIbelabortheobvious,nevertheless,IthinkthereisenoughtrulychallengingmaterialheretoinspireeventhestrongeststudentsOntheotherhand,therewillinevitablybeplaceswhereeachreaderwillfinddifficultiesinfollowingtheargumentsWhenthishappens,IsuggestthatyouwriteyourquestionsinthemarginsLater,whenyougooverthematerial,youmayfindthatyoucananswerthequestionIfnot,besuretoaskyourinstructororanotherstudentoften,itisaminormisunderstandingthatcausesconfusionandcaneasilybeclearedupSometimes,theinPrefaceXVherentdifficultyofthematerialwilldemandconsiderableeffortonyourparttoattainunderstandingIhopeyouwillnotbecomefrustratedintheprocessitissomethingwhichallstudentsofmathematicsmustconfrontIbelievethatwhatyoulearnthroughaprocessofstruggleismorelikelytostickwithyouthanwhatyoulearnwithouteffortUnderstandingmathematicsisacomplexprocessItinvolvesnotonlyfollowingthedetailsofanargumentandverifyingitscorrectness,butseeingtheoverallstrategyoftheargument,theroleplayedbyeveryhypothesis,andunderstandinghowdifferenttheoremsanddefinitionsfittogethertocreatethewholeItisalongtermprocessinasense,youcannotappreciatethesignificanceofthefirsttheoremuntilyouhavelearnedthelasttheoremSopleasebesuretoreviewoldmaterialyoumayfindthechaptersummariesusefulforthispurposeThemathematicalideaspresentedinthisbookareoffundamentalimportance,andyouaresuretoencounterthemagaininfurtherstudiesinbothpureandappliedmathematicsLearnthemwellandtheywillserveyouwellinthefutureItmaynotbeaneasytask,butitisaworthyoneTotheInstructorThisbookisdesignedsothatitmaybeusedinseveralways,includingaonesemesterintroductoryrealanalysiscourse,atwosemesterrealanalysiscoursenotincludingLebesgueintegration,atwosemesterrealanalysiscourseincludinganintroductiontoLebesgueintegrationTherearemanyoptionalsections,markedwithanasterisk(*),thatcanbecoveredoromittedatyourdiscretionThereissomeflexibilityintheorderingofthelaterchaptersThusyoucandesignacourseinaccordancewithyourinterestsandrequirementsTherearethreechaptersonapplications(Chapter,OrdinaryDifferentialEquationsChapter,FourierSeriesandChapter,ImplicitFunctions,CurvesandSurfaces)Thesetopicsareoftenomitted,ortreatedverybriefly,inxviPrefacearealanalysiscoursebecausetheyarecoveredinothercoursesHowever,theyserveanimportantpurposeinillustratinghowtheabstracttheorymaybeappliedtomoreconcretesituationsIwouldurgeyoutotrytofitasmuchofthismaterialastimeallowsintoyourcourseThechaptersmaybedividedintofourgroupings:functionsofonevariable:,,,,,,,functionsofseveralvariables:,,applications:,,Lebesgueintegration:,NotethatChapter,MultipleIntegrals,maybeusedeitherwithorwithouttheLebesgueintegralThefirstchaptersaredesignedtobeusedinthegivenorder(sectionsmarkedwithanasteriskmaybeomittedorpostponed)IfyouarenotcoveringtheLebesgueintegral,thenselectionsfromChapter(,,and)canbecoveredanytimeafterChapter

类似资料

编辑推荐

大战平远街:共和国鸦片战争秘闻.pdf

血祭共和国:中国命运大搏杀内幕.pdf

全国山河一片“红”.pdf

共和国的“天师神人”.pdf

[父母要听懂孩子的话].梁常芳.扫描版.pdf

职业精品

精彩专题

上传我的资料

精选资料

热门资料排行换一换

  • 智慧用人.pdf

  • 企业财务学.pdf

  • 进出口业务与报关.pdf

  • 国际收支的理论与实践:中国国际收…

  • 大日经游意.尘隐.pdf

  • Mathematical Met…

  • Means of Hilbert…

  • [大手笔:美国历史上50起顶级并…

  • 阿嘉莎·克莉丝蒂小说选(1)东方…

  • 资料评价:

    / 759
    所需积分:1 立即下载

    意见
    反馈

    返回
    顶部