关闭

关闭

封号提示

内容

首页 Advanced_Calculus_An_Intro_to_Linear_Analysis.p…

Advanced_Calculus_An_Intro_to_Linear_Analysis.pdf

Advanced_Calculus_An_Intro_to_L…

上传者: lp9052 2013-09-15 评分1 评论0 下载9 收藏0 阅读量236 暂无简介 简介 举报

简介:本文档为《Advanced_Calculus_An_Intro_to_Linear_Analysispdf》,可适用于高等教育领域,主题内容包含•leonardFRichardsonADVANCEDCALCULUSAnIntroductiontoLinearAnalysisLeonardFR符等。

•leonardFRichardsonADVANCEDCALCULUSAnIntroductiontoLinearAnalysisLeonardFRichardsonWILEYINTERSCIENCEAJOHNWILEYSONS,INC,PUBLICATIONThispageintentionallyleftblankADVANCEDCALCULUSThispageintentionallyleftblankADVANCEDCALCULUSAnIntroductiontoLinearAnalysisLeonardFRichardsonWILEYINTERSCIENCEAJOHNWILEYSONS,INC,PUBLICATIONCopyrightbyJohnWileySons,IncAllrightsreservedPublishedbyJohnWileySons,Inc,Hoboken,NewJerseyPublishedsimultaneouslyinCanadaNopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSectionIorIoftheUnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriatepercopyfcctotheCopyrightClearanceCenter,Inc,RosewoodDrive,Danvers,MA,(),fax(),oronthewebatwwwcopyrightcomRequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWileySons,Inc,IllRiverStreet,Hoboken,NJ,(I),fax(I),oronlineathttp:wwwwilcycomgopcrmissionLimitofLiabilityDisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurposeNowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterialsTheadviceandstrategiescontainedhereinmaynotbesuitableforyoursituationYoushouldconsultwithaprofessionalwhereappropriateNeitherthepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamagesForgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCareDepartmentwithintheUnitedStatesat(),outsidetheUnitedStatesat()orfax()WileyalsopublishesitsbooksinavarietyofelectronicformatsSomecontentthatappearsinprintmaynotbeavailableinelectronicformatsFormoreinformationaboutWileyproducts,visitourwebsiteatwwwwilcycomLibraryofCongressCataloginginPublicationData:Richardson,LeonardFAdvancedcalculus:anintroductiontolinearanalysisILeonardFRichardsonpcmIncludesbibliographicalreferencesandindexISBN(cloth)ICalculusITitleQARdcPrintedinMexicoToJoan,Daniel,andJosephThispageintentionallyleftblankCONTENTSPrefaceAcknowledgmentsIntroductionPARTIADVANCEDCALCULUSINONEVARIABLERealNumbersandLimitsofSequencesTheRealNumberSystemExercisesLimitsofSequencesCauchySequencesExercisesTheCompletenessAxiomandSomeConsequencesExercisesAlgebraicCombinationsofSequencesExercisesTheBolzanoWeierstrassTheoremExercisesTheNestedIntervalsTheoremXlllXIXxxiviiviiiCONTENTSExercisesTheHeineBorelCoveringTheoremExercisesCountabilityoftheRationalNumbersExercisesTestYourselfExercisesContinuousFunctionsLimitsofFunctionsExercisesContinuousFunctionsExercisesSomePropertiesofContinuousFunctionsExercisesExtremeValueTheoremandItsConsequencesExercisesTheBanachSpaceCa,bExercisesTestYourselfExercisesRiemannIntegralDefinitionandBasicPropertiesExercisesTheDarbouxIntegrabilityCriterionExercisesIntegralsofUniformLimitsExercisesTheCauchySchwarzInequalityExercisesTestYourselfExercisesTheDerivativeDerivativesandDifferentialsExercisesTheMeanValueTheoremCONTENTSixExercisesTheFundamentalTheoremofCalculusExercisesUniformConvergenceandtheDerivativeExercisesCauchy'sGeneralizedMeanValueTheoremExercisesTaylor'sTheoremExercisesTestYourselfExercisesInfiniteSeriesSeriesofConstantsExercisesConvergenceTestsforPositiveTermSeriesExercisesAbsoluteConvergenceandProductsofSeriesExercisesTheBanachSpacelandItsDualSpaceExercisesSeriesofFunctions:TheWeierstrassMTestExercisesPowerSeriesExercisesRealAnalyticFunctionsandc=FunctionsExercisesWeierstrassApproximationTheoremExercisesTestYourselfExercisesPARTIIADVANCEDTOPICSINONEVARIABLEFourierSeriesTheVibratingStringandTrigonometricSeriesExercisesEuler'sFormulaandtheFourierTransformExercisesXCONTENTSBessel'sInequalityandlzExercisesUniformConvergenceRiemannLocalizationExercisesLConvergencetheDualoflExercisesTestYourselfExercisesTheRlemannStieltjesIntegralFunctionsofBoundedVariationExercisesRiemannStieltjesSumsandIntegralsExercisesRiemannStieltjesIntegrabilityTheoremsExercisesTheRieszRepresentationTheoremExercisesTestYourselfExercisesPARTIllADVANCEDCALCULUSINSEVERALVARIABLESEuclideanSpaceEuclideanSpaceasaCompleteNorrnedVectorSpaceExercisesOpenSetsandClosedSetsExercisesCompactSetsExercisesConnectedSetsExercisesTestYourselfExercisesContinuousFunctionsonEuclideanSpaceLimitsofFunctionsExercisesCONTENTSxiContinuousFunctionsExercisesContinuousImageofaCompactSetExercisesContinuousImageofaConnectedSetExercisesTestYourselfExercisesTheDerivativeinEuclideanSpaceLinearTransformationsandNormsExercisesDifferentiableFunctionsExercisesTheChainRuleinEuclideanSpaceTheMeanValueTheoremTaylor'sTheoremExercisesInverseFunctionsExercisesImplicitFunctionsExercisesTangentSpacesandLagrangeMultipliersExercisesTestYourselfExercisesRiemannIntegrationinEuclideanSpaceDefinitionoftheIntegralExercisesLebesgueSetsandJordanSetsExercisesLebesgue'sCriterionforRiemannIntegrabilityExercisesFubini'sTheoremExercisesJacobianTheoremforChangeofVariablesExercisesXiiCONTENTSTestYourselfExercisesAppendixA:SetTheoryAITerminologyandSymbolsExercisesAParadoxesProblemSolutionsReferencesIndexPREFACEWhythisBookwasWrittenThecourseknownasAdvancedCalculus(orIntroductoryAnalysis)standsatthesummitoftherequirementsforseniormathematicsmajorsAnimportantobjectiveofthiscourseistopreparethestudentforacriticalchallengethatheorshewillfaceinthefirstyearofgraduatestudy:thecoursecalledAnalysisI,LebesgueMeasureandIntegration,orIntroductoryFunctionalAnalysisWeliveinaneraofrapidchangeonaglobalscaleAndtheauthorandhisdepartmenthavebeentestingwaystoimprovethepreparationofmathematicsmajorsforthechallengestheywillfaceDuringthepastquartercenturytheUnitedStateshasemergedasthedestinationofchoiceforgraduatestudyinmathematicsTheinfluxofwellprepared,talentedstudentsfromaroundtheworldbringsconsiderablebenefittoAmericangraduateprogramsTheinternationalstudentsusuallyarrivebetterpreparedforgraduatestudyinmathematicsinparticularbetterpreparedinanalysisthantheirtypicalUScounterpartsTherearemanyreasonsforthis,including(a)schoolsystemsabroadthatareorientedtowardteachingonlythebrighteststudents,and(b)theselfselectionthatispartofastudenttakingthestepoftravelabroadtostudyinaforeigncultureThepresenceofstronglypreparedinternationalstudentsintheclassroomraisesthelevelatwhichcoursesaretaughtThusitisappropriateatthepresenttime,intheearlyyearsofthenewmillennium,forcollegeanduniversitymathematicsdepartmentstoxiiiXiVPREFACEreconsidertheiradvancedcalculuscourseswithaneyetowardpreparinggraduatesfortheinternationalenvironmentinAmericangraduateschoolsThisisachallenge,butitisalsoanopportunityforAmericanstudentsandinternationalstudentstolearnsidebysidewith,andalsoabout,oneanotherItismoreimportantthanevertoteachundergraduateadvancedcalculusoranalysisinsuchawayastoprepareandreorientthestudentforgraduatestudyasitistodayinmathematicsAnotherrecentchangeisthatappliedmathematicshasemergedonalargescaleasanimportantcomponentofmanymathematicsdepartmentsInappliedandnumericalmathematics,functionalanalysisatthegraduatelevelplaysaveryimportantroleYetanotherchangethatisemergingisthatundergraduatesplanningcareersinthesecondaryteachingofmathematicsarebeingrequiredtomajorinmathematicsinsteadofeducationThesestudentsmustbepreparedtoteachthenextgenerationofyoungpeoplefortheworldinwhichtheywillliveWhetherornotthemathematicsmajorisplanninganacademiccareer,heorshewillbenefitfrombetterpreparationinadvancedcalculusforcareersintheemergingworldTheauthorhastaughtmathematicsmajorsandgraduatestudentsforthirtysevenyearsHehasservedasdirectorofhisdepartment'sgraduateprogramfornearlytwodecadesAllthechangesdescribedabovearepresenttodayintheauthor'sdepartmentThisbookhasbeenwritteninthehopeofaddressingthefollowingneedsStudentsofmathematicsshouldacquireasenseoftheunityofmathematicsHenceacoursedesignedforseniormathematicsmajorsshouldhaveanintegrativeeffectSuchacourseshoulddrawuponatleasttwobranchesofmathematicstoshowhowtheymaybecombinedwithilluminatingeffectStudentsshouldlearntheimportanceofrigorousproofanddevelopskillincoherentwrittenexpositiontocountertheuniversaltemptationtoengageinwishfulthinkingStudentsneedpracticecomposingandwritingproofsoftheirown,andthesemustbecheckedandcorrectedThefundamentaltheoremsoftheintroductorycalculuscoursesneedtobeestablishedrigorously,alongwiththetraditionaltheoremsofadvancedcalculus,whicharerequiredforthispurposeThetaskofestablishingtherigorousfoundationsofcalculusshouldbeenlivenedbytakingthisopportunitytointroducethestudenttomodernmathematicalstructuresthatwerenotpresentedinintroductorycalculuscoursesStudentsshouldlearntherigorousfoundationsofcalculusinamannerthatreorient<thinkinginthedirectionstakenbymodernanalysisTheclassictheoremsshouldbecouchedinamannerthatreflectstheperspectivesofmodemanalysisFeaturesofthisTextPREFACEXVTheauthorhasattemptedtoaddresstheseneedspresentedaboveinthefollowingmannerThetwopartsofmathematicsthathavebeenstudiedbynearlyeverymathematicsmajorpriortothesenioryearareintroductorycalculus,includingcalculusofseveralvariables,andlinearalgebraThustheauthorhaschosentohighlighttheinterplaybetweenthecalculusandlinearalgebra,emphasizingtheroleoftheconceptsofavectorspace,alineartransformation(includingalinearfunctional),anorm,andascalarproductForexample,thecustomarytheoremconcerninguniformlimitsofcontinuousfunctionsisinterpretedasacompletenesstheoremforCa,basavectorspaceequippedwiththesupnormTheelementarypropertiesoftheRiemannintegralgaincoherenceexpressedasatheoremestablishingtheintegralasaboundedlinearfunctionalonaconvenientfunctionspaceSimilarly,thefamilyofabsolutelyconvergentseriesispresentedfromtheperspectivethatitisacompletenormedvectorspaceequippedwiththehnormManyexercisesareofferedforeachsectionofthetextTheseareessentialtothecourseAnexerciseprecededbyadaggersymboltiscitedatsomepointinthetextSuchcitationsrefertotheexercisebysectionandnumberAnexerciseprecededbyadiamondsymbolisahardproblemIfahardproblemwillbecitedlaterinthetext,thentherewillbeafootnotetosaypreciselywhereitwillbecitedThisisintendedtohelptheprofessordecidewhetherornotanexerciseshouldbeassignedtoaparticularclassbaseduponhisorherplannedcoverageforthecourseTopicsthatcanbeomittedattheprofessor'sdiscretionwithoutdisturbingcontinuityofthecoursearesoindicatedbymeansoffootnotesAttheendofeachchapterthereisabriefsectioncalledTestYourself,consistingofshortquestionstotestthestudent'scomprehensionofthebasicconceptsandtheoremsTheanswerstotheseshortquestions,andalsotootherselectedshortquestions,appearinanappendixTherearenoproofsprovidedamongthoseanswerstoselectedquestionsThereasonisthattherearemanypossiblecorrectproofsforeachexerciseOnlytheprofessorortheprofessor'sdesignatedassistantwillbeabletoproperlyevaluateandcorrectthestudent'swritinginexercisesrequiringproofsTheIntroductiontothisbookisintendedtointroducethestudenttoboththeimportanceandthechallengesofwritingproofsTheguidanceprovidedintheintroductionisfollowedbycorrespondingillustrativeremarksthatappearafterthefirstproofineachofthefivechaptersofPartIofthistextWhetheraprofessorchoosestocollectwrittenassignmentsortohavestudentspresentproofsattheboardinfrontoftheclass,eachstudentmustregularlyconstructandwriteproofsThecoherenceandthepresentationoftheargumentsmustbecriticizedXViPREFACEMostofthetraditionaltheoremsofelementarydifferentialandintegralcalculusaredevelopedrigorouslySincetheorientationofthecourseistowardtheroleofnormedvectorspaces,CauchycompletenessisthemostnaturalformofthecompletenessconcepttouseThuswepresentthesystemofrealnumbersasaCauchycompleteArchimedeanorderedfieldThetraditionaltheoremsofadvancedcalculusarepresentedTheseincludetheelementsofthestudyofintegrableanddifferentiablefunctions,extremevaluetheorems,MeanValueTheorems,andconvergencetheorems,thepolynomialapproximationtheoremofWeierstrass,theinverseandimplicitfunctiontheorems,Lebesgue'stheoremforRiemannintegrability,andtheJacobiantheoremforchangeofvariablesStudentslearninthiscoursesuchconceptsasthoseofacompletenormedvectorspace(realBanachspace)andaboundedlinearfunctionalThisisnotacourseinfunctionalanalysisRatherthecentraltheoremsandexamplesofadvancedcalculusaretreatedasinstancesandmotivationsfortheconceptsoffunctionalanalysisForexample,thespaceofboundedsequencesisshowntobethedualspaceofthespaceofabsolutelysummablesequencesTheconceptofthisbookisthatthestudentisguidedgraduallyfromthestudyofthetopologyofthereallinetothebeginningtheoremsandconceptsofgraduateanalysis,expressedfromamodernviewpointManytraditionaltheoremsofadvancedcalculuslistpropertiesthatamounttostatingthatacertainsetoffunctionsformsavectorspaceandthatthisspaceiscompletewithrespecttoanormByphrasingthetraditionaltheoremsinthislight,wehelpthestudenttomentallyorganizetheknowledgeofadvancedcalculusinacoherentandmeaningfulmannerwhileacquiringahelpfulreorientationtowardmoderngraduatelevelanalysisCoursePlansthatAreSupportedbythisBookPartIofthisbookconsistsoffivechapterscoveringmostofthestandardonevariabletopicsfoundintwosemesteradvancedcalculuscoursesThesechaptersarearrangedinorderofdependence,withthelaterchaptersdependingontheearlieronesThoughthetopicsaremainlytheonestypicallyfound,theyhavebeenreorientedherefromtheviewpointoflinearspaces,norms,completeness,andlinearfunctionalsPartIIoffersachoiceoftwomutuallyindependentadvancedonevariabletopics:eitherFourierseriesorStieltjesintegrationItisespeciallythecaseinPartIIthateachprofessor'sindividualjudgmentaboutthereadinessofhisorherclassshouldguidewhatistaughtSomeofthesetopicswillnotbefortheaveragestudent,butwillmakeexcellentreadingmaterialforthestudentseekinghonorscreditorwritingaseniorthesisIndividualreadingcoursescanbeemployedveryeffectivelytoprovideadvancedexperiencefortheprospectivegraduatestudentInChaptertheintroductionofFourierseriesisaidedbyinclusionofcomplexvaluedfunctionsofarealvariableThisistheonlychapterinwhichcomplexvaluedfunctionsappear,andwiththesetheHermitianinnerproductisintroducedThePREFACEXViichapterincludeslanditsselfduality,convergenceinthenorm,theuniformconvergenceofFourierseriesofsmoothfunctions,andtheRiemannlocalizationtheoremThestudyofavibratingstringispresentedtomotivatethechapterChapter,whichisaboutStieltjesintegration,includesfunctionsofboundedvariationandtheRieszRepresentationTheorem,presentingthedualspaceofCa,bintermsofStieltjesintegrationThelattertheoremofFRieszisthehardestonepresentedinthisbookItisnotrequiredforthelaterchaptersHowever,itisanexcellenttheoremforapromisingstudentplanningsubsequentdoctoralstudy,anditrequiresonlywhathasbeenlearnedpreviouslyinthiscourseItisacenturysincethediscoveryoftheRieszRepresentationTheoremTheauthorthinksitistimeforittotakeitsplaceinanundergraduatetextforthetwentyfirstcenturyPartIIIisaboutseveralvariableadvancedcalculus,includingtheinverseandimplicitfunctiontheorems,andtheJacobiantheoremsformultipleintegralsWherethefirsttwopartsplaceemphasisoninfinitedimensionallinearspacesoffunctions,thethirdpartemphasizesfinitedimensionalspacesandthederivativeasalineartransformationAtLouisianaStateUniversity,AdvancedCalculusisofferedasathreesemestertriadofcoursesThefirstsemesteristakenbyallandisthestar

类似资料

编辑推荐

财务报表分析与证券定价(第一版)(比第二版清晰).pdf

狐狸与葡萄的故事.ppt

北欧神话ABC.pdf

《玄奘西游记》朱偰着.中华书局2007.pdf

王羲之书法字典.pdf

职业精品

精彩专题

普天同庆,八天长假足够去感受我们的辉煌中国了!

近日,《辉煌中国》在央视热播,广大人民群众反响强烈。国家的飞速发展让我们感到骄傲和自豪,祖国为世界和平作出的巨大贡献让我们深感荣幸。这个国庆长假,焦点不应只放在“八天”。别忘了享受和平年代繁荣昌盛的同时,去看看《辉煌中国》,感受这部让我们热血沸腾的纪录片。

用户评论

0/200
    暂无评论
上传我的资料

精选资料

热门资料排行换一换

  • 系统化思维导论.pdf.pdf

  • 唐诗百话.doc

  • 旧约圣经概论.pdf

  • 卖竹竿的小贩为什么不倒.pdf

  • 茅于轼 我所认识的经济学.pdf

  • 名老中医之路(周凤梧).pdf

  • 工程塑料改性技术.pdf

  • 解读兽用生物制品注册与管理新要求…

  • 经穴部位 GB12346-90.…

  • 资料评价:

    / 0
    所需积分:1 立即下载

    意见
    反馈

    返回
    顶部