关闭

关闭

关闭

封号提示

内容

首页 Advanced_Calculus_An_Intro_to_Linear_Analysis.p…

Advanced_Calculus_An_Intro_to_Linear_Analysis.pdf

Advanced_Calculus_An_Intro_to_L…

上传者: lp9052 2013-09-15 评分 0 0 0 0 0 0 暂无简介 简介 举报

简介:本文档为《Advanced_Calculus_An_Intro_to_Linear_Analysispdf》,可适用于高等教育领域,主题内容包含•leonardFRichardsonADVANCEDCALCULUSAnIntroductiontoLinearAnalysisLeonardFR符等。

•leonardFRichardsonADVANCEDCALCULUSAnIntroductiontoLinearAnalysisLeonardFRichardsonWILEYINTERSCIENCEAJOHNWILEYSONS,INC,PUBLICATIONThispageintentionallyleftblankADVANCEDCALCULUSThispageintentionallyleftblankADVANCEDCALCULUSAnIntroductiontoLinearAnalysisLeonardFRichardsonWILEYINTERSCIENCEAJOHNWILEYSONS,INC,PUBLICATIONCopyrightbyJohnWileySons,IncAllrightsreservedPublishedbyJohnWileySons,Inc,Hoboken,NewJerseyPublishedsimultaneouslyinCanadaNopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSectionIorIoftheUnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriatepercopyfcctotheCopyrightClearanceCenter,Inc,RosewoodDrive,Danvers,MA,(),fax(),oronthewebatwwwcopyrightcomRequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWileySons,Inc,IllRiverStreet,Hoboken,NJ,(I),fax(I),oronlineathttp:wwwwilcycomgopcrmissionLimitofLiabilityDisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurposeNowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterialsTheadviceandstrategiescontainedhereinmaynotbesuitableforyoursituationYoushouldconsultwithaprofessionalwhereappropriateNeitherthepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamagesForgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCareDepartmentwithintheUnitedStatesat(),outsidetheUnitedStatesat()orfax()WileyalsopublishesitsbooksinavarietyofelectronicformatsSomecontentthatappearsinprintmaynotbeavailableinelectronicformatsFormoreinformationaboutWileyproducts,visitourwebsiteatwwwwilcycomLibraryofCongressCataloginginPublicationData:Richardson,LeonardFAdvancedcalculus:anintroductiontolinearanalysisILeonardFRichardsonpcmIncludesbibliographicalreferencesandindexISBN(cloth)ICalculusITitleQARdcPrintedinMexicoToJoan,Daniel,andJosephThispageintentionallyleftblankCONTENTSPrefaceAcknowledgmentsIntroductionPARTIADVANCEDCALCULUSINONEVARIABLERealNumbersandLimitsofSequencesTheRealNumberSystemExercisesLimitsofSequencesCauchySequencesExercisesTheCompletenessAxiomandSomeConsequencesExercisesAlgebraicCombinationsofSequencesExercisesTheBolzanoWeierstrassTheoremExercisesTheNestedIntervalsTheoremXlllXIXxxiviiviiiCONTENTSExercisesTheHeineBorelCoveringTheoremExercisesCountabilityoftheRationalNumbersExercisesTestYourselfExercisesContinuousFunctionsLimitsofFunctionsExercisesContinuousFunctionsExercisesSomePropertiesofContinuousFunctionsExercisesExtremeValueTheoremandItsConsequencesExercisesTheBanachSpaceCa,bExercisesTestYourselfExercisesRiemannIntegralDefinitionandBasicPropertiesExercisesTheDarbouxIntegrabilityCriterionExercisesIntegralsofUniformLimitsExercisesTheCauchySchwarzInequalityExercisesTestYourselfExercisesTheDerivativeDerivativesandDifferentialsExercisesTheMeanValueTheoremCONTENTSixExercisesTheFundamentalTheoremofCalculusExercisesUniformConvergenceandtheDerivativeExercisesCauchy'sGeneralizedMeanValueTheoremExercisesTaylor'sTheoremExercisesTestYourselfExercisesInfiniteSeriesSeriesofConstantsExercisesConvergenceTestsforPositiveTermSeriesExercisesAbsoluteConvergenceandProductsofSeriesExercisesTheBanachSpacelandItsDualSpaceExercisesSeriesofFunctions:TheWeierstrassMTestExercisesPowerSeriesExercisesRealAnalyticFunctionsandc=FunctionsExercisesWeierstrassApproximationTheoremExercisesTestYourselfExercisesPARTIIADVANCEDTOPICSINONEVARIABLEFourierSeriesTheVibratingStringandTrigonometricSeriesExercisesEuler'sFormulaandtheFourierTransformExercisesXCONTENTSBessel'sInequalityandlzExercisesUniformConvergenceRiemannLocalizationExercisesLConvergencetheDualoflExercisesTestYourselfExercisesTheRlemannStieltjesIntegralFunctionsofBoundedVariationExercisesRiemannStieltjesSumsandIntegralsExercisesRiemannStieltjesIntegrabilityTheoremsExercisesTheRieszRepresentationTheoremExercisesTestYourselfExercisesPARTIllADVANCEDCALCULUSINSEVERALVARIABLESEuclideanSpaceEuclideanSpaceasaCompleteNorrnedVectorSpaceExercisesOpenSetsandClosedSetsExercisesCompactSetsExercisesConnectedSetsExercisesTestYourselfExercisesContinuousFunctionsonEuclideanSpaceLimitsofFunctionsExercisesCONTENTSxiContinuousFunctionsExercisesContinuousImageofaCompactSetExercisesContinuousImageofaConnectedSetExercisesTestYourselfExercisesTheDerivativeinEuclideanSpaceLinearTransformationsandNormsExercisesDifferentiableFunctionsExercisesTheChainRuleinEuclideanSpaceTheMeanValueTheoremTaylor'sTheoremExercisesInverseFunctionsExercisesImplicitFunctionsExercisesTangentSpacesandLagrangeMultipliersExercisesTestYourselfExercisesRiemannIntegrationinEuclideanSpaceDefinitionoftheIntegralExercisesLebesgueSetsandJordanSetsExercisesLebesgue'sCriterionforRiemannIntegrabilityExercisesFubini'sTheoremExercisesJacobianTheoremforChangeofVariablesExercisesXiiCONTENTSTestYourselfExercisesAppendixA:SetTheoryAITerminologyandSymbolsExercisesAParadoxesProblemSolutionsReferencesIndexPREFACEWhythisBookwasWrittenThecourseknownasAdvancedCalculus(orIntroductoryAnalysis)standsatthesummitoftherequirementsforseniormathematicsmajorsAnimportantobjectiveofthiscourseistopreparethestudentforacriticalchallengethatheorshewillfaceinthefirstyearofgraduatestudy:thecoursecalledAnalysisI,LebesgueMeasureandIntegration,orIntroductoryFunctionalAnalysisWeliveinaneraofrapidchangeonaglobalscaleAndtheauthorandhisdepartmenthavebeentestingwaystoimprovethepreparationofmathematicsmajorsforthechallengestheywillfaceDuringthepastquartercenturytheUnitedStateshasemergedasthedestinationofchoiceforgraduatestudyinmathematicsTheinfluxofwellprepared,talentedstudentsfromaroundtheworldbringsconsiderablebenefittoAmericangraduateprogramsTheinternationalstudentsusuallyarrivebetterpreparedforgraduatestudyinmathematicsinparticularbetterpreparedinanalysisthantheirtypicalUScounterpartsTherearemanyreasonsforthis,including(a)schoolsystemsabroadthatareorientedtowardteachingonlythebrighteststudents,and(b)theselfselectionthatispartofastudenttakingthestepoftravelabroadtostudyinaforeigncultureThepresenceofstronglypreparedinternationalstudentsintheclassroomraisesthelevelatwhichcoursesaretaughtThusitisappropriateatthepresenttime,intheearlyyearsofthenewmillennium,forcollegeanduniversitymathematicsdepartmentstoxiiiXiVPREFACEreconsidertheiradvancedcalculuscourseswithaneyetowardpreparinggraduatesfortheinternationalenvironmentinAmericangraduateschoolsThisisachallenge,butitisalsoanopportunityforAmericanstudentsandinternationalstudentstolearnsidebysidewith,andalsoabout,oneanotherItismoreimportantthanevertoteachundergraduateadvancedcalculusoranalysisinsuchawayastoprepareandreorientthestudentforgraduatestudyasitistodayinmathematicsAnotherrecentchangeisthatappliedmathematicshasemergedonalargescaleasanimportantcomponentofmanymathematicsdepartmentsInappliedandnumericalmathematics,functionalanalysisatthegraduatelevelplaysaveryimportantroleYetanotherchangethatisemergingisthatundergraduatesplanningcareersinthesecondaryteachingofmathematicsarebeingrequiredtomajorinmathematicsinsteadofeducationThesestudentsmustbepreparedtoteachthenextgenerationofyoungpeoplefortheworldinwhichtheywillliveWhetherornotthemathematicsmajorisplanninganacademiccareer,heorshewillbenefitfrombetterpreparationinadvancedcalculusforcareersintheemergingworldTheauthorhastaughtmathematicsmajorsandgraduatestudentsforthirtysevenyearsHehasservedasdirectorofhisdepartment'sgraduateprogramfornearlytwodecadesAllthechangesdescribedabovearepresenttodayintheauthor'sdepartmentThisbookhasbeenwritteninthehopeofaddressingthefollowingneedsStudentsofmathematicsshouldacquireasenseoftheunityofmathematicsHenceacoursedesignedforseniormathematicsmajorsshouldhaveanintegrativeeffectSuchacourseshoulddrawuponatleasttwobranchesofmathematicstoshowhowtheymaybecombinedwithilluminatingeffectStudentsshouldlearntheimportanceofrigorousproofanddevelopskillincoherentwrittenexpositiontocountertheuniversaltemptationtoengageinwishfulthinkingStudentsneedpracticecomposingandwritingproofsoftheirown,andthesemustbecheckedandcorrectedThefundamentaltheoremsoftheintroductorycalculuscoursesneedtobeestablishedrigorously,alongwiththetraditionaltheoremsofadvancedcalculus,whicharerequiredforthispurposeThetaskofestablishingtherigorousfoundationsofcalculusshouldbeenlivenedbytakingthisopportunitytointroducethestudenttomodernmathematicalstructuresthatwerenotpresentedinintroductorycalculuscoursesStudentsshouldlearntherigorousfoundationsofcalculusinamannerthatreorient<thinkinginthedirectionstakenbymodernanalysisTheclassictheoremsshouldbecouchedinamannerthatreflectstheperspectivesofmodemanalysisFeaturesofthisTextPREFACEXVTheauthorhasattemptedtoaddresstheseneedspresentedaboveinthefollowingmannerThetwopartsofmathematicsthathavebeenstudiedbynearlyeverymathematicsmajorpriortothesenioryearareintroductorycalculus,includingcalculusofseveralvariables,andlinearalgebraThustheauthorhaschosentohighlighttheinterplaybetweenthecalculusandlinearalgebra,emphasizingtheroleoftheconceptsofavectorspace,alineartransformation(includingalinearfunctional),anorm,andascalarproductForexample,thecustomarytheoremconcerninguniformlimitsofcontinuousfunctionsisinterpretedasacompletenesstheoremforCa,basavectorspaceequippedwiththesupnormTheelementarypropertiesoftheRiemannintegralgaincoherenceexpressedasatheoremestablishingtheintegralasaboundedlinearfunctionalonaconvenientfunctionspaceSimilarly,thefamilyofabsolutelyconvergentseriesispresentedfromtheperspectivethatitisacompletenormedvectorspaceequippedwiththehnormManyexercisesareofferedforeachsectionofthetextTheseareessentialtothecourseAnexerciseprecededbyadaggersymboltiscitedatsomepointinthetextSuchcitationsrefertotheexercisebysectionandnumberAnexerciseprecededbyadiamondsymbolisahardproblemIfahardproblemwillbecitedlaterinthetext,thentherewillbeafootnotetosaypreciselywhereitwillbecitedThisisintendedtohelptheprofessordecidewhetherornotanexerciseshouldbeassignedtoaparticularclassbaseduponhisorherplannedcoverageforthecourseTopicsthatcanbeomittedattheprofessor'sdiscretionwithoutdisturbingcontinuityofthecoursearesoindicatedbymeansoffootnotesAttheendofeachchapterthereisabriefsectioncalledTestYourself,consistingofshortquestionstotestthestudent'scomprehensionofthebasicconceptsandtheoremsTheanswerstotheseshortquestions,andalsotootherselectedshortquestions,appearinanappendixTherearenoproofsprovidedamongthoseanswerstoselectedquestionsThereasonisthattherearemanypossiblecorrectproofsforeachexerciseOnlytheprofessorortheprofessor'sdesignatedassistantwillbeabletoproperlyevaluateandcorrectthestudent'swritinginexercisesrequiringproofsTheIntroductiontothisbookisintendedtointroducethestudenttoboththeimportanceandthechallengesofwritingproofsTheguidanceprovidedintheintroductionisfollowedbycorrespondingillustrativeremarksthatappearafterthefirstproofineachofthefivechaptersofPartIofthistextWhetheraprofessorchoosestocollectwrittenassignmentsortohavestudentspresentproofsattheboardinfrontoftheclass,eachstudentmustregularlyconstructandwriteproofsThecoherenceandthepresentationoftheargumentsmustbecriticizedXViPREFACEMostofthetraditionaltheoremsofelementarydifferentialandintegralcalculusaredevelopedrigorouslySincetheorientationofthecourseistowardtheroleofnormedvectorspaces,CauchycompletenessisthemostnaturalformofthecompletenessconcepttouseThuswepresentthesystemofrealnumbersasaCauchycompleteArchimedeanorderedfieldThetraditionaltheoremsofadvancedcalculusarepresentedTheseincludetheelementsofthestudyofintegrableanddifferentiablefunctions,extremevaluetheorems,MeanValueTheorems,andconvergencetheorems,thepolynomialapproximationtheoremofWeierstrass,theinverseandimplicitfunctiontheorems,Lebesgue'stheoremforRiemannintegrability,andtheJacobiantheoremforchangeofvariablesStudentslearninthiscoursesuchconceptsasthoseofacompletenormedvectorspace(realBanachspace)andaboundedlinearfunctionalThisisnotacourseinfunctionalanalysisRatherthecentraltheoremsandexamplesofadvancedcalculusaretreatedasinstancesandmotivationsfortheconceptsoffunctionalanalysisForexample,thespaceofboundedsequencesisshowntobethedualspaceofthespaceofabsolutelysummablesequencesTheconceptofthisbookisthatthestudentisguidedgraduallyfromthestudyofthetopologyofthereallinetothebeginningtheoremsandconceptsofgraduateanalysis,expressedfromamodernviewpointManytraditionaltheoremsofadvancedcalculuslistpropertiesthatamounttostatingthatacertainsetoffunctionsformsavectorspaceandthatthisspaceiscompletewithrespecttoanormByphrasingthetraditionaltheoremsinthislight,wehelpthestudenttomentallyorganizetheknowledgeofadvancedcalculusinacoherentandmeaningfulmannerwhileacquiringahelpfulreorientationtowardmoderngraduatelevelanalysisCoursePlansthatAreSupportedbythisBookPartIofthisbookconsistsoffivechapterscoveringmostofthestandardonevariabletopicsfoundintwosemesteradvancedcalculuscoursesThesechaptersarearrangedinorderofdependence,withthelaterchaptersdependingontheearlieronesThoughthetopicsaremainlytheonestypicallyfound,theyhavebeenreorientedherefromtheviewpointoflinearspaces,norms,completeness,andlinearfunctionalsPartIIoffersachoiceoftwomutuallyindependentadvancedonevariabletopics:eitherFourierseriesorStieltjesintegrationItisespeciallythecaseinPartIIthateachprofessor'sindividualjudgmentaboutthereadinessofhisorherclassshouldguidewhatistaughtSomeofthesetopicswillnotbefortheaveragestudent,butwillmakeexcellentreadingmaterialforthestudentseekinghonorscreditorwritingaseniorthesisIndividualreadingcoursescanbeemployedveryeffectivelytoprovideadvancedexperiencefortheprospectivegraduatestudentInChaptertheintroductionofFourierseriesisaidedbyinclusionofcomplexvaluedfunctionsofarealvariableThisistheonlychapterinwhichcomplexvaluedfunctionsappear,andwiththesetheHermitianinnerproductisintroducedThePREFACEXViichapterincludeslanditsselfduality,convergenceinthenorm,theuniformconvergenceofFourierseriesofsmoothfunctions,andtheRiemannlocalizationtheoremThestudyofavibratingstringispresentedtomotivatethechapterChapter,whichisaboutStieltjesintegration,includesfunctionsofboundedvariationandtheRieszRepresentationTheorem,presentingthedualspaceofCa,bintermsofStieltjesintegrationThelattertheoremofFRieszisthehardestonepresentedinthisbookItisnotrequiredforthelaterchaptersHowever,itisanexcellenttheoremforapromisingstudentplanningsubsequentdoctoralstudy,anditrequiresonlywhathasbeenlearnedpreviouslyinthiscourseItisacenturysincethediscoveryoftheRieszRepresentationTheoremTheauthorthinksitistimeforittotakeitsplaceinanundergraduatetextforthetwentyfirstcenturyPartIIIisaboutseveralvariableadvancedcalculus,includingtheinverseandimplicitfunctiontheorems,andtheJacobiantheoremsformultipleintegralsWherethefirsttwopartsplaceemphasisoninfinitedimensionallinearspacesoffunctions,thethirdpartemphasizesfinitedimensionalspacesandthederivativeasalineartransformationAtLouisianaStateUniversity,AdvancedCalculusisofferedasathreesemestertriadofcoursesThefirstsemesteristakenbyallandisthestar

用户评论(0)

0/200

精彩专题

上传我的资料

每篇奖励 +2积分

资料评价:

/49
仅支持在线阅读

意见
反馈

立即扫码关注

爱问共享资料微信公众号

返回
顶部